特許第5695740号(P5695740)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アルプス電気株式会社の特許一覧

特許5695740入力装置及び前記入力装置を用いた複数点の荷重検出方法
<>
  • 特許5695740-入力装置及び前記入力装置を用いた複数点の荷重検出方法 図000016
  • 特許5695740-入力装置及び前記入力装置を用いた複数点の荷重検出方法 図000017
  • 特許5695740-入力装置及び前記入力装置を用いた複数点の荷重検出方法 図000018
  • 特許5695740-入力装置及び前記入力装置を用いた複数点の荷重検出方法 図000019
  • 特許5695740-入力装置及び前記入力装置を用いた複数点の荷重検出方法 図000020
  • 特許5695740-入力装置及び前記入力装置を用いた複数点の荷重検出方法 図000021
  • 特許5695740-入力装置及び前記入力装置を用いた複数点の荷重検出方法 図000022
  • 特許5695740-入力装置及び前記入力装置を用いた複数点の荷重検出方法 図000023
  • 特許5695740-入力装置及び前記入力装置を用いた複数点の荷重検出方法 図000024
  • 特許5695740-入力装置及び前記入力装置を用いた複数点の荷重検出方法 図000025
  • 特許5695740-入力装置及び前記入力装置を用いた複数点の荷重検出方法 図000026
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5695740
(24)【登録日】2015年2月13日
(45)【発行日】2015年4月8日
(54)【発明の名称】入力装置及び前記入力装置を用いた複数点の荷重検出方法
(51)【国際特許分類】
   G06F 3/041 20060101AFI20150319BHJP
   G06F 3/044 20060101ALI20150319BHJP
【FI】
   G06F3/041 600
   G06F3/041 520
   G06F3/044 Z
【請求項の数】6
【全頁数】16
(21)【出願番号】特願2013-513949(P2013-513949)
(86)(22)【出願日】2012年2月15日
(86)【国際出願番号】JP2012053471
(87)【国際公開番号】WO2012153555
(87)【国際公開日】20121115
【審査請求日】2013年11月7日
(31)【優先権主張番号】特願2011-106789(P2011-106789)
(32)【優先日】2011年5月12日
(33)【優先権主張国】JP
(31)【優先権主張番号】特願2011-236760(P2011-236760)
(32)【優先日】2011年10月28日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000010098
【氏名又は名称】アルプス電気株式会社
(74)【代理人】
【識別番号】100085453
【弁理士】
【氏名又は名称】野▲崎▼ 照夫
(74)【代理人】
【識別番号】100108006
【弁理士】
【氏名又は名称】松下 昌弘
(72)【発明者】
【氏名】石曽根 昌彦
(72)【発明者】
【氏名】金子 雅史
(72)【発明者】
【氏名】牛来 志浩
(72)【発明者】
【氏名】佐藤 崇
(72)【発明者】
【氏名】梅津 英治
【審査官】 松田 岳士
(56)【参考文献】
【文献】 特開2010−244252(JP,A)
【文献】 特開2010−272143(JP,A)
【文献】 特開2010−033455(JP,A)
【文献】 特開2006−244005(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 3/03−3/047
(57)【特許請求の範囲】
【請求項1】
操作面上に同時に押圧された複数の押圧点の各押圧位置を検出可能な位置検出センサと、各押圧点の重心位置及び重心荷重を検出可能な荷重検出センサと、各押圧点の位置座標、重心座標及び重心荷重に基づいて各押圧点での各荷重を算出可能な制御部と、を有し、前記制御部では、同時に押圧された3点の各押圧点全てが同一直線上にあることを検知したときに、いずれかの前記押圧点の前記位置座標及び前記重心座標を補正して各押圧点での各荷重を算出することを特徴とする入力装置。
