(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0010】
次に、本発明を実施するための形態(以降、「本実施形態」と称す。)について、適宜図面を参照しながら詳細に説明する。
【0011】
(概要)
まず、始めに、本実施形態の概要について説明する。撮像素子の欠陥画素は、例えば、撮像装置を三脚等に固定して夜空の星を撮影している場合、ほとんど目立たない。この理由は、欠陥画素にともなう画面上の傷が固定された位置に出力されているけれども、画像中の星の動きがほとんど静止しているくらいゆっくりしているためである。しかし、パンニングしながら夜空の星を撮影している場合、逆に画面上の傷が固定された位置に出力されるため、星に対して相対的に動いて見えるようになるため、目立ってくる。
したがって、画像の動きを表す画像変化の大きさに応じて、欠陥画素が検出されやすさを変化するような構成のモデルを形成し、そのモデルについて、
図2,3を用いて以下に
説明する。ここで、画像変化とは、例えば、撮像装置のパン、チルト、ズーム、フォーカス動作を行ったことによる画像の動きを示す変化だけでなく、撮影している被写体が移動することによる画像の動きを示す変化も意味している。
【0012】
図2は、中心画素Cと欠陥画素判定に用いる参照画素Rとの位置関係を示す図である。中心画素Cは、欠陥画素か否かを判定する検査対象の画素である。
図2中において、四角格子は撮像素子16の画素配列を示している。四角格子は、通常2×2ごとに異なる色フィルタ配列となっていて、水平2画素おき、垂直2ラインおきに同一の色フィルタが配列されている。例えば、検査対象の画素である中心画素Cの画素値に対して、
図2中の周辺同色8画素である参照画素R(R1,R2,R3,R4,R5,R6,R7,R8)の画素値と比較して、中心画素Cが欠陥画素か否かが判定される。つまり、中心画素Cと参照画素Rとの差分の絶対値を、参照画素R(R1,R2,R3,R4,R5,R6,R7,R8)それぞれに対して算出し、それらの差分の絶対値が所定の閾値(後記する欠陥画素判定閾値)より大きいか否かが判定される。なお、参照画素Rは、
図2に示す位置に限られることはなく、中心画素C以外の画素を用いることができる。
【0013】
図3(a)は、画像変化の大きさが小さい場合に欠陥画素を検出するための処理の一例を表している。ここで、
図3(a−2)は、
図3(a−1)に示す画素値において、中心画素Cの画素値と参照画素Rの画素値との差分の絶対値をプロットしたものである。破線は、欠陥画素か否かを判定する際に用いる欠陥画素判定閾値T(T0,T1)を表している。ただし、欠陥画素判定閾値T0は画像変化の大きさが小さい場合のときに用いられ、欠陥画素判定閾値T1は画像変化の大きさが大きい場合のときに用いられ、欠陥画素判定閾値T0が欠陥画素判定閾値T1より大きいものとする。なお、本実施形態では、
図3(a−2)に示すように、参照画素Rの8個すべてにおいて、差分の絶対値が欠陥画素判定閾値Tより大きい場合に、中心画素Cを欠陥画素と判定するものとして、以降説明する。ただし、判定の基準を、8個すべてが大きい場合ではなく、N個以上(1≦N≦7)と設定しても構わない。
【0014】
図3(b)は、画像変化の大きさが大きい場合を表している。ここで、
図3(b−2)は、
図3(b−1)に示す画素値において、中心画素Cの画素値と参照画素Rの画素値との差分の絶対値をプロットしたものである。
図3(b−2)の場合は
図3(a−2)の場合に比較して、プロットの値が小さくなっている。しかし、
図3(b−2)から分かるように、画像変化の大きさが大きい場合には、欠陥画素判定閾値T1を判定基準とするために、参照画素Rの8個すべてにおいて、差分の絶対値が欠陥画素判定閾値T1より大きいと判定され、中心画素Cを欠陥画素と判定する。このように、画像変化の大きさが大きい場合には、画像変化の大きさが小さい場合に比較して、欠陥画素判定閾値Tを小さくすることによって、欠陥画素を検出しやすくする。このようにして、画像変化の大きさが大きい場合には、差分の絶対値が小さい場合であっても、欠陥画素を検出しやすくすることができる。
