特許第5695747号(P5695747)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日産自動車株式会社の特許一覧 ▶ ウィスコンシン・アルムニ・リサーチ・ファウンデーションの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5695747
(24)【登録日】2015年2月13日
(45)【発行日】2015年4月8日
(54)【発明の名称】回転電機用ローター
(51)【国際特許分類】
   H02K 21/16 20060101AFI20150319BHJP
   H02K 1/22 20060101ALI20150319BHJP
【FI】
   H02K21/16 M
   H02K1/22 A
【請求項の数】8
【全頁数】12
(21)【出願番号】特願2013-527688(P2013-527688)
(86)(22)【出願日】2010年9月10日
(65)【公表番号】特表2013-538551(P2013-538551A)
(43)【公表日】2013年10月10日
(86)【国際出願番号】IB2010002250
(87)【国際公開番号】WO2012032369
(87)【国際公開日】20120315
【審査請求日】2013年8月14日
(73)【特許権者】
【識別番号】000003997
【氏名又は名称】日産自動車株式会社
(73)【特許権者】
【識別番号】591057706
【氏名又は名称】ウィスコンシン・アルムニ・リサーチ・ファウンデーション
【氏名又は名称原語表記】WISCONSIN ALUMNI RESEARCH FOUNDATION
(74)【代理人】
【識別番号】100075513
【弁理士】
【氏名又は名称】後藤 政喜
(74)【代理人】
【識別番号】100120260
【弁理士】
【氏名又は名称】飯田 雅昭
(74)【代理人】
【識別番号】100130638
【弁理士】
【氏名又は名称】野末 貴弘
(74)【代理人】
【識別番号】100120178
【弁理士】
【氏名又は名称】三田 康成
(72)【発明者】
【氏名】渋川 祐一
(72)【発明者】
【氏名】ローレンツ ロバート ドナルド
(72)【発明者】
【氏名】リムスワン ナティー
【審査官】 槻木澤 昌司
(56)【参考文献】
【文献】 特開2000−270503(JP,A)
【文献】 特開2001−258222(JP,A)
【文献】 特開2009−296685(JP,A)
【文献】 特開2009−027852(JP,A)
【文献】 特開2003−061283(JP,A)
【文献】 特開2006−223052(JP,A)
【文献】 特開2000−209798(JP,A)
【文献】 特開2006−067772(JP,A)
【文献】 特開2000−050542(JP,A)
【文献】 欧州特許出願公開第02083503(EP,A2)
【文献】 特開2009−124899(JP,A)
【文献】 特開2008−295138(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 21/16
H02K 1/22
(57)【特許請求の範囲】
【請求項1】
回転電機用ローターであって、
ローターシャフトと、
前記ローターシャフトの周囲に設けられるローターコアであって、該ローターコアは一定の間隔で配置されるフラックスバリアのグループを備え、前記フラックスバリアのうちの少なくとも1つは該フラックスバリアの内部側縁と外部側縁とをつなぐ少なくとも1つのブリッジを含む、ローターコアと、
断面で見たときに前記ローターコアにおいて前記フラックスバリア間に、隣設される永久磁石が交互に異なる極性を有するように配置される、永久磁石のグループと、
を有し、
前記フラックスバリアは、該フラックスバリアのそれぞれが、断面で見たときに前記永久磁石のうちの対応する永久磁石の磁極の中心軸と一致するd軸に電気的に直交するq軸に交差するように、前記隣設される永久磁石間にそれぞれ更に配置さ
前記ブリッジは、断面で見たときにq軸を中心として左右対称であるように前記フラックスバリアのうちの少なくとも1つに2つ形成され、
それぞれの前記ブリッジは、前記永久磁石のうちの対応する永久磁石に隣設して形成され、
前記フラックスバリアと前記永久磁石のうちの対応する永久磁石との間隔は、前記フラックスバリアのうちの1つの前記ブリッジが前記フラックスバリアのうちの1つの前記ブリッジに隣設されるその永久磁石によって提供される磁束によって磁気飽和する度数に反比例する、
