(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0004】
但し、商用環境に適用されるとき、これらの従来技術の反射体には問題がある。例えば、熱帯気候で起きるように、反射体が熱くなるまで晒され、放置されるならば、または反射体が埠頭隣接地上または船に搭載されて陽のあたる所に放置される場合、特に、コアとシェルとの間の異なる膨張係数は、コアの熱膨張の結果としてシェルに課される過剰負担に結びつく可能性がある。コアの熱膨張は、シェルの故障に結びつく。さらに、以下の他の問題も生じる。
・適切なコア材料をもつ音響反射体を充填することは、クラッキングまたはコア内の空隙に結びつく、コア海材(core mare material)の収縮なしでは確実に達成することができない。これは外見上同一の反射体の間でのような矛盾した性能をもたらす。
・コアとシェルと間の音響結合は、可変的であり、ある場合においては不十分である。
・反射体が引き上げられるときに反射体の内部への浸水が自制できない突発的故障に結びつく恐れがあるために、健康安全規則は、このような反射体の水中での展開深度を制限する可能性がある。この課題への解決策を提案するが、製造段階において労働集約型であり、したがって比較的費用がかかる。
【課題を解決するための手段】
【0005】
本発明によれば、水中での使用のための音響反射体は、コアを取り囲むシェルを備え、反射体を水中に配備する場合に、水がシェルの内部を自由に出入りすることを可能にする1つ以上のホールを、シェルがその中に有することを特徴とする。
【0006】
この構造において、シェルに入る入射音波の一部は、コアを通過し、コアへの入口の反対のシェル壁から後方に反射され、一部は、コアを通過し、かつシェルから再放射される音波と構造的に組み合わされて、コアの周囲でシェル自体に誘導されてもよい。
【0007】
本発明の1つの実施形態において、コアは、シェル内部の空間よりわずかに小さい空間を有し、入水の際に、水は、コアとシェル壁の内部との間のシェル内部に入る。この構造において、反射体が海水に浸されるときにコア材料の収縮によりもたらされる空間を塞ぐ海水を除けば、暑い地域に輸送または保管されたときに、コアが熱的に膨張することを可能にするための十分な余地がある。さらに、反射体が表面まで導かれるにつれて、シェル内部のあらゆる増加圧力は、シェルの突発的故障のあらゆるリスクを回避するホールから外へ流出する水を介して単純に軽減される。
【0008】
シェルとコアとの間のシェル内部の水の存在が、意外にも、シェルとコアとの間の音響結合、および音響結合の信頼性を実質的に改善することを見出した。
【0009】
したがって、本発明の第1の実施形態において、コアは、反射体が水に浸された場合に、コアとシェル内部との間のギャップ(前記ギャップは水で充填される)を形成するシェル内部の断面に対応するものよりわずかに小さい断面を有する。
【0010】
本発明のこの第1の具体化による反射体において、コアは、その表面上に複数の突起(前記突起は、シェルに対する位置においてコアを保持するシェル内部に接する)を有することを特徴としてもよい。
【0011】
このような1つの実施形態において、隆起部が、好ましくは突起の形状(反射体がその設計動作温度にある場合、突起のピークは、シェル内部に接する)であってもよい。
【0012】
隆起部は変形可能であり、シェルに実質的なストレスを与えずに、コアの伸縮を吸収する。
【0013】
好ましくは、コアは、それ自身エラストマー材料などのような変形可能材料である。
【0014】
直前の段落の構成の代案として、シェルの内部は、反射体がその設計動作温度にある場合に、コアの表面と接触する複数の内側に向かう突起を有してもよい。
【0015】
コアおよびシェル内部の間の接点は、シェルに対するコアの安定した位置調整を保証するための数として少なくとも5つであるべきであるが、実際には10が良い。
【0016】
ホールは、シェルとコアとの間の空間を水が自由に出入りすることを可能にし、反射体が水に浸されるときにシェルとコアとの間に進入する水は、水浸の前に存在した空気を追い出す。実際には、シェルの周囲に分散された多くの小さなホールは、1つまたは少数のホールよりも効果的であることを見出した。24個のホールで有効に働くが、48個のホールは、反射体の水浸に際して空気がシェルとコアとの間に閉じ込められる、あらゆる傾向をさらに低減するだろう。
【0017】
典型的には、ホールは直径1mmである。隆起部または突起は、シェルがその設計動作温度にあるときに、コアの本体と内部のシェル壁との間に1.3mmの充填されたギャップを保つように設計される。反射体が水に浸されるとき、ギャップは、水で充填されるだろう。
【0018】
いくつかの用途のために、反射体は、水中での配置後の当分の間、比較的非可視のままであることが望ましいかもしれない。本明細書に記載する種類の反射体を用いてこれを達成するために、反射体が検出可能であるようになるときまで、シェルとコアとの間に空気を保持するべきである。1つの大きなホール(例えば直径10mm)を設けることにより、反射体が水中に配置されるときに最上部になることを保証する(プラグがその中に溶けるときに、空気は急速に放出される)。
【0019】
代替手段として(または好ましくは)シェルおよび上記の段落[0008]に記載されたようなコアの間のギャップの設備に加えて、エラストマーコアをその中心のホールと、ホールへの水の自由な侵入を再び可能にする中心からシェルの外部に通じるダクトとから鋳造することができる。これは、暑いときにエラストマーまたは他の変形可能材料がホールの中に安全に膨張することを可能する、前の段落における配置と類似の作用を有する。エラストマーまたは他の変形可能材料が水中に水浸した後冷却するにつれて、水は、収縮するコアにより空にされた空間を含むホールを充填する。1つの反射体から別の反射体に、コアのホールのサイズを変更することにより、反射体の反射特性も、また、変更され、別の反射体から1つの反射体を識別することを可能にする。中心のホールの直径は、ホールを通過する反射体の直径の10%を超えるべきでない。さもなければ、反射体の特性が下がるだろう。ダクトは、反射体が水中に浸されたときに空気が流出することを可能にするために、それ自身、直径約10mmであるべきである。中心のホールは、監視装置などの小さなペイロードを搬送するために有用に用いることができる。
【0020】
代替手段として(または好ましくは)1つのさらなる実施形態において、上記段落[0008]に記載されたようなシェルとコアとの間のギャップの設備に加えて、反射体は、ダクトの中への(およびダクトの外への)水の自由な侵入を可能にするシェルの中心を介してダクトと通信するシェルの反対側のホールを有してもよい。ダクトの使用は、多くの反射体が数珠つなぎになることを可能にする、または国際公開特許第2011/012877号または国際公開特許第2011/012878号に記載されるようなネットまたはケージの必要なしに水中物体に反射体がつながれることを可能にする、さらなる潜在的利点を有する。
【0021】