【請求項2】
前記荷重検出センサは、表面が前記操作面側であるパネル周辺部の裏面側に複数、設けられている請求項1に記載の入力装置。
【請求項3】
前記位置検出センサは静電容量式タッチパネルセンサである請求項1又は2に記載の入力装置。
【請求項4】
前記補正は、各押圧点のx座標が一致していればいずれかの前記押圧点のx座標をずらし、各押圧点のy座標が一致していればいずれかの前記押圧点のy座標をずらし、各押圧点が並ぶ直線方向がx座標方向またはy座標方向に対して斜めに傾いている場合にはx座標あるいはy座標のいずれか一方をずらす請求項1ないし3のいずれか1項に記載の入力装置。
【請求項5】
操作面上に同時に押圧された複数の押圧点の各押圧位置を検出可能な位置検出センサと、各押圧点の重心位置及び重心荷重を検出可能な荷重検出センサとを用い、前記操作面上の異なる複数箇所を同時に押圧したときに、各押圧点の各荷重を制御部にて以下のステップにより求める複数点の荷重検出方法であって、
前記位置検出センサの出力に基づき、各押圧点の位置座標を求める座標検出ステップ、
前記荷重検出センサの出力に基づき、各押圧点の重心座標及び重心荷重を求める重心検出ステップ、
各押圧点の位置座標、前記重心座標及び前記重心荷重に基づいて、各押圧点の各荷重を算出する荷重算出ステップを有し、
前記座標検出ステップ及び前記重心検出ステップと、前記荷重算出ステップとの間に、
同時に押圧された3点の各押圧点全てが同一直線上にあるか否かを検知し、全ての前記押圧点が同一直線上にあることを検知したときは次の補正ステップに移行し、検知しないときは前記荷重算出ステップに移行する押圧点判断ステップと、
全ての前記押圧点が同一直線上にあることを検知したとき、いずれかの前記押圧点の前記位置座標及び前記重心座標を補正する補正ステップと、を有し、
前記補正ステップから前記荷重算出ステップに移行したとき、前記荷重算出を、補正した前記位置座標及び前記重心座標を用いて行うことを特徴とする複数点の荷重検出方法。
【請求項6】
前記補正ステップから前記荷重算出ステップに移行して算出された各押圧点の各荷重が0より大きく重心荷重(Z)より小さいか否かを判断する荷重判断ステップを有し、
いずれかの前記押圧点の荷重が0以下あるいは重心荷重以上のときは、再度、補正ステップに戻し前記重心座標に対する補正値を変更して、再荷重算出を行う請求項5記載の複数点の荷重検出方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、携帯機器やその他の電子機器に搭載されて、指などを操作パネルに接触させて操作する入力装置に関する。
【背景技術】
【0002】
以下に示す各特許文献には、操作面上を指等で操作した際の押圧点の位置座標と荷重とを検出できる入力装置が記載されている。
【0003】
これら特許文献にて、位置座標と荷重との双方の検出を可能とする押圧点は一点であり、同時に複数箇所を押圧したときの各押圧点での位置座標及び荷重の検出については何も記載されていない。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−87311号公報
【特許文献2】特開2010−146206号公報
【特許文献3】特開2010−211399号公報
【特許文献4】特開2010−244514号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は上記従来の課題を解決するものであり、同時押しした複数の押圧点の各荷重を得ることが可能な入力装置及び前記入力装置を用いた複数点の荷重検出方法を提供することを目的としている。
【課題を解決するための手段】
【0006】
本発明における入力装置は、操作面上に同時に押圧された複数の押圧点の各押圧位置を検出可能な位置検出センサと、各押圧点の重心位置及び重心荷重を検出可能な荷重検出センサと、各押圧点の位置座標、重心座標及び重心荷重の各データに基づいて各押圧点での各荷重を算出可能な制御部と、を有し、前記制御部では、同時に押圧された3点の各押圧点全てが同一直線上にあることを検知したときに、いずれかの前記押圧点の前記位置座標及び前記重心座標を補正して各押圧点での各荷重を算出することを特徴とするものである。
【0007】
