【0017】
<3>本発明の医薬製剤
本発明の医薬製剤は、前記本発明の結晶又は医薬原体用の組成物を含有することを特徴とする。かかる結晶又は医薬原体用の組成物は、エタノール等の溶媒への溶解性に優れるため、溶解工程をその製造工程に含む製剤が好ましく、具体的には、溶液製剤、乳化製剤、液滴分散型の軟膏製剤などが好適に例示できる。特に、ルリコナゾールの含有量が5質量%を超える製剤は、溶解工程に時間を要するために、これを短縮する意味で好ましい。
ルリコナゾールの好ましい含有量は、製剤全量に対して0.1〜30質量%であり、0
.5〜15質量%がより好ましい。勿論、錠剤などの経口投与剤に加工した場合においても、溶解速度、物理的安定性に優れるために好ましく、この様な経口投与製剤も本発明の製剤に属する。
製剤におけるルリコナゾールの含有量、処理条件等にもよるが、例えばルリコナゾールの含有量が製剤全量に対して0.1〜30質量%である製剤を調製する際の溶解工程において、本発明の結晶又は医薬原体用の組成物を用いた場合の溶解工程に要する時間は、従来使用されるルリコナゾールを用いた場合の溶解工程に要する時間の80%以下、好ましくは75%以下、より好ましくは70%以下であり得る。
本発明の製剤には、本発明の結晶又は医薬原体用の組成物以外に、溶剤、着色剤、抗酸化剤、キレート剤、乳化・分散剤、可溶化剤、崩壊剤、賦形剤、結合剤、被覆剤、矯味矯臭剤等を適宜加えて、常法に従って処理することにより製造できる。
斯くして得られた本発明のルリコナゾール製剤は、ルリコナゾール製造直後の初期値において、異性体量が抑制されていることを特徴とする。ルリコナゾール製造直後の初期値において、異性体(SE体、Z体)量が、従来のn−ヘキサン・酢酸エチルから再結晶する方法により製造された(11−1)面を特異的な成長面とする晶癖を有する結晶を用いた場合に対して、例えば、SE体であれば80%以下、好ましくは70%以下、より好ましくは60%以下であり、Z体であれば70%以下、好ましくは60%以下、より好ましくは50%以下であり、SE体とZ体の和であれば、80%以下、好ましくは70%以下、より好ましくは60%以下でありうる。
特に、溶剤への溶解工程においては前記異性体が発生する可能性が高いので、この様な工程を含んで製造される医薬製剤の原体として、本発明の結晶又は医薬原体用の組成物は特に好適である。
【実施例】
【0020】
以下に、実施例を示して本発明について更に詳細に説明を加えるが、本発明は以下の実施例に限定されるものではない。
【0021】
<参考例1>
酢酸エチル・n−ヘキサン混液から再結晶し得られたルリコナゾールを用いて、これを10%含水エタノールから再結晶し、濾取して、五酸化リンを入れたデシケータで乾燥させた。このもののエタノール含有量を、ガスクロマトグラフで測定したところ、3,500ppmであり、エタノールを含有していたので、このものを参考例の結晶(結晶1)であると確認した。尚、参考例の結晶の原料となった、酢酸エチル・n−ヘキサンから再結晶し得られたルリコナゾール(原料1)のエタノールの含有量は、検知限度以下であった。
【0022】
参考例の結晶1について、単結晶X線構造解析(装置機種名:RU−H2R、製造会社名:リガク、条件:X線源:CuKα、測定温度:26℃、管電圧:50kV、管電流:180mA、2θmax:150.0°構造解析法:直接法(SHELX86))を行っ
た。測定値より求められた結晶系、空間群、格子定数及びR因子は次の通りであった。
【0023】
結晶系:単斜晶
空間群:P2
1
格子定数
a=9.0171(9)Å
b=8.167(1)Å
c=10.878(1)Å
β=95.917(9)°
R因子
R=0.046
R
w=0.047
【0024】
<参考例2>
参考例1の原料1(比較例の結晶)と結晶1について、溶出試験(攪拌条件:50rpm)を行い、溶出動態を調べた。全ての結晶が溶解したのを確認した後、溶液中に生成した異性体であるZ体とSE体をHPLCで分析・定量した。
溶出試験は、溶媒として500mLの無水エタノールを用い、1gのサンプルを攪拌下室温で溶解せしめ、溶解に要した時間も同時に測定した。結果を表1に示す。これより、結晶1は溶解に要する時間が短く、以て、溶解工程において異性体であるZ体とSE体の生成が抑制されていることが判る。