上記の場合の各々において、コアにおける音波伝達の平均速度に対するシェルにおける音波伝達の速度の比率が、2.5〜3.4の範囲またはその倍数にあるように、シェルおよびコア素材が選択されるならば、最高の性能が得られる。この比率の倍数が、また優れた結果を呈するだろうという認識により、アルミニウムシェルまたはアルミニウム合金シェルは、RTV12などの比較的圧縮可能なエラストマーコア素材とともに使用され得るだろう。圧縮不可能なコアは、特異な膨張から生じる問題を悪化させる。
【0022】
好ましくは、コアにおける音波伝達の平均速度に対するシェルにおける音波伝達の速度の比率は、2.74〜3.4の範囲を含む、またはその倍数である。
【0023】
海水は、それ自身、その塩分に依存して、1433ミリ秒
−1〜1500ミリ秒
−1の音響速度を有する。1018ミリ秒−1の音響速度を有するシリコン系エラストマー材料(例えばRTV12)と組み合わせたとき、コアの音響速度に対する、25%ガラス繊維強化ポリフタルアミドシェルの音響速度の比率は、極めてわずかに減少し、極めて理想に近い比率である。実際は、シェル内部とコアとの間の海水は、予想されたよりもさらにより優れた性能に結びついて、シェルとコアとの間の音響結合を顕著に改善する。
【0024】
本発明者は、RTV12のシリコンエラストマーコアとともに25%ガラス繊維強化ポリフタルアミドにより製造したシェルが、特定の周波数の入射音波を極めて良好に反射することを発見した。25%ガラス繊維強化ポリフタルアミドは、イー・アイ・デュポン・ド・ヌムール・アンド・カンパニー(E.I.du Pont de Nemours and Company)から商標名Zytel(登録商標)HTN51G25HSLで販売されている。同様のガラス繊維強化ポリフタルアミドは、Solvey SA社から商標Amadelで市販されている。より高いガラス繊維含有量のポリフタルアミドも得られ、これらのポリフタルアミドによってより一層硬いシェルがもたらされるが、ガラス繊維の含有量がそのように増加するにつれて、最終セルの脆性およびシェルにおける音波伝達速度も増加する。最適な性能のために、後者は、RTV12自体よりも高い音波速度を有するコアを用いることにより調整する必要がある。
【0025】
シェルを形成するための他の適切な非金属は、エポキシ含浸炭素繊維、ケブラー(登録商標)(アラミド)繊維、エポキシ含浸のZylon(登録商標)[ポリ(p−フェニレン−2,6−ベンゾビスオキサゾール)またはPBO]繊維、およびエポキシ含浸ポリテン繊維(例えばDyneema(登録商標))を含む。複合材の繊維量を変更することにより、材料の長手方向の音響速度を、用途に合わせて調整することができる。コア音響速度比率に対する、シェルの最善の比率に関する本明細書における情報を用いることにより、最高の性能をもたらすようにコア材料を選択することができる。
【0026】
シェルは、また、金属であってもよい。可能性がある金属シェルのうち、アルミニウムは入射される音響信号の約50%を反射し、残りのものはコア内およびシェル内部の周囲を通過するので、アルミニウムおよびその合金が特に有効である。シェル内部の周囲を通過していく音波を、コアの中を通過するもの(それはコアの背面から反射される)と構造的に組み合わせる。その音波は、放射源に向かって後方に再放射される。アルミニウム合金6061T6は、6299ミリ秒
−1の長手方向の音響速度を有し、海水は、コアに対するシェルの音響速度の比率を、6近くにまで、提案した比率の範囲内に引き下げる。アルミニウムまたはアルミニウム合金のコアの場合において、シェルとコアとの間の水の存在は、また、シェルとコアとの間の音響結合を、ポリフタルアミドシェルの場合によりもさらに顕著に改善する。
【0027】
本明細書に記載したコアの縦速度に対するシェルの縦速度の関係の実現に際して、コア材料は、理想的には、ちょうど1000ミリ秒
−1を超える音響速度を有するものであり、RTV12シリコンゴムは、この基準に完全に適合する。したがって、コアの速度を調整する炭酸カルシウムを、エラストマーに装填する必要はない。炭酸カルシウムを装填したエラストマーは、本質的にそれほど柔軟でなく、熱膨張とともに変形する可能性がある。
【0028】
従来でも、球形シェルを形成し、かつそれによって突発的膨張減圧を回避する圧力除去手段を設けるために、2つの半球シェル部を相互に接着するスピン溶接またはスピン溶剤のいずれかにより融合することが必要であった。本発明の反射体においては、水がホールを通って反射体から出ることができるので、貯留された水によりもたらされた反射体において増大するあらゆる圧力も、自動的に回避される。したがって、シェルの一部を相互に結合するためのスピン溶接または最先端の接着剤の使用の必要がない。
【0029】
したがって、1つのさらなる実施形態において、コアを取り囲む、2つの半球を備えるシェルを有する音響反射体は、一方の半球体のリムが隆起部(タング)を有し、他方の半球体のリムが溝(グルーブ)を有する(2つの半球体を結合するときに、隆起部は溝に係合する)ことを特徴とする。隆起部または溝のうちの1つは、その横方向から延伸するラッチ部を有し、隆起部または溝の他方は、ラッチ部を受ける戻り止めを有する。隆起部が溝に係合するとき、ラッチ部は、シェルの双方の部分を互いに保持するために戻り止めを係合するだろう。このような非金属シェルの製作は、接着または溶接される非金属シェルよりも、はるかに容易で、かつ安価である。
【0030】
安全状態のために、増加した内圧下で機能しなくなる能力が、実証されるように必要であるならば、前段落で記載したラッチの配置は、シェル内の圧力が予め設定された数値まで増加する場合に剪断するように設計することができる。Zytel(登録商標)HTN51G25HSLなどのガラス繊維強化ポリフタルアミドシェルのために、約70〜100ポンド平方インチに設定してもよい。
【0031】
ラッチおよび戻り止めの代わりに、低リスク環境を目的として、2つのシェル部分を、単純にネットにより保持することができる。
【0032】
アルミニウムおよびアルミニウム合金のシェルなどの金属シェルは、好ましくは、シェルの2つの半分割体間の簡易なさね継ぎを用いて、Aradite(登録商標)などの従来の低価格の2液室温硬化型エポキシ接着剤を用いて、半分割体を相互に接着することにより作ることができる。
【0033】
反射体は、最も一般的には球状である。但し、チューブ状、卵形、円筒状、環状体の反射体を作ることもできる。代替形状に関する唯一の限定は、入力音波を受ける反射体の表面が滑らかであるべきであり、入力音波を散乱するべきでないということである。
【0034】
予想外に、本発明による音響反射体は、例えば既知の反射体よりもはるかに低い周波数(80kHzを下回って4kHzにまで低く)で、入射音波を伝達し反射するだろう。
【0035】
特に、これらの低い周波数での、より優れた性能は、例えば15×105kg・cm
−2を超える弾力性の高弾性率をもつ胴材を有する音響反射体により達成される。
【0036】
15×105kg・cm