また本発明における複数点の荷重検出方法は、操作面上に同時に押圧された複数の押圧点の各押圧位置を検出可能な位置検出センサと、各押圧点の重心位置及び重心荷重を検出可能な荷重検出センサとを用い、前記操作面上の異なる複数箇所を同時に押圧したときに、各押圧点の各荷重を制御部にて以下のステップにより求める複数点の荷重検出方法であって、
前記位置検出センサの出力に基づき、各押圧点の位置座標を求める座標検出ステップ、
前記荷重検出センサの出力に基づき、各押圧点の重心座標及び重心荷重を求める重心検出ステップ、
各押圧点の位置座標、前記重心座標及び前記重心荷重に基づいて、各押圧点の各荷重を算出する荷重算出ステップを有し、
前記座標検出ステップ及び前記重心検出ステップと、前記荷重算出ステップとの間に、
同時に押圧された3点の各押圧点全てが同一直線上にあるか否かを検知し、全ての前記押圧点が同一直線上にあることを検知したときは次の補正ステップに移行し、検知しないときは前記荷重算出ステップに移行する押圧点判断ステップと、
全ての前記押圧点が同一直線上にあることを検知したとき、いずれかの前記押圧点の前記位置座標及び前記重心座標を補正する補正ステップと、を有し、
前記補正ステップから前記荷重算出ステップに移行したとき、前記荷重算出を、補正した前記位置座標及び前記重心座標を用いて行うことを特徴とするものである。
【0008】
さらに、前記補正ステップから前記荷重算出ステップに移行して算出された各押圧点の各荷重が0より大きく重心荷重(Z)より小さいか否かを判断する荷重判断ステップを有し、
いずれかの前記押圧点の荷重が0以下あるいは重心荷重以上のときは、再度、補正ステップに戻し前記重心座標に対する補正値を変更して、再荷重算出を行うことが好ましい。
【0009】
このように本発明では、操作面上にて複数点を同時押しした際、位置検出センサの出力から得られる各押圧点での位置座標、荷重検出センサの出力から得られる各押圧点の重心座標及び重心荷重の各データに基づき、各押圧点での各荷重を算出可能な制御部を設けた。前記制御部では、上記のステップを経ることで、各押圧点の各荷重を算出することができる。これに対して各特許文献には、本発明と同様の制御部については開示されておらず、複数点を同時押しすると、各押圧点の各荷重を知ることができない構成となっている。
【0010】
以上のように本発明では、各特許文献に記載された入力装置の構成と対比すると、前記入力装置の構成を複雑にすることなく、複数点を同時押しした際の各押圧点での各荷重を適切且つ容易に算出することができる。
また、3点の各押圧点が同一線上に並んだときでも、各押圧点での荷重算出が可能になる。
【0011】
本発明では、前記荷重検出センサは、表面が前記操作面側であるパネル周辺部の裏面側に複数、設けられていることが好ましい。これにより、重心座標及び重心荷重を適切且つ容易に検出することができる。
【0012】
また本発明では、前記位置検出センサは静電容量式タッチパネルセンサであることが好ましい。これにより、同時押ししたときの複数の押圧点の各位置座標をより精度良く検出することが可能である。
【発明の効果】
【0017】
本発明では、入力装置の構成を複雑にすることなく、複数点を同時押しした際の各押圧点での各荷重を適切且つ容易に算出することができる。
【図面の簡単な説明】
【0018】
図1図1は、本発明の実施形態における入力装置(タッチパネル)の部分縦断面図である。
図2図2は、本実施形態の入力装置のブロック図である。
図3図3は、静電容量式タッチパネルセンサの説明図である。
図4図4は、荷重検出センサの説明図であり、図4(a)は部分縦断面図、図4(b)は、荷重検出センサを構成するセンサ基板の裏面透視図である。
図5図5は、本実施形態の入力装置の平面図を示し、特に、2点を同時押ししたときに各押圧点の各荷重を得ることが可能なことを説明するための操作状態図である。
図6図6、複数点を同時押しした際に、本実施形態の入力装置が行う処理のフローチャート図である。
図7図7は、比較例の入力装置では、2点を同時押ししたときに各押圧点の各荷重を得ることができないことを説明するための操作状態図である。
図8図8は、本実施形態の入力装置を用いて、3点を同時押ししたときに各押圧点の各荷重を得ることが可能なことを説明するための操作状態図である。
図9図9は、別の実施形態における入力装置の構成を説明するための平面図である。
