(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】5698402
(24)【登録日】2015年2月20日
(45)【発行日】2015年4月8日
(54)【発明の名称】免震建物用地震応答解析手法、及び免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法
(51)【国際特許分類】
G01M 7/02 20060101AFI20150319BHJP
G01M 99/00 20110101ALI20150319BHJP
E02D 27/44 20060101ALI20150319BHJP
G06F 17/50 20060101ALI20150319BHJP
【FI】
G01M7/00 A
G01M99/00 Z
E02D27/44 A
G06F17/50 680B
G06F17/50 612G
【請求項の数】6
【全頁数】15
(21)【出願番号】特願2014-119305(P2014-119305)
(22)【出願日】2014年6月10日
【審査請求日】2014年8月5日
【早期審査対象出願】
(73)【特許権者】
【識別番号】511309492
【氏名又は名称】グローバル・ロジスティック・プロパティーズ株式会社
(74)【代理人】
【識別番号】100130476
【弁理士】
【氏名又は名称】原田 昭穂
(72)【発明者】
【氏名】川合 廣樹
(72)【発明者】
【氏名】石嶋 健司
【審査官】
田中 秀直
(56)【参考文献】
【文献】
特開平09−113403(JP,A)
【文献】
特開平10−062314(JP,A)
【文献】
特開2000−266612(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 7/02
E02D 27/44
G01M 99/00
G06F 17/50
JSTPlus(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
免震建物の上部構造、基礎杭及びパイルキャップを含む下部構造、及び上部の大梁と下部のつなぎスラブとの間に設けられる免震層に関する地震応答解析モデルを用いた免震建物用地震応答解析手法において、
上部構造は、建物の各層が質点及びせん断バネに置換され、免震層の上部大梁は一つの質点及び両端部をローラー支持とした部材要素に置換され、
免震層は、免震装置の回転変形量を時刻歴にて算出する曲げバネと、免震装置の水平変位量を時刻歴にて算出するせん断バネと、により免震装置が置換され、
下部構造は、免震層の下部のつなぎスラブは一つの質点及び両端部をローラー支持とした部材要素に置換され、基礎杭は縦方向に分割された複数の部材要素及び複数の質点に置換され、地盤のせん断剛性が前記複数の質点に連結された複数のせん断バネに置換され、基礎杭の柱頭部とパイルキャップとの半剛接接合の固定度は柱頭に設けられた曲げバネにより評価され、
設計用地震動が基礎杭の各質点に同時刻に作用され、地震時における免震装置の水平変位により生じる偏心曲げモーメントが付加曲げとして時刻歴により曲げバネに作用され、その結果、上部構造から基礎杭に至る一体化された地震応答解析モデルの各部の時刻歴応答結果が同時刻に算出され、
一体化された上部構造及び下部構造における地震時の挙動の影響を受けた曲げバネの変形量に関する時刻歴応答結果から算定された免震装置の回転量と、設定された前記免震装置の許容回転量との関係から、地震時における免震装置の回転変形性能に対する安全性が評価されることを特徴とする免震建物用地震応答解析手法。
【請求項2】
請求項1に記載の免震建物用地震応答解析手法であって、前記地震応答解析モデルには、基礎杭の下端部に設けられた一つの節点に設計用地震動として加速度波形が入力され、基礎杭の縦方向の複数の質点には設計用地震動として地震時変位波形が地盤軸方向バネを介して入力されることを特徴とする免震建物用地震応答解析手法。
【請求項3】
請求項1又は2に記載の免震建物用地震応答解析手法であって、前記地震応答解析モデルには、群杭を1本の杭に集約したモデル、又は群杭を多数本の杭とするモデル、のいずれかが用いられることを特徴とする免震建物用地震応答解析手法。
【請求項4】
請求項1乃至3のいずれか1項に記載の免震建物用地震応答解析手法であって、前記地震応答解析モデルの基礎杭には、建物直下や近傍の地盤質量が付加質量として作用され、建物直下や近傍の地盤のせん断剛性が付加地盤バネとして作用されることを特徴とする免震建物用地震応答解析手法。
【請求項5】