−2の弾性率を有する直径300mmで厚さ8.8mmの6061T6アルミニウム合金シェルおよびRTV12コアにより、−3dBの全体応答は、水中のパッシブ音響反射体により記録された他の応答よりも優れている62KHzで取得された。可能性がある金属シェルのうち、アルミニウムおよびその合金が特に有効である。鋼材は、海水でさびるという傾向のため問題であるし、入射される音響放射の大部分は、その最前部から反射される。大径の球体は、一層効果的に動作するだろう。しかし、製作に費用がかかる。直径200mm未満である球体は、低周波数では十分に動作しない。反射体が応答する周波数は、この直径未満にて著しく増加するので、直径100mmが、海底での動作にとって恐らく最小寸法である。
【0037】
100kHz以上の高い周波数では、ガラス強化ポリフタルアミドなどの低弾性率をもつシェルを用いるべきである。−4dBの全体応答は、高周波数でも生じるピーク応答により、RTV12コアを備える直径200mmのガラス強化ポリフタルアミドシェルと160KHzにおけるシェルの内部壁とコアとの間の1.3mmのギャップとを用いて達成した。
【0038】
15mm以上での重みとコストのハンデは、厚いシェルが検知可能でないほどであるが、本発明は、6〜30mmの範囲のアルミニウムまたはアルミニウム合金のシェル厚を用いて作業する。6mm未満のアルミニウムおよびその合金のシェルは、柔軟になりすぎる。25%ガラス強化Zytel(登録商標)シェルにとって、検知可能のシェル厚は、4mm〜15mmの範囲である。最適化の度合いは、各設計のために必要である。但し、アルミニウムおよびその合金、または25%ガラス強化Zytel(登録商標)のシェルにとって、8.8mmは、外見上有効な妥協点である。最適化は、対象の音波周波数に対して、異なる直径およびシェル厚の様々な反射体の試験により達成する。
【0039】
他のエラストマーを用いてもよいが、コアは、シリコンエラストマーRTV12であってもよい。
【0040】
従来のネットおよびケージは、音響反射体を適所に設置するために提案された。しかしながら、本発明の1つのさらなる実施形態において、上記に記載された種類の音響反射体のシェルおよびホールに、バーが適応する。バーを、一方の端部で先細りにして接着してもよいし、または、適所に摩擦溶接してもよい。あるいは(および好ましくは)、バーの一方の端部には雄ネジ山がつけられ、前記端部は、本発明に記載されるタイプの音響反射体のシェルの雌ネジ穴に適合する。シェル内部の圧力が周囲の海水と同一であるので、この配置は、以後特定の有利性(バーはシェルに対して封止する必要がない)を有する。ネジ穴は、シェルにおけるどの他のホールよりも大きいだろう。以下に記載されるような場所に反射体を保持するための手段の一部として、バーを用いてもよい。
【0041】
前段落において述べた各々の実施形態において、バーの他方の端部は、マークする物体またはいくつかの特定位置に適合するように設計されるだろう。典型的には、バーのこの端部には、雄ネジ山がつけられ、その端部を、物体上の締め具の取付位置に、または海底上の台座に、ねじで留めてもよい。
【0042】
理想的には、シェル壁の周囲を移動する音波の分断を最小限にするために、シェルと同一の材料でバーを作る。但し、シェルがこのようなアルミニウム合金の金属であり、かつバーが同一の金属であれば、電食を回避するためにマークする別の金属物体上にそれを搭載するように注意する必要があるだろう。
【0043】
いくつかのソナーシステムは、長い間続く特有の音響パルスを発する。反射ターゲットに関して分析情報を集めるための反射信号を用いるソナーにおいて、特に長パルスを用いる。このようなソナーを、既知の反射体において用いるときに、反射体の前部シェルから直接反射された戻り信号は、反射体自体に関する有用な識別情報の損失をもたらす、シェルに進入した音波から戻された音響信号をマスクすることができる。
【0044】
したがって、音響反射体を、パルスを発する水中の音響源に連動して設け、パルス時間およびパルス間隔は、コアにおいて音響速度により除算された反射体のコアへの音響伝達の入口点からの距離の2倍未満である。球状音響反射体の場合、パルス時間およびパルス間隔は、このようにして音響速度により除算された球体の直径の2倍である。このように、反射体の内部から反射された音波は「聞こえ」、シェルの前部からの反射により左右されないであろう。関係する反射体を識別することをいつも可能にするために、短パルスが十分に発生すれば、この種の短パルスを長パルスと組み合わせてもよい。
【0045】
いくつかの用途において、シェルへのダメージに結びつく水中での水浸に先立って、極めておおざっぱに音響反射体を操作することができることを見出した。このようなダメージは、使用中の反射体の性能低下に、またはシェルがいっしょくたに分解することに、結びつくかもしれない。これは、特に非金属シェルに当てはまる。したがって、本発明のさらなる発展において、音響反射体は、シェルの外部の周囲に、ポリウレタンの1つ以上の層から構成するコートを有することを特徴とする。
【0046】
本発明の他の特徴は、特許請求の範囲において述べられる。
【発明を実施するための形態】
【0048】
図1A〜
図1Cに、本発明による水中での使用のための音響反射体(
図2の符号10)の構成要素を示す。2つの半球体13、14は、球状音響反射体のシェル12を備える。半球体は、アルミニウム合金6061T6から作る。反射体のコア16は、キャストRTV12であり、
図1Cに示す。コア16の直径は、2つの半球体13、14を相互に組み立てたときに、周囲温度において、シェルの内径よりも極めてわずかに小さいものである。コア16は、コアの外部の周囲で均一に分散された複数の直立の突起18を有する。実際には、最低5つの突起が必要である。しかし、8〜10の突起を製造のために成功裡に用いた。突起の高さは、約1.3mmである。
【0049】
1つ以上のホール20を、半球体13、14に設ける。シェル内部とコアとの間のあらゆるギャップを充填する水のために水中浸すときに、内部空気をすべて反射体の内部から放出することを保証するために、多くの小型のホール(各直径1〜2mm)を設けることが好適である。2つの大型のホール(直径約10mm)を用いることもできるだろう。しかし、1つのホールだけでは、反射体が海底に留まるときにブロックされるリスクがある。この例においては、合計24個を設ける。多数であれば、水中の反射体の水浸の際のより一層の水の侵入および空気の排除を保証するが、10個以上で作った球体でも十分に動作する。
【0050】
一方の半球体13のリム24に沿って隆起部22を設ける。半球体13、14を相互に組み立てるときに、隆起部22を受ける溝26を、他方の半球体14のリム28に設ける。
【0051】
2つの部分混合からなるコア16のためのRTV12を、最初に、突起をもつコアを形成するために形作られた型の中に流れ込み、そして従来の方法で硬化する。RTV12を型に過充填し、割れ目の形成の機会を減少させるためにスプルーを残す。コアが一旦硬化すれば、その後スプルーを切断する。続いて、RTV12コア16は、一方の半球体(例えば符号14)に配置される。その後、半球体14に関連する溝26に係合する半球体13の隆起部22をもつコア16上に、他方の半球体(例えば符号13)を配置する。これは、