図10図10は、本実施形態の入力装置、3点を同時押ししたときに全ての押圧点が同一直線上に並んだ状態を示す平面図である。
図11図11は、図10に示すように3点の押圧点が同一直線上に並んだとき、荷重算出を可能とするためのフローチャート図である。
【発明を実施するための形態】
【0019】
図1は、本発明の実施形態における入力装置(タッチパネル)の部分縦断面図、図2は、本実施形態の入力装置のブロック図、図3は、静電容量式タッチパネルセンサの説明図、図4は、荷重検出センサの説明図であり、図4(a)は部分縦断面図、図4(b)は、荷重検出センサを構成するセンサ基板の裏面透視図である。
【0020】
本実施形態における入力装置(タッチパネル)1は、静電容量式タッチパネルセンサ(位置検出センサ)2の裏面側に複数の荷重検出センサ3を備えた構成である。
【0021】
静電容量式タッチパネルセンサ2は、透明な操作パネル4と、操作パネル4の裏面4bに設けられたセンサ層5とを有して構成される。操作パネル4はガラスやプラスチック等で構成される。操作パネル4の表面が操作面4aである。
【0022】
センサ層5は、例えば図3に示すようにITO等で形成されたX電極27とY電極28とを有して構成される。X電極27とY電極28との間は絶縁されている。また、X電極27とY電極28とは直交している。指で操作面4a上を押圧すると、指と各電極27,28との間の静電容量が変化する。この静電容量変化に基づき指の操作位置を検出することが可能である。静電容量式タッチパネルセンサ2では、上記した静電容量変化に基づき、操作面4a上を複数点にて同時押ししても、各押圧点のX座標及びY座標を検出することが可能である。センサ層5の構成は図3のものに限定されない。図3のように電極がX電極27とY電極28との2層構造とされていてもよいし、1層構造で構成することも可能である。また静電容量式でなく抵抗膜式等とすることも可能である。抵抗膜式の場合、同じ平面の抵抗層を複数に分離する等で、複数点を同時に押圧した時、各押圧点の位置座標の同時検出を可能とする。ただし静電容量式とすることで、複数点を同時に押圧した場合において複数の押圧点の各位置座標をより精度良く検出することができる。
【0023】
図1では図示しないが操作パネル4の裏面4bの周囲に加飾層を設けることで、操作パネル4を通して液晶ディスプレイ(LCD)10の表示がされ操作面4aでの操作を可能とする操作領域と、操作領域の周囲を縁取る不透明な加飾領域とに区分けできる。加飾領域では、センサ層5に設けられた金属配線が引き回されており前記金属配線は、操作面4a側から見えないようになっている。また加飾領域には、次に説明する荷重検出センサ3を配置することが可能である。
【0024】
荷重検出センサ3は、図4に示すように、センサ基板12と、ベース基板13とを有する。センサ基板12には、変位部14と、変位部14の上面に上方に向けて突出する突起状の受圧部17が設けられる。センサ基板12とベース基板13との間には所定の空間部15が形成されており、これにより変位部14が荷重を受けると高さ方向に変位できるようになっている。図4(a)(b)に示すように、センサ基板12の裏面には、歪検出素子として複数のピエゾ抵抗素子16が設けられる。受圧部17で受けた荷重により変位部14が高さ方向に変位すると、その変位量に応じて各ピエゾ抵抗素子16の電気抵抗が変化し、各ピエゾ抵抗素子16によって構成されたブリッジ回路の中点電位が変化することで、センサ出力を得ることが出来る。図4(b)に示すように各ピエゾ抵抗素子16から引き回された配線部18が図示しないパッド部と電気的に接続されている。
【0025】
本実施形態における荷重検出センサ3は図4に示した構成以外のものであってもよい。例えば操作面4aを押圧したときに2つの電極間の距離の変化に基づいて静電容量が変化し、この静電容量変化により荷重を検出することが可能な構成にすることも可能である。
【0026】
図1に示すように、荷重検出センサ3は、静電容量式タッチパネルセンサ2の裏面側に配置される。荷重検出センサ3は、例えば、図5(a)に示すように、操作面4aの周辺部の4隅に配置される。また図1に示すように、荷重検出センサ3を支える支持部9を備え、この支持部9と静電容量式タッチパネルセンサ2間が高さ方向に変形可能な接続部11により接続されている。これにより操作面4aを押圧したときに操作パネル4が下方に移動し、荷重検出センサ3に荷重を加えることができる。接続部11は例えば両面テープである。