回転電機用ローター。
【請求項2】
請求項1に記載の回転電機用ローターにおいて、
前記ブリッジは、前記フラックスバリアよりも外周側のローターコアピースに作用する遠心力に抗するとともに、遠心力によるローターコアピースの変形を防止することができる幅である、
回転電機用ローター。
【請求項3】
請求項1又は請求項2に記載の回転電機用ローターにおいて、
前記ブリッジは、前記対応する永久磁石から離れるにつれて前記ローターコアの外周に近づくように形成される、
回転電機用ローター。
【請求項4】
請求項1から請求項までのいずれか1項に記載の回転電機用ローターにおいて、
前記ローターコアは、前記フラックスバリアよりも前記ローターコアの外周側に更に近づくように設けられる更なる少なくとも1組のフラックスバリアのグループを更に備える、
回転電機用ローター。
【請求項5】
請求項に記載の回転電機用ローターにおいて、
前記更に備えられたグループのそれぞれのフラックスバリアには、ブリッジが設けられない、
回転電機用ローター。
【請求項6】
請求項1に記載の回転電機用ローターにおいて、
前記フラックスバリアは、一定の機械角の間隔で配置される、
回転電機用ローター。
【請求項7】
請求項1に記載の回転電機用ローターにおいて、
前記フラックスバリアは、前記ローターシャフトの回転軸に垂直な断面で見たときに前記ローターシャフトに近づくように凸である、
回転電機用ローター。
【請求項8】
請求項1に記載の回転電機用ローターにおいて、
前記フラックスバリアは、前記ローターシャフトの回転軸に垂直な断面で見たときに前記ローターシャフトから離れるように凸である、
回転電機用ローター。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、回転電機に好適なローターに関する。より詳細には、本発明は、ローターコアに対する損傷を低減又は排除する一方で回転位置検出及び出力トルクを改善するように構成されている磁束バリアを含むローターに関する。
【背景技術】
【0002】
IPM(Interior permanent magnet:永久磁石埋込)タイプの回転電機において、製造コストを低減するとともにユニットを小形化すべく、ローターの回転位置を検出するセンサーを廃止することができるセンサーレス技術が開発されている。当該技術分野において理解されるように、センサーレスローターは一般に自己検知型ローターと呼ばれ、その回転位置を、外部センサー、又はローターに加えられるセンサーを使用することなく検出することができる。
【0003】
ローターの回転が速ければ、大きな誘起電圧が発生する。この誘起電圧の波形から永久磁石の位置を推定できる。したがって、この推定された位置を用いてローターの回転位置を推定できる。一方、ローターの回転が遅ければ、誘起電圧も小さい。そのため、ローターが停止しているときや、極低速で回転しているときには、概して、誘起電圧の波形から永久磁石の位置を正確に推定することができない。
【0004】
そこで、ローターの回転トルクを得るためにローターの回りに回転磁界を形成する電圧基本波に、更に高調波を重ね合わせて、計測された電流値及び得られた結果に基づいてローターの位置を推定する手法が開発されている。より具体的には、永久磁石は、空気と同様に透磁率が小さく磁束が流れにくい。一方、上記ローターにおいて用いられる電磁鋼板等の電磁鋼板は透磁率が大きい。したがって、永久磁石と永久磁石との間に電磁鋼板が配置される場合、磁束はこの電磁鋼板を流れやすい。そして磁束の流れやすさはインダクタンスとして表される。そこで、ローターよりも速く回転する磁界を発生する高調波電圧信号をステーターコイルに与えて、ローターの磁束が流れやすい箇所とローターの磁束が流れにくい箇所とのコントラストに基づいて、ローターの位置を推定することができる。このようにすれば、ローターが停止しているときや、極低速で回転しているときでも、ローターの位置を推定できる。
【0005】
特開2008−295138号は、例示的なIPM回転電機を開示している。この電機では、q軸インダクタンスLqがd軸インダクタンスLdよりも大きくなるように、フラックスバリアを設けている。