図2において、詳細に理解することができる。突起18は、シェル内部12とコア16との間のギャップ19とともに、コア16をシェル12の中央に保持する。
【0052】
組み立てた反射体が水中に浸されるときに、水はホール20を通って進入し、ギャップ19を充填する。図面を明確にするために拡大縮小しておらず、
図2のギャップ19は、図面で見るよりも実際には細かく、通常は約1.3mmであることに留意するべきである。
【0053】
コア16は、この例のRTV12にあるが、他のエラストマーコアを用いることができる(但し、それらの特定の性能は、この明細書に示すものから変動する)。
【0054】
球体は、組み立てられるとき、アルミニウム部品の接合に好適な標準エポキシ樹脂接着剤(アラルダイト2000プラス(商標)が適している)を用いて接着する。接合部から空気をすべて排除することが必要である。
【0055】
それは、ギャップ19における材料の増加を防ぐために、抗汚化合物でコア16をコートするのが有用であることを見出した。現在、海洋環境の使用に認可された10種の抗汚化合物がある。
【0056】
理論上、鋼材は、
図1および
図2のシェルを形成する可能性も有する。しかし、これは、第1に、後部からの比較的弱いエコーを除外し、ソナーにより反射体を認識することを困難にする、極めて高比率のあらゆる入射音波が前部から反射されるために、第2に、水中での侵食問題のために、却下された。黄銅がより適しているように見えるが、非常に費用がかかり、使用するにはあまりにも重すぎる。
【0057】
先に示したように、最適化の度合いは、あらゆる特定用途のためのシェル厚およびシェル径の最善の組み合わせを達成するのに必要である。但し、
図15および
図16において理解できるように、8.8mmの壁厚をもつ300mmの球状の6061T6シェルは、80kHz未満の周波数で十分に動作する。
【0058】
図3は、アルミニウム合金6061T6の成分を示す。多くの成分、例えば、シリコンおよび亜鉛は、アルミニウムのものを下回る音響速度を実質的に有する。合金におけるそれらの材料の含有量を増加させることにより、アルミニウム合金から作るシェルの音響速度を低減することができる。ベリリウムは、これに反して(アルミニウム合金6061において用いられない)非常に高い音響速度を有し、もしこれが必要であれば、音響速度を増加させるために、追加することができるだろう(但し、アルミニウムベリリウム合金が極めて高コストであるため、望ましいオプションではない)。
【0059】
アルミニウム合金6061T6シェルとRTV12コアとの組み合わせは、コアに対するシェルにおける音響速度の比率6.11:1を有する。ギャップ19(
図2を参照)における水の存在は、水の正確な塩分に依存して、これを約6.0にするだろう。コアにおける音波伝達の平均速度に対するシェルにおける音波伝達の速度の比率が、2.5〜3.4の範囲にあるようにシェルおよびコア素材が選択されるならば、最高の性能が得られる。その比率の倍数もまた効果があることが分かった。それは、アルミニウムまたはアルミニウム合金による組み合わせの未処理のRTV12以外のコア材料を用いるための必要、または標準的なの市販の合金のうちの1つから離れてアルミニウム合金の合金成分を調整する必要を回避する。
図15および
図16に関連して以下で論じるように、この反射体の性能は、100kHz未満の入射音波により問い合わせるときに、特定の比率(好適な比率2.74〜3.4の倍数)が優れた(実際には予期しない)性能を呈することを明確に実証する。
【0060】
イー・アイ・デュポン・ド・ヌムール社(E.I.du Pont de Nemours)によりZytel(登録商標)HTN51G25HSLの商品名で販売された25%ガラス強化ポリフタルアミドをシェルが備える音響反射体の構成要素を示す
図4A〜4Cに移動して、構成要素は、異なるシェル材料、および隆起部22の1つの表面の周囲の円周の隆起部またはラッチ30とラッチ30を受ける溝26の対応する壁の表面に対応する戻り止め32との設備を除けば
図1A〜
図1Cのものと同一である。2つの半球体13、14をコアの周囲で相互に組み立てるときに、円周のラッチ30は、
図4Cにおいて理解することができるように、戻り止め32に係合する。安全承認および検証に必要であれば、2つの半球体13、14が互いに分割されることを可能にする予め設定された最低値(例えば70〜100psiの間)を、シェル内部の圧力が超えれば、それが機能しなくなるようにラッチ30を構成することができる。但し、反射体自体の圧力の増加の結果として生じる、本発明による反射体の故障については、関知しない。必要であれば、エポキシ接着剤により、
図1および
図2のアルミニウム合金構造による同様の圧力除去効果が達成される。機能しなくなると、同様に予め設定された最低値を超える反射体内に圧力が加わるであろう。
【0061】
本発明者は、特定周波数において、RTV12のシリコンエラストマーコアとともに
図4に図示されたような25%のガラス繊維強化ポリフタルアミドにより製造したシェルが、入射音波の優れた反射をもたらすことを見出した。25%ガラス繊維強化ポリフタルアミドは、イー・アイ・デュポン・ド・ヌムール・アンド・カンパニー(E.I.du Pont de Nemours and Company)から商標名Zytel(登録商標)HTN51G25HSLで販売されている。同様のガラス繊維強化ポリフタルアミドは、Solvey SA社からAmadelの商標で市販されている。より高いガラス繊維含有量をもつポリフタルアミドも入手可能であり、それにより、より硬いシェルを呈する。但し、ガラス繊維の含有量がそのように増加するにつれて、最終シェルの脆性およびシェルにおける音響伝達速度を増加する。最適な性能のために、後者は、RTV12自体よりも高い音波速度を有するコアを用いることにより調整する必要がある。
【0062】
図4のシェルを形成するための他の適切な非金属は、エポキシ含浸炭素繊維、ケブラー(登録商標)(アラミド)繊維、エポキシ含浸のZylon(登録商標)[ポリ(p−フェニレン−2,6−ベンゾビスオキサゾール)またはPBO]繊維、およびエポキシ含浸ポリテン繊維(例えばDyneema(登録商標))を含む。複合材中の繊維量を変化させることによって、用途に合わせて音波速度を調節することができる。コア音響速度比率に対する、シェルの最善の比率に関する本明細書における情報を用いることにより、最高の性能をもたらすようにコア材料を選択することができる。また、ナイロン6を用いた低価格・低寿命のシェルも可能である。
【0063】
先に示したように、最適化の度合いは、あらゆる特定用途のためのシェル厚およびシェル径の最善の組み合わせを達成するのに必要である。しかし、比較的低い音響周波数を用いて問い合わせられる直径の300mmの25%球状ガラス繊維強化ポリフタルアミドシェル(8.8のmm厚さ)は、
図17に示すような前後部エコーを有した。これらは、
図1および