【0027】
なおタッチパネル1における荷重検出センサ3の支持構造は図1に示すものに限定されない。また、タッチパネル1における荷重検出センサ3の位置は図5(a)に示すものに限定されず、例えば、タッチパネル1の周辺部における各辺の中央部に夫々、配置しても良く、押圧力の荷重を適切に検知できるところに適宜配置できるものである。
【0028】
図2に示すように本実施形態のタッチパネル1は、静電容量式タッチパネルセンサ2と荷重検出センサ3とに接続される制御部(IC)20を備える。また制御部20からのデータを機器本体部の画像処理部21に送信できるようになっている。前記制御部20では、操作面4a上の複数点を同時押ししたときに各押圧点の各荷重を算出することが可能とされている。
【0029】
以下では、図5図6を用いて、同時押しした各押圧点の各荷重を求めるアルゴリズムについて説明する。
【0030】
図5(a)は、本実施形態における入力装置1の操作面4a上の異なる複数箇所を同時に押圧したときの平面図を示している(図6のステップST1)。
【0031】
このとき、静電容量式タッチパネルセンサ2からの出力に基づいて図2に示す制御部20では、押圧点Aの位置座標(x1,y1)と、押圧点Bの位置座標(x2,y2)を求めることができる(図6のステップST2(座標検出ステップ))。
【0032】
さらに図5(b)に示すように、各荷重検出センサ3の出力に基づいて図2に示す制御部20では、各押圧点A,Bの重心座標(X,Y)と重心荷重(Z)を求めることができる(図6のステップST3(重心検出ステップ))。
【0033】
ここで重心座標(X、Y)及び重心荷重(Z)は、荷重検出センサ3からの各センサ出力等により以下の数式1にて算出することができる。
【0034】
【数1】
【0035】
ここでs1,s2,s3,s4は、図5(b)に示す各荷重検出センサ3からのセンサ出力を指し例えば単位はmVである。またSは、各荷重検出センサ3のセンサ感度を示し例えば単位はmV/Nである。またWは、X方向に配列された各荷重検出センサ3の中心間の幅寸法を示し、Hは、Y方向に配列された各荷重検出センサ3の中心間の長さ寸法を示す。なお、上記(数式1)は重心座標(X、Y)及び重心荷重(Z)を求める一例であり、この数式を用いて求める方法に限定はされない。
【0036】
また、重心座標(X、Y)及び重心荷重(Z)と、各押圧点A,Bでの位置座標(x1,y1,x2,y2)及び各押圧点A,Bの夫々に作用する荷重(z1,z2)との間には以下の数式2が成り立っている。
【0037】
【数2】
【0038】
このように、静電容量式タッチパネルセンサ2からの出力に基づいて各押圧点A,Bでの位置座標(x1,y1),(x2,y2)は既知であり、また荷重検出センサ3の出力に基づいて重心座標(X,Y)及び重心荷重(Z)は既知である。
【0039】
このため、上記数式2に基づいて各押圧点A,Bの各荷重(z1,z2)を以下の数式3により算出することができる(図6のステップST4(荷重算出ステップ))。
【0040】
【数3】
【0041】
そして各押圧点A,Bでの各荷重(z1,z2)や位置座標(x1,y1,x2,y2)の各データが図2に示す画像処理部21に送信され、画像処理部21では送信データに基づいて液晶ディスプレイ10の画像表示処理を行う(図6のステップST5)。例えば、各押圧点A,Bでの荷重の大きさに応じて画面表示を変化させることができる。
【0042】
上記した各押圧点A,Bでの荷重(z1,z2)を算出するアルゴリズムは、電源を立ち上げた後、操作面4a上を複数点にて同時押しすれば、常に行われるようにしてもよいし、あるいは、あるモード時のみに行われるように制御し、前記モード以外のモードが立ち上がったら終了させることができる(図6のステップST6)。
【0043】
なお図6のステップST2とステップST3の順は時間的な順番を示したものでなく、ステップST1とステップST4との間で行われる各工程を説明の順番に並べたものである。
【0044】
図7(a)(b)は、比較例の入力装置を示す。図7(a)では、荷重検出センサ3を備えるが、図1に示すセンサ層5を備えない。すなわち操作パネル4の裏面にセンサ層5を備えることなく荷重検出センサ3が設けられた構成である。