【0015】
(撮像装置)
本実施形態における撮像装置の構成例について、
図1を用いて説明する。
撮像装置1は、少なくとも、撮像部11、利得調整部12、欠陥画素補正部13、画像信号処理部14および画像変化検出部15によって構成される。
【0016】
撮像部11は、ズームレンズおよびフォーカスレンズを含むレンズ群や、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子16で構成される。撮像素子16は、被写体からの入射光をレンズ(不図示)を介して受光し、光電変換により電気信号に変換して、撮像信号a11として出力する。
【0017】
利得調整部12は、CDS(Correlated Double Sampling)やAGC(Automatic Gain Control)や、AD(Analog to Digital)コンバータ等で構成される。利得調整部12は、撮像部11から出力される信号である撮像信号a11の大きさを制御し、撮像信号a12を出力する。
【0018】
欠陥画素補正部13は、撮像素子16において発生する欠陥画素を補正する機能を有し、撮像補正信号a13を出力する。欠陥画素補正部13は、まず、欠陥画素か否かを判定するために、検査対象の画素の画素値と、その検査対象の画素以外の画素である参照画素の画素値との差分の絶対値を算出し、補正の基準と比較して、差分の絶対値が補正の基準より大きい場合に、その検査対象の画素が欠陥画素であると判定する。なお、補正の基準とは、補正を行うことまたは行わないことを決定するものである。例えば、欠陥画素判定閾値Tを用い、欠陥画素を検出する。欠陥画素判定閾値Tは、画像変化検出部15から取得される。次に、欠陥画素補正部13は、欠陥画素の画素値を参照画素の画素値で補正する。なお、欠陥画素補正部13の機能の詳細については後記する。
【0019】
画像信号処理部14は、撮像補正信号a13に所定の処理を施す機能を有し、映像信号a14を生成して出力する。なお、所定の処理とは、撮像補正信号a13にノイズ除去、ガンマ補正、輪郭強調、フィルタ処理、ズーム処理、手ぶれ補正、画像認識等の画像信号処理、および、テレビやストレージ等への入力機器の信号フォーマットに変換する出力インタフェース処理のことである。また、出力インタフェース処理とは、ネットワーク伝送のために所定の信号に変換することであり、例えば、NTSC(National Television System Committee)やPAL(Phase Alternating Line)のビデオ出力に変換したり、例えば、HDMI(High-Definition Multimedia Interface;登録商標)信号に変換したりすることである。
【0020】
画像変化検出部15は、映像信号a14から画像変化を検出する機能を有する。画像変化検出部15は、画像変化を、例えば、動きベクトルとして検出する。そして、画像変化検出部15は、動きベクトルの大きさ(画像変化の大きさ)等に応じて、欠陥画素を検出するために用いる補正の基準を変化させ、補正を行うことまたは行わないことを決定する。例えば、欠陥画素判定閾値Tを用いて欠陥画素の検出を行い、補正の要否を決定する。欠陥画素判定閾値Tは、閾値信号a15として欠陥画素補正部13に出力される。なお、後記する残像も、画像変化の大きさを算出する際に考慮されても良い。また、画像変化検出部15の機能の詳細については後記する。
【0021】