図2のアルミニウム合金シェルを用いて取得されたものより劣るものの、あらゆる競合製品よりも顕著に優れている。
【0064】
図4の反射体は、国際公開特許第2011/012877号の25%ガラス繊維強化ポリフタルアミドシェルよりも優れて動作した。これは、国際公開特許第2011/012877号の構造のものと比較して、本発明で得られたシェルとコアとの間のより優れた結合の結果である。100KHzを超えた周波数において、それは、また、
図1および
図2の反射体よりも優れて動作したが、100kHz未満の周波数においてはあまり優れていない。
【0065】
非金属シェルのために、海岸または船のデッキ上で保管されるときに、シェルに損傷が生じた。この損傷は、ポリウレタンでシェルをコーティングすることにより低減できる。ホールを塞がないように注意しなければならないが、それは音響学上海水に緊密に一致する。
【0066】
図5において、本発明による球状音響反射体の反射体シェル12の2つの半球体13、14は、
図1および
図2に記載した通りである。他の同様の特徴は、詳細に記載しないが、
図1および
図2に関連して明らかにすることができる。シェル12の一方の半球体13は、雌ネジ穴34を備える。ホールの雌ネジ36は、バー40の一方の端部の雄ネジ42と協働する。音響反射体を適所に取り付けるために、バー40の他方の雄ネジ端部を、適切な雌ネジソケットにねじ留めしてもよい。理想的には、バー40は、音響反射体のシェル12と同様の材料から作る。
【0067】
図1〜
図4において、コアにおける複数の小さなガス泡(泡はコアの熱膨張を塞ぐために圧搾する)の分布により、さらに熱膨張を吸収できる。
【0068】
図1、
図2および
図4の突起18およびギャップ19の代わりに、複数の割れ目または刻み目をコア16の外側表面に設けることができる。刻み目のこれらの割れ目の各々は、コアが熱的に膨張し収縮するにつれて、空気が割れ目を出入りできるシェルにおいて1つ以上のホール20に関連する。水中において一旦、水が進入すると、空気がシェルのホールを通って割れ目から外へ押し出される。
【0069】
図5において、球状音響反射体の反射体シェル12の2つの半球体13、14は、
図1および
図2に記載された通りである。他の同様の特徴は、詳細に記載しないが、
図1および
図2に関連して明らかにすることができる。シェル12の一方の半球体13は、雌ネジ穴34を備える。ホールの雌ネジ36は、バー40の一方の端部の雄ネジ42と協働する。音響反射体を適所に取り付けるために、バー40の他方の雄ネジ端部を、適切な雌ネジソケットにねじ留めしてもよい。
【0070】
バー40は、音響反射体のシェル12と同様の材料から作る。したがって、
図5に示すバー40は、アルミニウム合金6061T6であろう。もしシェルが
図4に示すタイプであれば、バーは、25%ガラス強化ポリフタルアミドであろう。
【0071】
図6は、
図5のバーの使用例を示す。
図5に記載したタイプと同様の2つの音響反射体50は、これらの反射体のシェルの雌ネジ穴に、
図5に示したタイプのバー40をねじ留めすることにより、水中で取り付けられる。他の端部は、海底52(例えば、油田掘削装置プラットホーム(図示せず)の脚の間)に固定された三つ叉の矛のような取付装置48の腕木46の各端部のソケット44にねじ留めされる。同様なタイプのさらなる大型の音響反射体51は、2つの小型の音響反射体50間の中間の三つ叉の矛48の腕木46上のさらなるソケット44に取り付けた、さらなる直立バー40上に取り付けられる。反射体51を、水中において反射体50よりもわずかに高く設置する。反射体50、51は、コアとシェルとの間のギャップへの水の自由な侵入を可能にするシェルのホールをもつ、
図1および
図2中に示したタイプである。
【0072】
潜水機に取り付けたソナーアレイ54は、広帯域のソナー伝送56で音響反射体50、51と応対する。音響反射体から反射する信号の周波数組成は、反射体の直径によって変化する(小型の反射体は、大型の反射体51からの反射音波59よりも概して高い周波数から組成された反射音波58を供する)。これらの信号は、潜水機により受信されたとき、反射体50、51の距離に関する情報を与える反射音波の出力および入射角度とともに、従来通りに分析することができる。三つ叉の矛48の寸法、および腕木46およびバー40の長さに関する情報を用いることで、三つ叉の矛48に対する潜水機の位置を極めて正確に計算することができる。
【0073】
この配置は、もう1つの興味深い有利性を有する。短波長ソナー信号が長波長ソナー信号よりも非常に速く減衰することは周知である。したがって、反射体51からの反射信号59を、反射体50からの短波長の反射信号58よりはるかに遠い位置の潜水機が「聞く」ことができるのは、明らかである。したがって、三つ叉の矛48がマークする対象物体に向かう潜水機の初期誘導を、反射体51からの反射音響信号59に基づいて行うことができる。潜水機が三つ叉の矛台48に接近するにつれて、2つの小型の反射体50からの反射が得られ、潜水機のその目標物に向う最終的な精確な操舵が達成される。
【0074】
別の配置において、本明細書に記載されたタイプの複数の音響反射体は、同じサイズであり得るし、文字/数字の外形を形成するために取り付けられ得る。したがって、例えば、文字/数字組み合わせの形状で識別コードの反射により、特定物(particular asset)を水中でマークすることができる。文字数字の組み合わせを識別するためにサイドスキャンソナーを用いる場合、当該文字/数字に対する反射体配置を取り付けるフレームを、垂直の角度で取り付ける必要があるだろう。ほとんどのサイドスキャンソナーシステムは、水平方向に対して約45度でスキャンするように設定される。したがって、使用中のこのようなソナーによる最良の識別のために反射体により反射される文字/数字の外形も水平方向に対して45度であるように、フレームを取り付けるだろう。
【0075】
図7において、文字Aの面が水平に対して45であるように、A形の外形フレーム60を、ドリリングリグ62の部分の前の海底52上に取り付けて示す。海底上の適所にそれを保持するフレーム60および直立部材62は、プラスチック材料から構成される(もしそれが硬質で、海水の劣化に対する抵抗力があって、低音響反射率を有するのであれば、その実際の文字は重要でない)。ポリウレタンは、水中音波に対してほぼ透過的であるので、適している。
【0076】
一連の雌ネジソケット44を、文字Aの主要な形状の輪郭を描く点のフレーム上に取り付ける。ソケットは、
図5に記載したタイプのバー40の雄ネジの端部を受ける。
【0077】
バーは、Aのフレーム60に対し垂直である。バー40の他方の端部を、
図5に記載したタイプの球状音響反射体64の雄ネジのホールにねじ留めする。他の同様の反射体66(それらは反射体64とは異なる直径であってもよい)は、潜水機70が追随するためにAフレーム60に向かって経路をマークする。潜水機は、それ自身、広帯域のソナー伝送68を発する45度サイドスキャンソナーを有する。その伝送は、水平に対して45度で潜水機に向かって後方に導かれる反射音波とともに、音響反射体64により反射されるだろう。その結果として、音響反射体の各々は、潜水機上の受信器と同様に互いに強く出現する反射信号を生成する。