【0045】
図7(a)のように操作面4a上を押圧点Cにて押圧したとき、押圧点Cが一点であれば、押圧点Cでの位置座標(x3,y3)及び荷重(z3)を、上記の数式1により求めることができる。なお図7(a)には、押圧点Cと、押圧点D,Eが図示されているが、押圧点Cと、押圧点D,Eとは別々の操作である。
【0046】
このように押圧点Cが一点であれば、荷重検出センサ3のみでも位置座標と荷重の双方を求めることが可能である。しかしながら操作面4a上を押圧点D,Eにより2点、同時に押圧したとき、各押圧点D,Eの重心座標(X,Y)と重心荷重(Z)を得ることができるが、各押圧点D,Eの位置座標及び荷重の双方を得ることができない。
【0047】
一方、図7(b)に示す比較例の入力装置では、センサ層5を備えるが、荷重検出センサ3を備えない。すなわち図1に示す静電容量式タッチパネルセンサ2のみ備えた構成である。
【0048】
図7(b)では、操作面4a上を2点、同時に押圧すると、各押圧点F,Gの各位置座標(x4,y4)、(x5,y5)を得ることができるが、各押圧点F,Gの各荷重を知ることができない。
【0049】
これに対して本実施形態の入力装置1は、静電容量式タッチパネルセンサ(位置検出センサ)2と荷重検出センサ3とを備え、さらに各押圧点A,Bの位置座標(x1,y1)、(x2,y2)、重心座標(X,Y)及び重心荷重(Z)の各データに基づいて各押圧点A,Bでの各荷重(z1,z2)を算出可能な制御部20を備えている。このように本実施形態では、単に静電容量式タッチパネルセンサ2と荷重検出センサ3とを組み合わせたのでなく、複数点を同時に押圧した時の各押圧点の各荷重を算出可能な制御部20を設けた点に特徴的部分がある。
【0050】
各押圧点A,Bでの各荷重を算出できる制御部20は、上記に挙げた各特許文献に記載されていない。各特許文献では複数点を同時押しすると、各押圧点の荷重を知ることができない構成となっている。このように、本実施形態では、各特許文献に記載された入力装置の構成と対比すると、前記入力装置1の構成を複雑にすることなく、複数点を同時押しした際の各押圧点での各荷重を適切且つ容易に算出することができる。
【0051】
図8(a)では、3点を同時押ししたときの実施例を示す。まず図6のステップST2にて、各押圧点I,J,Kでの位置座標(x6,y6)、(x7,y7)、(x8,y8)を得ることができる。続いて図6のステップST3にて、各押圧点I,J,Kの重心座標(X,Y)及び重心荷重(Z)を得ることができる。
【0052】
そして、各押圧点I,J,Kの各荷重(z6,z7,z8)を以下の数式4により算出することができる(図6のステップST4)。
【0053】
【数4】
【0054】
また、図5図8の実施形態では、荷重検出センサ3を操作面4aの四隅に設けたが、例えば図9に示すように、2個の荷重検出センサ3をX方向の両側に設ける構成でもよい。図9では、操作面4aのY方向への長さ寸法Hが短くて、各押圧点L,MのY座標が要求されず、各押圧点L,MのX座標(x9,x10)と荷重(z9,z10)を知るための構成に適している。
【0055】
図10の実施形態では、3点を同時押ししたときに、各押圧点N,O,P全てが同一直線Q上に並んだ状態となっている。しかしながら、このとき上記した数式4を用いて各押圧点N,O,Pの各荷重を求めようとすると、数式4における分母が0となり、荷重を求めることができないとわかった。
【0056】
そこで本実施形態では、3点の各押圧点N,O,P全てが同一直線Q上にあるか否かを検知する機能を制御部20(図2参照)が備え、さらに同一直線Q上にあると判断したときには座標データの補正を行った後、荷重算出を行うように制御している。
【0057】
図11は、同時に押圧された3点の各押圧点N,O,P全てが同一直線Q上にあるか否かを判断し、同一直線Q上にあると判断したときには荷重算出に対して別ルーチンを備えるフローチャート図である。
【0058】
図11のステップST10では、図10に示す操作面4a上の異なる3点を同時押しする。このとき各押圧点N,O,P全てが同一直線Q上に並んだ状態となっている。
【0059】
図11のステップST11(座標検出ステップ)は、静電容量式タッチパネルセンサ2からの出力に基づいて図2に示す制御部20にて、各押圧点N,O,Pの位置座標(x11,y11),(x12,y12),(x13,y13)を求める。