なお、撮像部11、利得調整部12、欠陥画素補正部13、画像信号処理部14および画像変化検出部15は、すべて回路(ハードウェア)によって構成されても、欠陥画素補正部13、画像信号処理部14または画像変化検出部15における処理機能がプログラムによって実現されても良い。また、撮像装置11は、撮影シーンに応じて、露光状態が最適になるように、撮像部11の露光時間や利得調整部12の信号利得を制御する機能を有している。例えば、暗い環境では露光時間を長く、信号利得を大きくし、明るい環境では露光時間を短く、信号利得を小さくして、映像信号a14の出力画像の明るさが一定になるようにしても良い。
【0022】
図4は、欠陥画素補正部13が欠陥画素の画素値を補正する処理の一例を説明する図である。
図4に示すとおり、欠陥画素の画素値は、例えば、参照画素Rの画素値の中間値で置き換えても良い。
【0023】
図5は、画像変化検出部15の機能例を説明する図である(適宜、
図1参照)。画像変化検出部15は、動きベクトル算出部151、画像変化速度判定部152および画像変化時間判定部153で構成される。
【0024】
動きベクトル算出部151は、画像信号処理部14で処理した映像信号a14を不図示のメモリに記憶しつつ、先に記憶した映像信号a14を参照映像として次に入力される映像信号a14と比較して、動きベクトルa151を算出し、画像変化速度判定部152に出力する。具体的には、先に記憶した参照映像のフレームを小領域に分割し、その小領域の画素値情報をメモリに記憶しておき、前記小領域の画素値情報が次に入力してきた映像信号a14のどの位置に移動したかを検出することで、単位時間当たりの動きベクトルa151を算出する。
【0025】
画像変化速度判定部152では、単位時間当たりの動きベクトルa151の大きさ(画像変化の速度)が、予め設定されている所定の速度閾値以上か否かを判定し、その判定結果を速度判定閾値信号a152として画像変化時間判定部153に出力する。
【0026】
画像変化時間判定部153は、速度判定閾値信号a152を受信して、判定結果が所定の速度閾値以上を示すものであった場合に、その判定結果が継続する継続時間(画像変化の時間)が、予め設定されている所定の時間閾値以上か否かを判定する。そして、画像変化時間判定部153は、継続時間が所定の時間閾値以上と判定した場合、画像変化の大きさが大きいと判定し、継続時間が所定の時間閾値未満と判定した場合、画像変化の大きさが小さいと判定する。また、画像変化の大きさが大きいと判定した場合は、画像変化の大きさが小さいと判定した場合よりも欠陥画素が検出されやすくなるように、補正の基準を変化させる。例えば、補正の基準として欠陥画素判定閾値Tを用いるとすると、画像変化の大きさが大きいと判定した場合は、欠陥画素判定閾値Tを小さく変化する。そして、画像変化検出部15は、当該欠陥画素判定閾値Tを閾値信号a15として欠陥画素補正部13に出力する。
【0027】
欠陥画素判定閾値Tを小さく変化する方法として、例えば、(1)画像変化の大きさが所定の閾値以上の場合に、画像変化の大きさが大きくなるにしたがって欠陥画素判定閾値Tを小さくするように変化させるケース、(2)画像変化の大きさが小さいと判定した場合に設定する欠陥画素判定閾値T0および画像変化の大きさが大きいと判定した場合に設定する欠陥画素判定閾値T1の2値を用いるケース、があり、いずれの方法を用いても構わない。
【0028】
図6は、欠陥画素判定閾値Tを変更する条件の一例を示している。
図6の横軸は時間を表し、縦軸は単位時間当たりの動きベクトルの大きさ(画像変化の速度)を表している。単位時間当たりの動きベクトルの大きさは、画像変化がない場合に0となり、単位時間当たりの動きベクトルの大きさに応じて縦軸の値が変化する。
図6中において、前記した速度閾値をδx、時間閾値をδtとする。画像変化検出部15では、まず、画像変化速度判定部152が単位時間当たりの動きベクトルの大きさ(画像変化の速度)が速度閾値δx以上になった第1の時点t1を検出する。次に、画像変化時間判定部153が、速度閾値δx以上となっている範囲の時間の計測を第1の時点t1から開始し、第1の時点t1からの継続時間が時間閾値δtだけ経過した第2の時点t2から、画像変化が大きいと判定する(