【0078】
もし使用中のソナーシステムがボトムスキャンソナーであれば、フレームを、傾けずに水平に取り付けるだろう。
【0079】
図8は、音響反射体10が中心のホールを有する、本発明の1つの実施形態を示す。反射体の一般的な構造は、
図1および
図2の通りであるが、この場合、ダクト21(直径約10mm)がコア16内のギャップ19から中心のホール23に達する。他の部分は、
図1および
図2において論じた通りである。
【0080】
反射体を水中に浸すとき、水がギャップ19(ダクト21)に入り、ホール23を充填する。ホール23の直径が反射体の直径の10%を超えない場合、空隙23の水の存在は、反射体の一般性能に対してほとんど差がない。しかし、それは、反射体を調整することを可能にする、ピーク応答が生じる周波数を変更するだろう。
【0081】
図9は、音響反射体のシェルが25%ガラス強化ポリフタルアミドを備える以外は、
図8とほぼ同様である。反射体の構成要素は、
図4Cに示したものと概して同様であるが、ダクト21(直径約10mm)がコア16内のギャップ19から中心のホール23に達する。他の部分は、
図4A〜
図4Cにおいて論じた通りである。
図10には、
図1および
図2に示した反射体のさらなる変形を示す。ここで、反射体10は、コア16を横断して直径方向に延伸するダクト25(直径約10mm)を有する。シェル12は、ダクト25への入口点の各々反対側に、それを介して2つのホール24を有する。これらのホール24は、シェルの他のホール20よりも多少広い(約10mm)。ホール24およびダクト25は、コード(図示せず、例えばナイロン)を受けることができる。反射体10の位置において布設、配置または保持を支援する、または互いに反射体をつなぐために、そのコードを用いることができる。
【0082】
図8〜
図10において、突起18およびギャップ19を省いており、その結果、コアの外部がシェル内部に接する。この配置は、コアの熱膨張をさらに吸収するが、シェルに対するコアの音響結合は、図示された配置のものほど有効でなく、したがって、本発明を実現するための好適な方法ではない。
【0083】
図11〜
図13は、非球状反射体の構造および使用を示す。各場合において、反射体は、円形断面を有しており、ソナーが円形断面の円周を形成するシェルのその部分の問い合わせを行うことができるように、反射体を配列し配置する。
【0084】
図11Aは、各々が開口端の管状シェル153を有する、各々が本発明による多くの伸長管状反射体またはマーカ152に適合したパイプ部150の概略図を示す。
図11Bは、反射体152の断面図である。マーカ152のコア154はシリコンエラストマーの伸長立体管状部断面図であるが、
図1に記載したような突起を有するのではなく、コア154は、管状シェル内にそれを適所に保持するために、その外側表面に沿って延伸するリッジ部により押出し加工された。
図1、
図2および
図4に記載したものと同様の方法で、コア154とシェル153との間に形成されたギャップ157に、水が入ることができる。
【0085】
マーカ152の開口端156は、水がギャップ157を自由に出入りすることを可能にする。従来の電気的に絶縁する突起158によりパイプ部150から分離されるのに必要とする金属シェルをマーカ152が有するのであれば、これは、Zytel(登録商標)または他の非導電材から円筒シェル153を作る多くの通常のケースでは必要ないだろう。パイプ部150は、ホールを有する従来のエンドフランジ160を有し、このホールによって、エンドフランジを別のパイプ部にボルト締めすることが可能になる。マーカが取り付けられたパイプ部を、事前に地上で組み立て、フランジ160のボルトホールを介して、同様に取り付けられた別のパイプに接合することができる。このようにして、音響メーカを取り付けたパイプラインを、水中パイプラインを敷設するための通常の過程の一部として組み立てることができる。代案として(または、それに加えて)、水が自由に進入できる中央ダクトとともにコア153を形成してもよい。但し、水により充填されたギャップ157の存在は、他の場合に比べて、シェル153とコア154との間のはるかに優れた音響結合を可能にする。
【0086】
図11Aおよび
図11Bにおける細長い管状マーカをパイプ部と関連させて説明してきたが、マーカをその他の物体(油田掘削プラットフォーム、海上作業者用の居住用プラットフォーム、水中に設置するその他の物体等)に応用することもできる。油およびガス産業において用いられるソナーシステムで使用するために、典型的には、反射体は、直径約100mmになるだろう(シェル25%ガラス繊維強化ポリフタルアミドシェル、アルミニウムまたはアルミニウム合金シェルは、配備された周波数で十分に動作しない)。2つの長手方向の半分割体、一方の半分割体に配置されたコア、および
図4の球形シェルとの関係において論じたのと同様な方法において接合された2つの半分割体に、シェルを構築することができるかもしれない。
【0087】
図11Cは、各々が本発明による多くの伸長管状反射体またはマーカ162が取り付けられたプラスチックガスパイプ161の概略図である。
図11Dは、反射体162の断面図である。各反射体またはマーカ162は、開口端の管状シェル162を有する。マーカ162、伸長立体管状部断面図、およびシリコンエラストマーのコア164は、先に記載されたものと同様の方法においてコアとシェルとの間に形成されたギャップ167に入ることができる水とともに、管状シェル内のコアを適所に保持するためにその外側表面の長さに沿って延伸するリッジ部により押出し加工された。
【0088】
管状反射体またはマーカ162を、接近させて、しかし、共通支持体168のガスパイプ161から離して取り付ける。代案として(または、それに加えて)、水が自由に進入できる中央ダクトとともにコア164を形成してもよい。但し、前のように、水により充填されたギャップ167の存在は、他の場合に比べて、円筒シェル163とコア164との間のはるかに優れた音響結合を可能にする。
【0089】
動作においては、
図11A〜
図11Dのマーカは、本明細書に記載した他のマーカと同様の方法で正確に動作する。音響源から伝達された音波は、管状マーカ152または162に入射する。音波の一部は、シェル153または163を介してコア154または164内を通過する。そこでは、コアの後方を横断する入口の反対側のシェル壁から反射されるようにコアを横断して移動する。音波の一部は、シェル壁の周囲を移動し、もとの音波源に向かって外側後方に再放射されるようにコアを介して伝達された音波の一部と構造的に組み合わされる。
【0090】
図11A〜