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、このタイプのIPM回転電機では、高速回転したときにフラックスバリアよりも外周側のローターコアピースに大きな遠心力が作用する。そこで、その遠心力に抗してこのローターコアピースに対する変形等の損傷を回避するフラックスバリアの構造が必要である。具体的にはローターコアピースの両端、すなわちフラックスバリアからローターコアの表面までの厚さ(ローターコアの積層を一緒に保持するローターコアの表面に近い鋼鉄製のブリッジとも称することができる)を、遠心力に抗するほど十分な構造を有するほど十分に厚くしていた。ところがこのような構造であると、特に高負荷において上記ローターコアピースから磁束が漏れやすい。そしてステーターコイルの回転磁界による磁束が印加されたときにq軸の磁束密度が高くなる。その結果、d軸インダクタンスにも影響を及ぼし、d軸上に左右非対称の磁束密度分布が発生する。このようになっては、本来の位置からずれた位置にd軸及びq軸を推定してしまい、ローター回転位置を推定することができる精度が悪化する。
【0007】
本開示のローターは、この問題及びIPMタイプのローターに関連する他の問題に着目してなされたものであり、自己検知又はセンサーの使用を廃止するセンサーレス制御によって精度よくローターの回転位置を推定できる回転電機用ローターを提供することを一目的とする。上述の目的を達成することが可能なローターの例が本明細書において説明される。
【課題を解決するための手段】
【0008】
既知の技術の水準に鑑み、本開示の一態様は、基本的には、ローターシャフトと、ローターコアと、永久磁石のグループとを備える回転電機用ローターを提供することである。ローターコアは、フラックスバリアのグループを備える。フラックスバリアは一定の間隔で配置される。フラックスバリアのうちの少なくとも1つは、そのフラックスバリアの内部側縁と外部側縁とをつなぐ少なくとも1つのブリッジを含む。永久磁石は、断面で見たときにローターコアにおけるフラックスバリア間に配置される。
【0009】
ここで、この出願時の開示の一部を形成する添付図面を参照する。
【図面の簡単な説明】
【0010】
図1A】ローターシャフトの回転軸に対して垂直な平面内にあるとともに第1実施形態による回転電機用ローターの全周の1/3(120度)を示す断面線に沿った、そのローターの一部の部分横断面図である。
図1B図1Aに示されている回転電機用ローターの一部の拡大断面図である。
図2】第1実施形態の作用効果を示す、図1に示されている回転電機用ローターの部分を含む完全な横断面図である。
図3A】ローターシャフトの回転軸に対して垂直な平面内にあるとともに第2実施形態による回転電機用ローターの全周の1/3(120度)を示す断面線に沿った、そのローターの一部の部分横断面図である。
図3B図3Aに示されている回転電機用ローターの一部の拡大断面図である。
図4A】第2実施形態の作用効果を示す、図3に示されている回転電機用ローターの一部の部分横断面図である。
図4B】無負荷状態の、図4Aに示されている回転電機用ローターの一部の拡大断面図である。
図4C】負荷状態の、図4Aに示されている回転電機用ローターの一部の拡大断面図である。
図5】ローターシャフトの回転軸に対して垂直な平面内にあるとともに第3実施形態による回転電機用ローターの全周の1/3(120度)を示す断面線に沿った、そのローターの部分横断面図である。
図6A】ローターシャフトの回転軸に対して垂直な平面内にあるとともに第4実施形態による回転電機用ローターの全周の1/3(120度)を示す断面線に沿った、そのローターの一部の部分横断面図である。
図6B図6Aに示されている回転電機用ローターの一部の拡大断面図である。
図7A】ローターシャフトの回転軸に対して垂直な平面内にあるとともに第5実施形態による回転電機用ローターの全周の1/3(120度)を示す断面線に沿った、そのローターの一部の部分横断面図である。
図7B図7Aに示されている回転電機用ローターの一部の拡大断面図である。
図8】第2実施形態〜第5実施形態の回転電機用ローターにより得られた結果を比較するプロットである。
【発明を実施するための形態】
【0011】
次に図面を参照して選択された実施形態について説明する。実施形態の以下の説明は、単なる例示のために与えられるのであって、添付の特許請求の範囲及びそれらの均等物によって規定されるように本発明を限定する目的のためではないことが、この開示から当業者には明らかであろう。
【0012】
最初に図1Aを参照すると、ローターシャフトの回転軸に対して垂直な平面内にあるとともに回転電機用ローターの全周の1/3(120度)を示す断面線に沿った、そのローターの一部の部分横断面図が、第1実施形態に従って示されている。
【0013】