図6中のEの範囲)。そして、画像変化時間判定部153は、欠陥画素判定閾値Tを画像変化の大きさが小さい場合のものより小さく設定して、その欠陥画素判定閾値Tを閾値信号a15として欠陥画素補正部13に出力する。
【0029】
次に、画像変化検出部15において欠陥画素判定閾値Tを設定するための処理フローの一例について、
図7を用いて説明する(適宜、
図1,5参照)。
ステップS701では、画像変化検出部15の画像変化時間判定部153は、撮像装置1の電源がONにされたときに、欠陥画素判定閾値Tを初期設定する。具体的には、画像変化検出部15は、不図示の記憶部に記憶されている欠陥画素判定閾値Tの初期設定値(画像変化の大きさが小さい場合の欠陥画素判定閾値T0)を読み出す。また、画像変化検出部15は、不図示の記憶部に記憶されている速度閾値δxおよび時間閾値δtを読み出す。
【0030】
ステップS702では、動きベクトル算出部151は、単位時間当たりの動きベクトルa151を算出する。本実施形態では、単位時間当たりの動きベクトルa151の大きさは、小領域ごとに算出されるので、画像の1画面から算出される複数の動きベクトルの大きさの平均値または動きベクトルの大きさの最大値で表す。または、動きベクトルの大きさとして、検査対象の画素の位置が含まれる小領域から算出された動きベクトルの大きさを用いても構わない。
【0031】
ステップS703では、画像変化速度判定部152は、単位時間当たりの動きベクトルの大きさが速度閾値δx以上か否かを判定する。速度閾値δx以上と判定した場合(ステップS703でYes)、処理はステップS704へ進み、速度閾値δx未満と判定した場合(ステップS703でNo)、処理はステップS706へ進む。
【0032】
ステップS704では、画像変化時間判定部153は、速度閾値δx以上の状態の継続時間が時間閾値δt以上か否かを判定する。時間閾値δt以上と判定した場合(ステップS704でYes)、処理はステップS705へ進み、時間閾値δt未満と判定した場合(ステップS704でNo)、処理はステップS706へ進む。
【0033】
ステップS705では、画像変化時間判定部153は、欠陥画素判定閾値Tを初期設定値より小さくする。
【0034】
ステップS706では、画像変化時間判定部153は、欠陥画素判定閾値Tを初期設定値とする。
【0035】
ステップS707では、画像変化検出部15は、欠陥画素判定閾値Tを閾値信号a15として欠陥画素補正部13に出力する。そして、処理は、ステップS702へ戻る。
【0036】
図7に示す処理フローを実行することによって、本実施形態では、画像変化の大きさが大きい場合、欠陥画素判定閾値Tを初期設定値より小さくし、欠陥画素を検出しやすくする。そのため、画質劣化を引き起こさないように欠陥画素を選別することができる。
なお、欠陥画素判定閾値Tを初期設定値より小さくすることによって、高周波成分を含む被写体も検出されやすくなるが、画像変化が大きいため、撮像装置1に設定されたシャッタ速度と画像変化の速度との関係によって決まる残像が発生する。この残像効果によって、画質劣化が起こりにくくなるため、欠陥画素判定閾値Tが初期設定値より小さくなっても、欠陥画素と判定される頻度を減少できるようになっていることを、以下に説明する。
【0037】
ここで、残像がある場合の処理の一例について、
図8を用いて説明する。
図8(a)は、撮影時の状態を表している。
図8(a)に示すように、例えば、画素一個分の白い領域と灰色の領域とを有する被写体Sを、左方向にパンニングしながら撮影する。
【0038】
図8(b−1)は、パンニング前の静止撮影時で、残像がない場合の画素値の状態を表し、
図8(b−2)は、差分の絶対値と欠陥画素判定閾値T0との関係を表している。差分の絶対値は、8個すべてが欠陥画素判定閾値T0より大きいので、中心画素Cは欠陥画素であると判定される。
【0039】
図8(c−1)は、パンニングの開始時で、残像がある場合の画素値の状態を表し、