【0060】
さらに、各荷重検出センサ3の出力に基づいて図2に示す制御部20では、各押圧点N,O,Pの重心座標(X,Y)と重心荷重(Z)を求める(図11のステップST12(荷重検出ステップ))。重心座標(X、Y)及び重心荷重(Z)は、既に記載した数式1により求めることが出来る。
【0061】
続いて図11のステップST13では、各押圧点N,O,Pが同一直線Q上にあるか否かを制御部2にて判断する。
【0062】
判断方法について以下の数式を用いて説明する。
上記の数式2を図10の各押圧点N,O,Pの位置座標(x11,y11),(x12,y12),(x13,y13)及び各荷重(z11,z12,z13)に当てはめると、以下の数式5となる。
【0063】
【数5】
【0064】
次に数式5を求めたい荷重(z11,z12,z13)について整理すると以下の数式6となる。
【0065】
【数6】
【0066】
更に数式6を変形して行列表示すると以下の数式7となる。
【0067】
【数7】
【0068】
数式7における等式の右辺を構成する左側の行列を以下の数式8に示すようにAと置く。
【0069】
【数8】
【0070】
これにより、以下の数式9に示すように行列表示を簡素化できる。
【0071】
【数9】
【0072】
続いて、以下の数式10に示すように、行列Aの逆行列をA-1とし、等式の左辺及び右辺に逆行列A-1をかけると、以下の数式10となる。
【0073】
【数10】
【0074】
数式10に示すように、逆行列A-1が存在すれば、各荷重(z11,z12,z13)を求めることができる。
【0075】
ここで逆行列A-1が存在しない条件は、行列Aの行列式が0になる場合である。すなわち以下の数式11が成り立つ場合、逆行列A-1が存在しない。
【0076】
【数11】
【0077】
数式11を整理すると以下の数式12が得られる。
【0078】
【数12】
【0079】
上記数式12が成り立つ条件とは、3点の押圧点N,O,Pの位置座標(x11,y11),(x12,y12),(x13,y13)が同一直線上にある場合である。よって同時に押圧した各押圧点N,O,P全てが例えば図10のように同一直線Q上にあるとき、逆行列A-1が存在せず、したがって各押圧点N,O,Pの各荷重(z11,z12,z13)を求めることができない。
【0080】
図11のステップST13(押圧点判断ステップ)では、各押圧点N,O,Pが同一直線上にあるか否かを数式12が成り立つか否かで判断する。
【0081】
数式12が成り立たず、各押圧点N,O,Pが同一直線上にないと判断されたときは、ステップST14により各押圧点N,O,Pでの荷重算出を数式4により行う。
【0082】
図11のステップST13で、数式12が成り立ち、各押圧点N,O,P全てが同一直線上にあると判断されたときは、ステップST15に移行する。
【0083】
ステップST15(補正ステップ)では、各押圧点N,O,Pのいずれか一つの位置座標を補正する。ここでいう「補正」とは、位置座標をわずかに移動させることを指す。例えば押圧点Nの位置座標(x11,y11)のx11をわずかに移動させる。移動させる座標は、各押圧点N,O,Pのx座標が一致していればx座標をずらす。また、各押圧点N,O,Pのy座標が一致していればy座標をずらす。また、各押圧点N,O,Pが並ぶ同一直線方向がx座標方向またはy座標方向に対して斜めに傾いている場合には、x座標あるいはy座標のいずれか一方をずらす。
【0084】
ステップST15における位置座標の補正により、各押圧点N,O,Pは見かけ上、同一直線上にない状態となる。
【0085】
なおステップST15において、2点以上の押圧点の座標位置をずらすことも出来るが、その場合、後述するステップST16にて算出された各押圧点N,O,Pでの荷重(z11,z12,z13)が、各押圧点N,O,Pにて作用する実際の荷重から大きくずれやすい。よって、ステップST15では、1点の押圧点の座標位置をわずかにずらすのがよい。
【0086】
ここで本実施形態では、押圧点Nのx座標(x11)を、わずかにずらすこととする。
すなわちx11=x11+aとする。aが補正値である。ここでaを例えば0.1とする。aの値に対し特に制限を設けないが、座標値に対して10%以下とすることがよい。
【0087】