図11Dにおける細長い管状マーカをパイプ部と関連させて説明してきたが、マーカをその他の物体(油田掘削プラットフォーム、海上作業者用の居住用プラットフォーム、水中に設置するその他の物体等)に応用することもできる。油およびガス産業において用いられるソナーシステムで使用するために、典型的には、反射体は、直径約100mmになるだろう(シェル25%ガラス繊維強化ポリフタルアミドシェル、アルミニウムまたはアルミニウム合金シェルは、配備された周波数で十分に動作しない)。2つの長手方向の半分割体、一方の半分割体に配置されたコア、および
図4の球形シェルとの関係において論じたのと同様な方法において接合された2つの半分割体に、シェル153または163を構築することができるかもしれない。
【0091】
このようにプラスチックガスパイプまたは他の非強磁性管をマークできるように実現することは、それらが一旦水中に配置された後引き続いて追跡することができるような、これらをマークするための十分にコスト効率が良い方法が他にないので、特に重要な展開である。強磁性パイプを、その磁気特性図を用いて追跡することができる。
【0092】
本発明の別の実施形態を、
図12Aおよび
図12Bに示す。環状マーカ170は、以前に記載した元本に従って構成された。マーカは、接着された隆起部177と溝178と接合により接合された、2つの半円形断面の半分割体172、173を備えるシェル174を有する。リングコア176は、シェルの内側表面と接触し、かつシェルの内部壁とコアとの間のギャップ182(このギャップは典型的には約1.3mmである)を生成するために、その外側表面上に突起180を有する成型されたエラストマーから形成される。シェル174は、複数のホール175を有する。複数ホール175は、マーカが水中に浸されるときに、水がコア176の中にそのシェル174の外部からシェルに自由に流れ出ることを可能にする。ギャップ182は、暑いときにコアが膨張し、その中に(そのから外に)水および空気が自由に出入りできる空間を形成する。
【0093】
先の例に関連して述べた代替手段のうちのいずれを用いてもよいが、この例におけるシェルは、アルミニウムまたはアルミニウム合金である。
【0094】
音響源から伝達された音波は、マーカ170の外部表面に入射する。その音波は、マーカから部分的に反射され、部分的に再放射される。
【0095】
この場合、突起を、
図11A〜
図11Dのリッジ部157,167と同種の成型されたリッジ部で置換えてもよい。
【0096】
図13において、橋脚などの支柱の下方部190は、海底192の表面191より下に延伸して示される。
図12Aおよび
図12Bに関連して記載した一連の環状の音響のマーカ194A、194B、194C、194Dを、支柱190の周囲で海面より下に取り付ける。海底の上のそれらのマーカ194A、194Bを、支柱190をマークするために用いることができる。潮流が支柱190の周囲の海底を優先的に洗掘するであろう。そして、海底レベルは196まで低下し、最初は海底より下にあったマーカ194Cが露出する。ソナー信号による問い合わせにより、このマーカ194Cを検出することによって、洗掘についての(注意が必要の可能性もあるとの)早期警告が呈される。
【0097】
洗掘が続くにつれて、線198で示すように海底はさらに沈み、さらなるマーカ194Dが露出する。これは、場合によっては危険な状況が生じていて、支柱190の水中の台に緊急の注意が必要であることを示し得る。
【0098】
シェルと同様の材料で作った
図5に記載したタイプの1つまたは複数のバーを用いて、環状マーカ170を、支柱に取り付けることができる。
【0099】
いくつかのセキュリティ用途および軍事用途のために、反射体は、水中での配置後の当分の間、比較的非可視のままであることが望ましいかもしれない。本明細書に記載した種類の反射体を用いてこれを達成するために、反射体が検出可能であるようになるときまで、シェルとコアとの間に空気を保持するべきである。シェル内に1つの大きなホール(例えば直径10mm)を設けることにより、反射体が水中に配置されるときに最上部になることを保証する。プラグがその中に溶けるときに、空気は急速に放出される。
【0100】
適当なプラグ材は、食塩(塩化ナトリウム)、アルカリ土類の酸化物、カルシウムおよびホウ素、またはマグネシウム(溶解性化合物を形成するために塩水により反応するマグネシウムの合金を含む)を含む。
【0101】
本発明のさらなる用途は、水域の音波の伝達率を監視することを含む。本発明による多くの音響反射体を、ソナー源からの距離を拡げて敷設することにより、その水域の音波の伝達率を、反射体からの反射音波を監視することにより、監視することができる。伝達率が低下する(例えば荒海)につれて、ソナー源から最も遠くの反射体は、もはや認識されないだろう。ダイバーまたは魚種資源を監視する場合や、荒れた海または暗い海がソナー検波器の範囲を単純に低下させる場合などの状況において、認識されるダイバーも魚がいないために応答が欠如する間に識別可能であるので、これは有用になり得る。
【0102】
国際公開特許第2011/012877号に記載されたタイプの水中音響反射体を、すなわち、コアの内部からおよびシェルの周囲で移動する音波からの反射音波を、シェルの前部から反射した音波により時に完全にマスクすることができるかどうかの問題が、確認された。問い合わせるソナーが長パルスの長さを有し、音響反射体に極めて接近している場合、これは特に当てはまる。結果として、反射体を「認識」できるが、識別情報を生成することができない。その問題は、問い合わせるパルスの伝達長(時間における)が、コアを横断する平均的な音響速度により除算された音響反射体のシェルの直径の2倍未満である音響放射源により反射体を問い合わせることにより克服することができる。例えば、この明細書において図示したように、シェルとコアとの間の空間を自由に出入りする水によるRTV12をコアが備える場合、シェルを通過した後の反射体内部の音波の平均的な音響速度は、RTV12と水との組み合わせのものになるだろう。
【0103】
いくつかのソナーシステムにおいて、ソナーシステムが周囲環境のまわりの実質的な情報を集めることを可能にするために、長パルスによる伝送を用いる。本発明の主題のタイプの音響反射体での使用のために、長パルスの間に短パルスを点在させることが望ましい。短パルスは、水を充填した空間およびコアを横断する平均的な音波速度により除算された音響反射体のシェルの直径の2倍より短いパルス時間を有する。この種の短パルスは、長パルスの間で規則的に点在する(例えば、4つに1つのパルス)。このような透過パターンを
図14に示す。
【0104】
図14において、水中音波パターン73は、
図2または
図4に示したタイプのパッシブ音響反射体に向うソナー(図示せず)から伝達される。より短い長さのパルス72は、4つの長パルス71毎の後に伝達される。あらゆる水空間およびコアを横切る反射体の内部の直径が280mm(直径300mmの球状反射体における)であり、水空間およびコアを横断する平均的な音響速度が1100m/秒であると想定すると、問い合わせるソナーによりコアから再放射された音響信号を「認識」した場合、短パルス72の最大のパルス幅は、5×10
−5秒である。
【0105】
図15は、(
図1および