図8(c−2)は、差分の絶対値と欠陥画素判定閾値T1との関係を表している。中心画素Cおよび参照画素R4は、残像の影響によって、ほぼ似たような画素値となる。そのため、欠陥画素判定閾値T1は欠陥画素判定閾値T0よりも小さく設定されているが、中心画素Cと参照画素R4との差分の絶対値は、欠陥画素判定閾値T1よりさらに小さくなる。したがって、
図8(c−2)に示すように、残像がある場合には、中心画素Cは欠陥画素でないと判定される。つまり、残像が大きい場合には、欠陥画素判定閾値Tが小さく設定されても、欠陥画素と判定されにくくなり、無用な補正処理を抑止するとともに、画質劣化を引き起こさないように欠陥画素を選別することができる。
【0040】
(変形例)
ここで、撮像装置1の変形例を撮像装置1aとして、その構成例について、
図9を用いて説明する(
図1,5参照)。
図9に示す撮像装置1aの構成が
図1に示す撮像装置1の構成と異なる点は、画像変化検出部15に入力される信号が、欠陥画素補正部13から出力される撮像補正信号a13となっていることである。画像変化検出部15の動きベクトル算出部151は、先に記憶している撮像補正信号a13と次に入力してきた撮像補正信号a13との間で、動きベクトルを算出する。
【0041】
(監視システム)
次に、
図10を用いて、前記した欠陥画素補正部13および画像変化検出部15の機能を、撮像装置1,1aに内蔵せずに、外部の監視装置101で実現した監視システム100の構成例について、説明する(適宜、
図1参照)。
監視システム100は、前記した欠陥画素補正部13および画像変化検出部15の機能を備えていない撮像装置2、監視装置101および表示装置102で構成される。
【0042】
監視装置101は、例えばパソコンであって、欠陥画素補正部13および画像変化検出部15と同様の機能である、欠陥画素補正部13aおよび画像変化検出部15aを備えている。欠陥画素補正部13への入力は、撮像装置2から出力される映像信号a16である。
表示装置102は、例えばディスプレイであって、欠陥画素補正部13aから出力される表示信号a17を表示する機能を有する。
【0043】
したがって、監視システム100は、欠陥画素補正部13aおよび画像変化検出部15aを備えているので、画像変化の大きさに応じて欠陥画素判定閾値Tを制御することが可能である。具体的には、監視システム100は、画像変化の大きさが大きい場合には、画像変化の大きさが小さい場合の欠陥画素判定閾値T0より、欠陥画素判定閾値Tを小さくするので、画質劣化を引き起こさないように欠陥画素を選別することができる。また、監視システム100は、無用な補正処理を抑止して、欠陥画素を補正することができる。
【0044】
以上説明したように、本実施形態における撮像装置1,1aおよび監視システム100は、画像変化の大きさに応じて欠陥画素判定閾値Tを制御することが可能である。具体的には、撮像装置1は、画像変化の大きさが大きいときには欠陥画素判定閾値Tを小さくし、画像変化の大きさが小さいときは欠陥画素判定閾値Tを大きくするので、画質劣化を引き起こさないように欠陥画素を選別することができる。また、撮像装置1,1aおよび監視システム100は、無用な補正処理を抑止して、欠陥画素を補正することができる。
【0045】
なお、本実施形態では、画像変化を検出する際に、画像変化の速度が速度閾値δx以上で、かつその速度が速度閾値δx以上となっている継続時間(画像変化の時間)が時間閾値δt以上の場合を満足することを条件として説明したが、画像変化の速度または継続時間(画像変化の時間)のいずれかで画像変化の大きさを判定しても構わない。
【0046】
また、本実施形態では、画像変化を検出する場合、動きベクトルを用いたが、これに限られることはなく、加速度センサ、角速度センサ等のデバイスを用いて検出する方法や、撮像装置1の動作状態(ズーム、フォーカス動作等)による検出する方法等を、用いても構わない。