図1Bは、図1AのB部の拡大図であり、図2は、図1Aに示されている部分を含む完全な断面図である。回転電機用ローター1は、この例では、ローターシャフト10と、ローターコア20と、永久磁石31のグループ30とを有する。ローターシャフト10は、ローター1の回転軸である。ローターコア20は、ローターシャフト10の周囲に設けられる。例示的なローターコア20は、ローターシャフト10の軸方向に積層された多数の電磁鋼板を含む。ローターコア20はまた、フラックスバリア211のグループ21を含む。フラックスバリア211は、ローターコア20の電磁鋼板部分に比べて透磁率が低く磁束が通りにくい部分である。
【0014】
図1Aに示すように、フラックスバリア211は、ローターシャフト10に向けて凸であって一定の機械角ごとに配置される。本実施形態では、フラックスバリア211は、空気層である。またフラックスバリア211は、ローターシャフト10に向けて凸の円弧状であって60度又はおよそ60度の機械角ごとに配置される。すなわち、各フラックスバリア211の円弧状部分は、シャフトに向けて凸であり、各フラックスバリア211の端は、ローターコア20の外表面に近接している。本実施形態では、このようなフラックスバリア211は、フラックスバリアのグループ21にローターコア20の全周で6つ含まれる。また図1Bに拡大して示すように、フラックスバリア211はそれぞれ、内部側縁211aと外部側縁211bとをつなぐブリッジ212を含む。長さL1及び幅W1を有するブリッジ212は、より詳細に以下で説明するように、永久磁石31の磁極の中心軸と一致するd軸に電気的に直交するq軸に沿って形成される。長さL1は、4.4mm若しくはおよそ4.4mm、又は任意の他の適した長さとすることができ、幅W1は、0.5mm若しくはおよそ0.5mm、又は(例えば、ローターコア20の作製プロセスの実現可能性から決定されるような)任意の他の適した長さとすることができる。このようなフラックスバリア211の集合がフラックスバリアのグループ21である。
【0015】
永久磁石グループ30は、ローターコア20に設けられる。図1A及び図2に示すように、永久磁石グループ30は、フラックスバリア211のグループ21の間に配置される永久磁石31のグループである。本実施形態では、永久磁石グループ30は、ローターコア20の全周で6つの永久磁石31を含む。永久磁石31は、隣設される永久磁石31が磁極が交互に異なるように配置される。図1Aでは、d軸が交差する左側の永久磁石31は、外周側がN極であって内周側がS極であるように配置される。代替的には、図1Aの右側の永久磁石31は、外周側がS極であって内周側がN極であるように配置される。当然のことながら、これらの永久磁石31の極は逆にすることができる。また、フラックスバリア211のうちの1つ又は複数は、図2に仮想線で示されているとともに以下で説明されるように、その端が磁石31に向かって延びている状態で配置することができる。
【0016】
図2は、第1実施形態による回転電機用ローター1において発生する作用効果の例を更に示す。回転電機用ローター1が回転すると、矢印Aで示すように、フラックスバリア211よりも外周側のローターコア20のピース22に遠心力が作用する。本実施形態のブリッジ212が設けられていなければ、その遠心力に抗してこの遠心力がローターコアピース22を変形させるのを防止するために、ローターコアピース22の左右両端部分22aをより厚くする必要がある。しかし、厚みを増大させることによって、その端部分22aから永久磁石31の磁束が漏れやすくなる。このようになっては、d軸上に左右非対称の磁束密度分布が発生して、本来の位置からずれた位置にd軸及びq軸を推定してしまい、ローター1の回転位置を推定することができる精度が悪化する。
【0017】
しかしながら、上記フラックスバリア211はブリッジ212を有するため、ローターコアピース22の左右両端部分22aを細くできる。すなわち、ブリッジ212の幅W1は、ブリッジ212を設けるように削減されるローターコアピース22の左右両端部分22aの厚さよりも細い。そのため、ローターコアピース22の左右両端部分22aをより厚くするよりも、ブリッジ212を形成するほうが、磁束が漏れにくい。したがってd軸上に左右対称の磁束密度分布が発生することとなり、ローター回転位置を推定する精度を向上することができる。
【0018】