図2に記載したように)RTV12コアを備える本発明によるアルミニウム合金シェルの水中反射体の周波数レスポンスを示す。シェルは、厚さ8.8mmで直径200mmである。−3dBの標体強度(TS)最適応答による4〜80kHz範囲の入射音波周波数において、−10dBよりも効果的な、優れた応答がある。この応答は、以前にパッシブ水中音響反射体のために表示されたものあらゆるものよりも優れている。但し、100KHzを超えた高周波数において、応答曲線は、比較的フラットであり、かつ低い。また、
図4に関連して記載したタイプの高周波数における音響反射体の方が、顕著に優れている。Xとマークした領域において、これらの低周波数において作動不能であったように、測定結果を取得するために用いられる変換器を用いて応答を測定することができないかもしれないことに留意するべきである。したがって、図示した曲線は、モデルからのデータ(各々が約62kHzにおける最大応答未満のピーク応答による、30kHzおよび20kHzにおける二次的なピーク応答を示す)に基づく。Yにマークした、160〜230kHzの間の領域において、低周波数変換器と高周波数変換器との間の遮断のために、さらなる不確実性がある。この領域における曲線は、取得された応答の平滑化を表現する。但し、200kHzでのピークは、モデルデータと一致する。
【0106】
図16に移動すると、XおよびYをマークした曲線の部分に関する同様な測定値とともに、反射体の後部および前部から取得された応答を示す。
【0107】
図16において、80kHz未満で、反射体の後部からのエコーは、少なくとも前部からのものと同様に強いことが分かるであろう。これは、この範囲において、反射体は、反射体のサイズに関する重要な情報をもたらすであろうことを意味する。厚さ6〜15mmの間のシェル壁により、本発明による反射体から優れた音響レスポンスが達成されることが分かった。正確な応答のメカニズムが十分に分からないが、それは、シェル自体の共振応答モードに加えて、シェル壁の周囲を移動する音波と構造的に干渉するシェルの背面から集束され反射される、シェルおよびコアを通過する音波からの応答の組み合わせであると考えられる。また、アルミニウムおよびアルミニウム合金のシェルによる反射体は、
図17および
図18に関して論じた非金属シェル反射体と同じような、壁厚の変化に対する応答に多くの変動を示さなかったが、シェル厚が増加するにつれて、最良の応答が生じる周波数は低下する傾向があり、シェル厚が減少するにつれて、増加する周波数にて最良の応答が生じることが分かった。
【0108】
アルミニウムまたはアルミニウム合金のシェルを備えた直径200mm未満の反射体に対し、低周波数(100kHz未満)での応答は、低下する。直径400mm以上で、応答は極めて優れているが、反射体は、実際的な配備のためにあまりにも大型になりすぎる。したがって、低周波数環境において操作する反射体のために、理想的な反射体の直径は、約200〜400mmの間である。
【0109】
アルミニウムまたはアルミニウム合金のシェル反射体を備えた反射体は、頑丈である。水中産業のための物体および経路を作ることとは別に、実用的応用は、ネットや水中のポットおよびトラップをマークする水産業、および、特に航空機のブラックボックスや他の重要な構成部品をマークする航空産業での使用を含む。その後者の場合において、反射体の強度および明度は、ブラックボックスまたは他の感応性の構成要素に取り付けられた、航空機内に配置された装置にとって、実用的であることを意味する。万一、航空機が海に不時着しても、構成部品の識別および修復は、いかなるときでも理論上可能であるべきである。不時着水後トランスポンダのバッテリが比較的早く切れた後に、ブラックボックスおよび他の構成部品を探し出すことが非常に難しくなる現在の状態での大きな進歩である。この後者の情況において、チタンの音響速度がアルミニウムの音響速度に非常に近く、チタン反射体は、アルミニウムまたはアルミニウム合金の反射体と同様に動作するであろうことに注目する。
【0110】
6061T6からのアルミニウム合金の変更は、正確なピーク応答およびそれらの振幅を含む特定の性能係数測定値に影響を及ぼすが、これは、本発明の基礎となる原理を損なわなかった。サフィックスT6は、時効硬化を変更したとしても、用いられる合金の製造に用いる加速された時効硬化プロセスが、性能上に衝撃を与えるであろうことを示唆する。
【0111】
図4A〜
図4Cに図示した反射体は、ピーク応答がちょうど50kHz未満で−4dBであること以外は、アルミニウム合金反射体(その性能を
図17に図示した)の周波数に対する低周波数で同様に実行する。Xにマークされた曲線の左側部は、これらの周波数で動作する検査変換器が不能のため、再びモデルデータに基づいた。
【0112】
図18および
図19に移動すると、アルミニウム合金のシェル反射体により見出されたものとは対照的に、
図4Cの反射体も、また、100〜130kHzの範囲(さらに115kHzにて約−4dB)において、および385kHzのピークで360〜400kHzの間において、有効な応答があった。詳細な検査(図示せず)は、675kHzのピークで650〜690kHzの間に有効な応答を示す(さらに970kHzで生じるピークが出現する)。最良の応答の周波数が、油およびガス探査産業で使用するのに特に適している
図4A〜
図4Cに示した反射体を整備するその産業のソナーシステムの通常の動作周波数で生じるので、これらの結果は特に興味深い。
【0113】
図15〜
図19に示した結果を、1998年10月13日の米国特許第5822272号明細書(リーム)で公表されたものと比較することは、有用である。前者の方が顕著によいことが分かる。
【0114】
図4Cのように構成した直径200mmの反射体における様々な壁厚に対するピーク応答が生じる周波数の変動を比較した。一次応答は、
図18および
図19のピークAにおいて取得されたものであり、二次はピークBでものである。
・シェル厚6.9mm:一次中間値124kHz、二次中間値438kHz
・シェル厚7.0mm:一次中間値119kHz、二次中間値425kHz
・シェル厚8.0mm:一次中間値111kHz、二次中間値398kHz
・シェル厚8.1mm:一次中間値111kHz、二次中間値380kHz
・シェル厚8.8mm:一次中間値113.5kHz、二次中間値379kHz
・シェル厚9.1mm:一次中間値101kHz、二次中間値360kHz
・シェル厚10.0mm:一次中間値99kHz、二次中間値345kHz
・シェル厚10.9mm:一次中間値115kHz、二次中間値330kHz
【0115】
9mmを超えるシェル厚に対し、さらなるピークを、2つの測定された一次ピークと二次ピークとの間に認めた。
【0116】
これは完全に矛盾しないわけではないが、シェル厚の増加は、ピーク応答が生じる周波数を減少させる傾向があることが分かった。
【0117】
実施形態の各々に記載した反射体における音波の物理的伝送は、以上に記載した通りである。低周波数において、このメカニズムは、シェル壁の残響により増強されるかもしれないと考えられており(証明されたわけではないが)、これは、より低い周波数での金属シェルのより優れた性能について説明できる。