なお、HPLCの条件は、カラム;CHIRALCEL OD−RH 4.6×150mm、カラム温度;35℃、移動相;メタノール/2%ヘキサフルオロリン酸カリウム水溶液の混液(85:15、v/v)、流速;0.6mL/min.、検知;295nm)であった。
【0025】
【化3】
【0026】
【化4】
【0027】
【表1】
【0028】
<参考例3>
参考例1の再結晶条件を変えて、得られた結晶(結晶2,3)のアルコール含有量を測定し、併せて、エタノールへの溶け具合も肉眼で観察した。結果を表2に示す。結晶2、結晶3は参考例の結晶であり、溶状も良好であった。即ち、1,000ppm以上のエタノールを含有することにより、特に溶解性が向上することが判る。
【0029】
【表2】
【0030】
<参考例4>
参考例の結晶1を用いて、医薬製剤(ローション製剤)を作製した。即ち、処方成分を加熱し、攪拌、可溶化し、可溶化を確認後、速やかに攪拌冷却し、本発明の医薬製剤を得た。溶解に要した時間は、5分以下であった。このものについて、Z体とSE体とを計測した。Z体の含有量は検知限度以下、SE体は0.03%であり、安定性を損なわずに製造できたことが確認された。
【0031】
【表3】
【0032】
<参考例5>
参考例1の再結晶条件を変えて得られた結晶4のアルコール含量を測定し、併せて、エタノールへの溶け具合を、参考例1の比較例の結晶及び結晶3と比較して溶解性を比較した。
尚、結晶4は以下のように調製した。即ち、ルリコナゾール5gに150mLのエタノールを加え、還流して可溶化し、攪拌しながらゆっくり70℃まで冷却し、この温度で20分保持した後、これに水20mLを加え、攪拌冷却し、析出した結晶を濾取して、30℃で送風しながら48時間乾燥させて、参考例の結晶4を得た。このもののエタノールの含有量は262ppmであった。溶解性は、比較例<<結晶4<結晶3であり、結晶4であっても、本発明の結晶の効果を奏していることがわかる。これより、許容されるアルコールの下限値は100ppmと推測された。
【0033】
<参考例6>
参考例1の再結晶条件を変えて得られた結晶5のアルコール含量を測定し、併せて、エタノールへの溶け具合を、参考例1の比較例の結晶及び結晶2と比較して溶解性を比較した。
尚、結晶5は以下のように調製した。即ち、ルリコナゾール5gに150mLのエタノールを加え、還流して、可溶化し、攪拌しながらゆっくり80℃まで冷却し、この温度で5分間保持し、これに水15mLを徐々に加え、攪拌冷却し、析出した結晶を濾取して、30℃で送風しながら24時間乾燥させて、参考例の結晶5を得た。この結晶のエタノールの含有量は7029ppmであった。溶解性は、比較例の結晶<<結晶2=結晶5であった。
【0034】
<参考例7>
参考例1の再結晶条件を変えて得られた結晶6のアルコール含量を測定し、併せて、エタノールへの溶け具合を、参考例1の比較例の結晶、結晶4及び結晶3と比較して溶解性を比較した。
尚、結晶6は以下のように調製した。即ち、ルリコナゾール5gに200mLのエタノールを加え、還流して可溶化し、攪拌しながらゆっくり70℃まで冷却し、この温度で10分保持した後、これに水10mLを加え、攪拌冷却し、更に水10mLを加え、析出した結晶を濾取して、30℃で送風しながら48時間乾燥させて、参考例の結晶6を得た。結晶6のエタノール含有量は、403ppmであった。溶解性は、比較例の結晶<<結晶4=結晶6<結晶3の順であった。
【0035】
<参考例8>
参考例1の再結晶条件を変えて得られた結晶7のアルコール含量を測定し、併せて、エタノールへの溶け具合を、参考例1の比較例の結晶及び結晶5と比較して溶解性を比較した。尚、結晶7は以下のように調製した。即ち、ルリコナゾール5gに200mLの90
%エタノール水溶液を加え、還流して、可溶化し、攪拌しながらゆっくり80℃まで冷却し、この温度で5分間保持し、これに水15mLを徐々に加え、攪拌冷却し、析出した結晶を濾取して、30℃で送風しながら24時間乾燥させて、参考例の結晶7を得た。この結晶のエタノールの含有量は4146ppmであった。溶解性は比較例の結晶<<結晶5=結晶7であった。