図3A及び図3Bは、第2実施形態による回転電機用ローターを示す。図3Aはローターシャフトの回転軸に対して垂直な平面内にあるとともに上記ローターの全周の1/3(機械角120度)を示す断面図である。図3B図3AのB部拡大図である。本実施形態のローターコア20は、フラックスバリア211の外周側に設けられる少なくとも1つのフラックスバリア251のグループ25を更に備える。本実施形態では、図示されるブリッジ212の長さL21と対応するフラックスバリア211のローター1半径方向幅は、第1実施形態のブリッジ212の長さL1と対応する、第1実施形態のフラックスバリア211のローター半径方向幅よりも小さい。長さL21は3.1mm若しくはおよそ3.1mm、又は任意の他の好適な長さとすることができる。したがって、これらの、フラックスバリア211の幅及びフラックスバリア251の幅はまた、半径方向長さと称することができる。本例では、フラックスバリア211のローター半径方向長さL21とフラックスバリア251のローター半径方向長さL22との和(これは2.56mm又はおよそ2.56mmとすることができる)が、第1実施形態のフラックスバリア211のローター半径方向長さL1と同等又は実質的に同等である。さらに、本例では、フラックスバリア251には、内部側縁251aと外部側縁251bとをつなぐブリッジが設けられていない。具体的には、グループ25のフラックスバリア251はいずれもブリッジを含まない。また、図3Bに示されているように、ブリッジ212の幅W2は、0.5mm若しくはおよそ0.5mmとすることができるか、又は、以下で説明する理由から、第1実施形態のブリッジ212の幅W1よりも小さいものとすることができる。
【0019】
図4A、4B及び4Cは、第2実施形態による回転電機用ローター1において発生する作用効果の例を示す。図4Aはローターシャフト10の回転軸に対して垂直な平面内にある断面図であり、ローター1の全周の1/3(機械角120度)を示す。図4Bはステーターコイルの回転磁界による磁束が流れないときのB部の磁束解析、図4Cはステーターコイルの回転磁界による磁束が、図4Aにおいて破線で示されるように流れるときのB部の磁束解析を示す。本実施形態では、フラックスバリア211よりも外周側は、フラックスバリア251よりも内側の内部側ピース221と、フラックスバリア251よりも外側の外部側ピース222とに分割される。内部側ピース221は、第1実施形態のローターコアピース22よりも小さい。したがって回転電機用ローター1が回転したときに内部側ピース221に作用する遠心力は、第1実施形態のローターコアピース22に作用する遠心力よりも小さい。このためブリッジ212の幅W2を、第1実施形態のブリッジ212の幅W1よりも細くできる。
【0020】
またステーターコイルの回転磁界による磁束がブリッジ212を流れないときは、図4Bのようになる。一方、ステーターコイルの回転磁界による磁束がブリッジ212を流れるときは、図4Cのようになる。図4Cは、濃淡で磁気飽和度が示されている。示すように、ブリッジ212は、色が濃く磁気飽和していることが判る。このようにブリッジ212は、少しの負荷でも磁気飽和して、磁気飽和すると、それ以上の量の磁束が流れない。
【0021】
上述のように、本実施形態では、ブリッジ212の幅W2が第1実施形態のブリッジ212の幅W1よりも細いので、第1実施形態よりも小さい負荷で磁気飽和してそれ以上は磁束が流れない。ゆえに、この構成によって第1実施形態よりも磁束が漏れにくくなり、ローター1の回転位置を推定する精度が向上する。また、第2実施形態の場合のように、フラックスバリア251には、内部側縁251aと外部側縁251bとの間に延びるブリッジが設けられていないことに留意されたい。具体的には、グループ25におけるフラックスバリア251のいずれもがブリッジを含まない。ブリッジがフラックスバリア251にあると、そのブリッジから、ステーターコイルの回転磁界による磁束が漏れる可能性がある。またフラックスバリア251よりも外側の外部側ピース222は小さいので、これに作用する遠心力も小さい。したがってフラックスバリア251は、ブリッジが無くても遠心力に抗することができる。
【0022】
図5は、第3実施形態による回転電機用ローターの断面図である。第1実施形態及び第2実施形態と同様に、その断面は、ローターシャフト10の回転軸に対して垂直な平面内にあるとともにローター1の全周の1/3(機械角120度)を示す。本実施形態では、ローターコア20のブリッジ212は、ローターシャフト10に垂直な断面で見たときに、各フラックスバリア211に2つ形成される。フラックスブリッジ212は、永久磁石31の磁極の中心軸であるd軸に電気的に直交するq軸を中心として左右対称又は実質的に左右対称に形成される。
【0023】