請求項1乃至4のいずれか1項に記載の免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法であって、曲げバネの変形量に関する時刻歴応答結果から算定された免震装置の回転量と、設定された前記免震装置の許容回転量との関係から地震時における免震装置の回転変形性能に対する安全性を評価することを特徴とする免震装置の耐震安全性評価手法。
【請求項6】
請求項5に記載の免震装置の耐震安全性評価手法であって、せん断バネの挙動から算出された免震装置の水平変位量と設定された前記免震装置の許容水平変位量との関係から地震時における免震装置の水平変位性能に対する安全性を評価することを特徴とする免震装置の耐震安全性評価手法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、免震建物用地震応答解析手法、及び免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法に係り、特に、免震装置が設けられた免震建物の地震時における挙動を把握する地震応答解析手法、及びその免震建物用地震応答解析手法を用いて免震装置の地震時における安全性を評価する免震装置の耐震安全性評価手法に関する。
【0002】
ここで、免震建物とは、免震効果を発揮する免震装置又は免震システムが建物の構造体に組み込まれた建築物をいう。また、免震装置には、例えば、天然ゴム系積層ゴム支承、鉛プラグ入り積層ゴム支承、弾性すべり支承、ダンパーなど、建物に対して免震効果を発揮する全ての免震装置又は免震システムが含まれる。
【背景技術】
【0003】
従来の免震建物では、基礎梁を剛としてその基礎梁に免震装置を設置するという、いわゆる「基礎免震工法」が主流であった。
図9に、基礎免震工法40の一つの実施例の概略構成を示す。基礎免震工法40は、建物の上部構造41、下部構造42、及び上部構造41と下部構造42との間であって免震装置53が設置される免震層43から構成される。ここで「免震層」とは、複数の免震装置が所定の層全体に設けられることで建物に免震効果を発揮する層をいう。上部構造41は、柱44、梁45、及び床スラブ46から構成される。また、下部構造42は、基礎梁47、コンクリートスラブ48、パイルキャップ49、及び地盤52に打ち込まれた基礎杭50から構成される。
【0004】
図9に、基礎免震工法40に用いられる免震装置53が地震時において想定される変形モードを示す。免震装置53が設置される免震層43の下部の基礎梁47は、曲げ剛性が大きいため、地震時において免震層43は上部構造41と同様にせん断変形が曲げ変形に対して卓越する。従って、免震装置53は、
図9に示すように地震時には主としてスウェイという変形モードが発生する。また、基礎杭50の杭頭51と基礎梁47或いはパイルキャップ49との接合部は剛接合とし、基礎杭50の耐震設計においても杭頭51の境界条件は完全固定とするのが一般的である。
【0005】
図10に、この基礎免震工法40に対応する一つの地震応答解析モデルであるスウェイ・ロッキング(SR)モデル60を示す。このSRモデルは、建物における地盤の相互作用を考慮したモデルであり、上部構造の部材要素62、免震層のモデル64、及び下部構造の部材要素69から構成される。従来の地震応答解析手法では、上部構造41と杭基礎50の設計とを分けて行うのが一般的である。すなわち、上部構造41については、例えば、
図9に示す建物の下部構造42の変形が無視できる場合に主に用いられる基礎固定モデル(図示せず)、又は、建物の下部構造42の変形が無視できない場合に主に用いられるスウェイ・ロッキング(SR)モデル60などによる時刻歴解析による応答値を用いて設計される。
図10に示すスウェイ・ロッキング(SR)モデル60では、上部構造41の部材要素62は、質量(m)及び剛性(k)を有する多質点に置換される。また、免震層は、免震層せん断バネ68により評価される。さらに、下部構造42の部材要素69では、曲げ変形(θ)はロッキングバネ65により評価され、せん断変形(δ)はスウェイバネ63により評価される。また、基礎杭50の耐震設計については、時刻歴解析から基礎杭50に作用する慣性力を得て、この慣性力による応力と、付加曲げを含む地盤52の変形による応力を二乗和平方根などにより加算する手法が採用されている。ここで、「付加曲げ」とは、地震時などに建物に水平力が作用し、上部構造から軸力(P)を受ける免震装置に水平変位(δ)が生じた際に、免震装置に発生する偏心曲げモーメントをいう。また、本明細書では、この「付加曲げ」を「P−δ曲げモーメント」とも称し、このような曲げモーメントが発生する現象を「P−δ効果」と称する。これらの地震応答解析手法60は、簡便な手法であるものの、地震時の免震建物40の挙動を精度よく把握できる手法とは言い難い。特に、慣性力を用いた杭基礎50の耐震設計手法60は、地震時に実際に杭基礎50に発生する応力と比べても過剰な応力で設計することになる。しかし、従来の地震応答解析手法60では、免震装置53の変形に対する安全性確保の観点から、このような耐震設計手法60が便宜的に採用されていた。