【0036】
参考例1、3、5〜7の結果を見ると高温時に貧溶媒を加え、貧溶媒法で再結晶することにより、本発明の結晶の内、アルコール含量が高いものが得られることが判る(参考例6)。また、貧溶媒の添加の衝撃を和らげるとアルコール含量が高くなる傾向にあることも判る(参考例8)。水含量の多いアルコール・水混合溶媒より再結晶する場合、或いは、低温で貧溶媒を加え再結晶させる場合はアルコール含有量が下限値に近くなることも判る(参考例5、7)。
【0037】
<参考例9>
結晶5〜7及び比較例の結晶について、参考例2の方法に基づいて溶解性を調べた(攪拌条件:200rpm)。溶解に要した時間を
図1に示す。これよりこれらの結晶は何れも比較例に比して溶解性に優れることが判る。
【0038】
<実施例1>
参考例1の再結晶条件を変えて、得られた組成物のアルコール含有量(再結晶に用いたアルコールの含有量)を測定し、併せて、エタノールへの溶け具合も肉眼で観察した。結果を表4に示す。尚、再結晶は、結晶8については、10gのルリコナゾールに150mLのメタノールを加え、60℃で加温し、攪拌下溶解させ、70℃に加温した水50mLを加え、攪拌混合したのち、5℃の冷却水で攪拌しながら、結晶を析出させ、30分間静置したのち、濾取し、40℃で48時間送風乾燥して調製した。結晶9については、10gのルリコナゾールに50mLのメタノールを加え、水150mLを加えること以外は、上記と同様に再結晶を行った。結晶10については、10gのルリコナゾールに100mLのメタノールを加え、水100mLを加えること以外は、上記と同様に再結晶を行った。結晶11については、10gのルリコナゾールに200mLの2-プロパノールを加え
、水を加えないこと以外は、上記と同様に再結晶を行った。これらの結晶は、溶状も良好であった。即ち、500ppm以上、さらに好ましくは1000ppm以上の炭素数1〜4のアルコールを含有することにより、特に溶解性が向上することが判る。
【0039】
【表4】
【0040】
<実施例2>
結晶10と参考例1の結晶1とは、粉末X線回折測定(2θ:5〜35°)の回折ピークはいずれも一致し、結晶系は同一である。すなわち、結晶10の単結晶X線構造解析の測定値より求められる結晶系、空間群、格子定数及びR因子は、参考例1の結晶1と同じく、次の通りである。
【0041】
結晶系:単斜晶
空間群:P2
1
格子定数
a=9.0171(9)Å
b=8.167(1)Å
c=10.878(1)Å
β=95.917(9)°
R因子
R=0.046
R
w=0.047
【0042】
<実施例3>
結晶10を用いて、アルコールを含有する原体の効果を確かめた。比較例としてはアルコールを全く含有しないn−ヘキサン・酢酸エチル混液から再結晶して得られた結晶(比較結晶)を用いた。Trichomonas Vaginalis(トリコモナス・ヴァージナリス;臨床分離株)を用いて、ルリコナゾールの直接効果を調べた。即ち、「トリコモナス培地F」(富士製薬製)に比較結晶を5.08mgを入れたものと、結晶10を5.08mgを入れたものと、水5μL(対照)を入れたものを用意し、これに3.93×10
5個/mLのトリコモナス・ヴァージナリスの培養液200mLを加え、37℃で
4日間培養し、血球計数板上でトリコモナスの個数を計数した。結果を表5に示す。これら3つのサンプル間には、危険率1%以下で有意差が認められた。これより、本発明の結晶は抗原虫作用に優れることがわかる。
【0043】
【表5】
【0044】
<実施例4>
下記表6に示す処方に従って、錠剤を作製し、硬度を計測した。硬度計はPTB311(Pharma Test GmbH製)を用いた。打錠条件は、9mmφの臼と杵を用いて打錠圧1ton/cm
2で行った。比較例は比較結晶を用いて、同様に作業して行っ
た。6個の平均を表7に示す。これより、本発明の結晶は硬度が高く、物理的安定性に優れることがわかる。即ち、アルコールを含有する原体は、原体同士の親和力が強いために、硬度の高い錠剤が得られるものと推定される。
【0045】
【表6】
【0046】
【表7】