このように2つのブリッジ212が形成されると、それぞれのブリッジ212の幅は、第2実施形態に比較して更に細くできる。永久磁石グループ30の永久磁石30は、第1実施形態及び第2実施形態の場合のように、隣設される永久磁石31が磁極が交互に異なるように配置される。図5に破線で示すように、永久磁石31の磁束の一部が2つのブリッジ212に流れる。ブリッジ212は細いので、永久磁石31の磁束で磁気飽和しやすい。したがって、ステーターコイルの回転磁界による磁束はブリッジ212から漏れにくくなる。したがって本実施形態によれば、第1実施形態及び第2実施形態より磁束が漏れにくくなり、ローター1の回転位置を向上した精度で推定することができる。
【0024】
図6A及び6Bは、第4実施形態による回転電機用ローターを示す。図6Aはローターシャフト10の回転軸に対して垂直な平面内にある断面図であり、ローター1の全周の1/3(機械角120度)を示す。図6B図6AのB部の磁束解析を示す。本実施形態では、ブリッジ212は、ローターシャフトに垂直な断面で見たときに、ローターコア20の各フラックスバリア211において永久磁石31の側方に2つ形成される。2つのブリッジ212はまた、永久磁石31の磁極の中心軸であるd軸に電気的に直交するq軸を中心として左右対称であるように形成される。
【0025】
図6Bにおいて破線によって示すように、永久磁石31の側方には、永久磁石31の磁束が流れている。永久磁石31とフラックスバリア211との間は、電磁鋼板の幅が細いので、永久磁石31の磁束によって磁気飽和状態にある。したがって、永久磁石31の側方に2つのブリッジ212が形成されると、そのブリッジ212に、ステーターコイルの回転磁界による磁束が流れにくくなる。さらに、フラックスバリア211のうちの1つと、そのフラックスバリア211のブリッジ212が隣設される、永久磁石31のそれぞれの1つとの間の距離は、そのフラックスバリア211のブリッジ212が、そのブリッジ212に隣設される永久磁石31によって与えられる磁束によって磁気飽和する度数に反比例する。換言すれば、ブリッジ212は、永久磁石からの磁束によって飽和するように構成されている。したがって、ブリッジ212が飽和しない(飽和が低い)場合、このことは、フラックスバリア211と磁石31との間の距離が長すぎ、飽和を高めるにはより短くせねばならないことを意味する。他方で、ブリッジ212の飽和が既に高い場合、このことは、フラックスバリア211と磁石31との間の距離が既に十分に短いことを意味する。したがって、フラックスバリア211と磁石31との間の距離は、そのままにすることができるか、又は、ブリッジ212の飽和が十分に高いままである限り、長くすることができる。
【0026】
結果として、上記構成であれば、磁束がブリッジ212からよりいっそう漏れにくくなる。したがって、ローター1の回転位置を向上した精度で推定することができる。
【0027】
図7A及び7Bは、第5実施形態による回転電機用ローターを示す。図7Aはローターシャフト10の回転軸に対して垂直な平面内にある断面図であり、ローターの全周の1/3(機械角120度)を示す。図7Bは破線で示される磁束の流れを伴って、図7AのB部の磁束解析を示す。本実施形態では、ブリッジ212は、ローターコア20の各フラックスバリア211において、q軸を中心として左右対称であるように永久磁石31の側方に2つ形成される。さらに、ブリッジ212は、フラックスバリア211の外側に近づくにつれてローターコア20の外周面に近づくように、永久磁石31から離れる方向に斜めに延びるように構成されている。換言すれば、永久磁石に近い、ブリッジ212の端は、ブリッジ212の対向端よりもローターコア20の外周面から更に離れる。
【0028】
本実施形態のように、ブリッジ212が斜めに構成されれば、内部側ピース221に作用する遠心力により曲げモーメントが抑制されることで応力が下がる。その結果、強度が増す。したがって本実施形態では、第4実施形態に比べてブリッジ221を細くできる。すると第4実施形態に比べて、ブリッジ212に、ステーターコイルの回転磁界による磁束が更に流れにくくなる。そのため、本実施形態では、前述の実施形態より磁束が漏れにくくなり、ローター回転位置を推定する精度を更に向上することができる。
【0029】