また押圧点Nの位置座標を補正するとともに、重心座標(X,Y)のXについても補正を行う。
【0088】
すなわち数式6におけるXの式にてx11をx11+aに置き換えると、以下の数式13を得ることが出来る。
【0089】
【数13】
【0090】
ここで数式13のz11/Zをbと置くと、X=X+abとなる。このように位置座標x11をx11+aと補正するとともに、重心座標XもX+abと補正する。ここでbの値については、z11は0<z11<Zであるため、bは0<b<1である。例えばbを0.5とする。
【0091】
そして上記した数式4にて、補正した位置座標(x11+a)、及び重心座標(X+ab)を用いて、図11のステップST16により各押圧点N,O,Pの各荷重(z11,z12,z13)を求める。
【0092】
ここで具体例を示す。各押圧点N,O,Pの位置座標及び荷重を、(x11,y11,z11)=(1,1,1)、(x12,y12,z12)=(1,4,2)、(x13,y13,z13)=(1,10,1)とする。重心座標(X、Y)及び重心荷重(Z)は、(X,Y,Z)=(1,4.75,4)と計算できる。
【0093】
上記の具体例では、各押圧点N,O,Pのx座標が全て1となっており、各押圧点N,O,Pが同一直線上にある状態である。
【0094】
したがって、例えばx11に補正値aとして0.1を加える。すると、x11=1.1となる。また重心座標Xに補正値abとして0.1×0.2を加える。これにより重心座標Xは1.02となる。
【0095】
これにより数式8に示す行列Aの各成分に具体的数値を当てはめると、以下の数式14に示す行列Aを得ることが出来る。
【0096】
【数14】
【0097】
さらに数式14に示すように、逆行列A-1を得ることが出来る。
したがって数式10に示す関係式が成り立ち、図11のステップST16(荷重算出ステップ)にて各押圧点N,O,Pでの各荷重(z11,z12,z13)を求めることができる。計算の結果、z11は0.8、z12は2.3、z13は0.9であった。本来、各押圧点N,O,Pにて作用する実際の各荷重はz11=1,z12=2,z13=1であり近似値を得ることが出来た。なお、補正値a,abの調整により、より実際の荷重に近い荷重値を得ることが出来る。
【0098】
続いて図11に示すようにステップST17(荷重判断ステップ)に移行する。ステップST17では、ステップST16にて算出された各押圧点N,O,Pでの各荷重(z11,z12,z13)が0より大きく重心荷重Zより小さいか否か判断される。押圧点での荷重が、0以下あるいは重心荷重Z以上となることはあり得ないため、各押圧点N,O,Pでの各荷重(z11,z12,z13)のいずれかが、0以下あるいは重心荷重Z以上となった場合、ステップST15に戻して、重心座標の補正値であるbの値を動かして再度、荷重算出を行う。このとき、位置座標に対する補正値aについては動かさなくてもよい。補正値aの値によって、荷重算出エラーは生じない。一方、補正値bは、上記したようにz11/Zで示され、z11がZに対してどの程度の比率であるのかステップST15の時点では不明である。よって上記ではbを0.2として計算したが、0.2という数値が、z11/Zの実測値から大幅にずれてしまっていると、いずれかの荷重が0以下あるいはZ以上のエラー値として算出されやすい。したがって、ステップST17でいずれかの荷重が0以下あるいはZ以上となったらステップST15に戻り、補正値bを変更して再度、荷重算出を行う。
【0099】
全ての荷重が0より大きく重心荷重Zより小さい値に収まったら、ステップST18に移行し、各押圧点N,O,Pでの各荷重や位置座標の各データに基づいて液晶ディスプレイ10の画像表示処理を行う。
【0100】
本実施形態における入力装置(タッチパネル)1は、携帯電話、携帯用の情報処理装置、携帯用の記憶装置、携帯用のゲーム装置などに適用できる。
【符号の説明】
【0101】
A〜G,I〜M 押圧点
1 入力装置
2 静電容量式タッチパネルセンサ
3 荷重検出センサ
4 操作パネル
4a 操作面
5 センサ層
10 液晶ディスプレイ
12 センサ基板
14 変位部
16 ピエゾ抵抗素子
20 制御部
21 画像処理部
27 X電極
28 Y電極
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11