図8は、第2〜第5実施形態によって得られた結果を比較する図である。図8では、第2実施形態により得られた例示的な結果が菱形で表されており、第3実施形態により得られた例示的な結果が正方形で表されており、第4実施形態により得られた例示的な結果が三角形で表されており、第5実施形態により得られた例示的な結果が×で表されている。図8の横軸が負荷であり、縦軸が推定された位置の誤差(位置推定誤差)を示す。ゼロを誤差基準としてプラス誤差/マイナス誤差が示される。第2実施形態では、ブリッジがないローター1に比べて位置推定誤差が小さくなり、ローター1の回転位置を推定する精度が向上した。第3実施形態では、出力トルクは満足するものの、低負荷では位置推定誤差が大きかった。第4実施形態では、低負荷でも位置推定誤差が小さくなり、負荷全域にわたってローター回転位置を推定する精度が向上した。第5実施形態では、負荷全域にわたって位置推定誤差が更に小さくなり、ローター回転位置を推定する精度が向上した。
【0030】
本発明は、本明細書において説明した実施形態に限定されない。本発明の技術的範囲から逸脱することなく種々の変形や変更が可能であることが当業者には明白である。例えば、上記実施形態では、フラックスバリアは、空気層としたが、ローターコア20に用いられた電磁鋼板よりも透磁率が小さい、樹脂又は他の材料が充填されていてもよい。第2実施形態では、フラックスバリア211のグループ21の外周側に、1組のフラックスバリア251のグループ25を設けていたが、更に別のフラックスバリアのグループ又は複数の更なるフラックスバリアのグループを設けてもよい。さらに、例えば第2実施形態では、フラックスバリア251には、内部側縁251aと外部側縁251bとをつなぐブリッジが設けられていなかったが、上記実施形態のうちのいずれかにおけるフラックスバリアのうちのいずれにもそのようなブリッジを設けることができる。さらに、第5実施形態では、ブリッジ212は、永久磁石31から離れるにつれて外表面に近づくように斜めに構成されていたが、端が永久磁石31に近づくにつれてローター1の外表面に近づくように反対の方向へ斜めに構成されてもよい。ブリッジは、所望に応じて磁束の漏れに作用するように、他の形状を有することができるとともにフラックスバリアにおける他の位置に位置決めすることができる。
【0031】
例えば、上述した実施形態では、フラックスバリア(例えば、上述の21、211、251)がq軸を中心として対称に配置される。フラックスバリアは磁石の中心(すなわちd軸)を中心として一定の角度で対称に配置してもよく、その場合、フラックスバリアはローターコア20に一定の機械角で配置されないことも留意されたい。また、フラックスバリアは、必ずしもローターシャフト10に向かって凸である必要はなく、ローターコア20の外表面に向かって凸であることもできる。換言すれば、フラックスバリアの円形状部分が、ローターコア20の外表面の近くにきて、フラックスバリアの端がローターシャフト10に向かって延びることになる。当然のことながら、フラックスバリアは、ローターシャフト10とローターコア20の外表面とに対して任意の適した様式で配置及び配向することができる。加えて、フラックスバリア(例えば上述したような21、211、251)は、断面で見たときに磁石の上方又は下方にあるものとすることができる。上述した例は、フラックスバリアが磁石の上方にあることを示している。しかしながら、フラックスバリアのうちの1つ又は複数は、フラックスバリアの端のそれぞれがそれぞれの磁石に近接するとともに、フラックスバリアの円弧状部分がローターシャフト10に向けて凸であるように構成することができる。換言すれば、図1Aを参照すると、参照符号211(21)が指しているフラックスバリアの端は、d軸が交わる磁石のS極に近接して位置決めされ、フラックスバリアの対向端は他方の磁石のN極に近接し、フラックスバリアの円弧状部分は、図2に仮想線で示されているようにローターシャフト10に向けて凸である。この場合、ブリッジ212は同様に、フラックスバリアが磁石の下方にある実施形態におけるよりも大きなW1を有するように構成される。当然のことながら、上述したように、上述の全ての構成におけるフラックスバリアの少なくとも幾つかは、ブリッジを含む必要はない。
【0032】
加えて、或る実施形態の構造及び機能を別の実施形態に採用することができる。全ての利点が特定の実施形態において同時に存在する必要はない。従来技術に類をみない、単独の、又は他の特徴との組合せであるあらゆる特徴もまた、そのような特徴(複数の場合もある)によって具現される構造上の概念及び/又は機能上の概念を含む、本出願人による更なる発明の別の記載とみなされるべきである。したがって、本発明による実施形態の上記の記載は、単なる例示のために与えられるのであって、添付の特許請求の範囲及びそれらの均等物によって規定されるものとして本発明を限定する目的のためではない。
図1A
図1B
図2
図3A
図3B
図4A
図4B
図4C
図5
図6A
図6B
図7A
図7B
図8