【0006】
一方、免震装置は、地震時に発生する高軸力と大きなせん断変形に耐え得る装置として開発され普及した。従って、スウェイに対しては高い追従性を有するが、2方向曲げ変形に対しては免震装置の性能が低下するという問題が指摘されている。例えば、非特許文献1には、「高減衰ゴム系積層ゴム支承の水平2方向加力時における限界性能に関する新たな知見について」と題し、高減衰ゴム系積層ゴム支承が2方向曲げ変形を受けた場合の限界性能について報告されている。ここでは、積層ゴム支承の2方向曲げによる傾斜角が大きくなると積層ゴム支承として機能が低下する虞があることが報告されている。
【0007】
このように、例えば積層ゴム支承などの免震装置は、地震時において建物の上部構造に発生する層間変形に高い追従性を発揮することから、高い免震効果を発揮する装置として普及した。そして、この免震装置の機能を十分に発揮させるために、基礎梁を剛としてその基礎梁に免震装置を設置するという工法が一般的となり普及した。この免震装置の特徴及び免震装置を用いた免震建物の工法は、積層ゴム支承に限らず、例えば、鉛プラグ入り積層ゴム支承、或いは弾性すべり支承等においても同様である。
【0008】
近年、基礎梁を軽減又は省略して合理化する新たな工法又は構法が提案され始めた。例えば、特許文献1には、狭義の「杭頭免震工法」の具体例が開示されている。ここでは、免震装置を鋼管杭の杭頭部上に固定し、この免震装置上に上部構造を固定したことで従来の基礎梁を省略して基礎構造を合理化することが可能となった。そして、鋼管杭の杭頭部同士を連結部材である基礎スラブで連結させた。これにより、地震による水平力を受けた場合でも、複数の鋼管杭に対してばらばらに水平変位することなく同一方向に変位させ、複数の鋼管杭全体で水平力に抵抗させている。本明細書では、免震装置を鋼管杭の杭頭部上に固定し、免震装置上に上部構造を固定したことで従来の基礎梁を省略する工法を狭義の「杭頭免震工法」と称す。
【0009】
一方、1995年に発生した兵庫県南部地震において、杭頭を剛接合した杭に多数の被害が発生し、杭頭部に応力が集中する、いわゆる「杭頭剛接合工法」の問題点が指摘され、非特許文献2に示されるように多様な形式の「杭頭半剛接合構法」が提案された。この杭頭半剛接合構法は、地震時における杭頭曲げモーメントを低減させるだけではなく、基礎杭や基礎梁の合理化をもたらすものであり、従来の基礎免震工法を改良する構法とも言える。本明細書では、この杭頭半剛接合構法のうち、免震装置を設けた建物に対して杭頭半剛接合を用いる工法を、広義の「杭頭免震工法」と称する。
【0010】
上述した広義の「杭頭免震工法」は、杭頭部に例えば{パイルキャップ}などの杭頭連結部を設け、基礎梁を例えば「つなぎスラブ」などの基礎構造とし、杭頭部の曲げ拘束効果を低減し、従来の基礎梁を低減して合理化する工法である。特に、階数に比して床面積の大きな倉庫、物流センターなどでは、全体工事費のなかで基礎梁の工事費の占める割合が、高層建築物に比して高く工事費削減の効果が大きいため、有効な工法として期待されている。しかし、基礎梁を低減して合理化したことにより、従来、基礎梁を剛とした場合に問題にはならなかった地震時における免震装置の有害な回転量(θ)の発生が問題となった。この問題に対して、以下に示す対策が提案された。
【0011】
特許文献2には、地震時に鋼管杭の杭頭部に発生する曲げモーメントを抑制して免震装置の回転を制御し、免震装置に有害な回転を発生させない回転制御バネ機構付き免震装置が開示されている。ここでは、積層ゴム免震装置と、鋼管杭相互を連結する扁平基礎梁と、扁平基礎梁と接続し、積層ゴム免震装置を支持する免震装置支持ブロックと、免震装置支持ブロックを一組の定着筋により鋼管杭の杭頭部に定着する支持ブロック定着部と、から構成されるパイルキャップとを備え、パイルキャップは、接合される鋼管杭との調節された固定度により地震動により発生する杭頭曲げモーメントを低減し、低減された杭頭曲げモーメントに対して回転バネとして抵抗し、地震時の積層ゴム免震装置の回転量を許容回転量以内に制御することが記載されている。
【0012】
また、特許文献3には、地震時に発生する杭頭曲げモーメントに対して杭頭接合部の回転剛性を制御し、免震装置に有害な回転を発生させない簡易で信頼性の高い免震装置回転制御機構が開示されている。ここでは、パイルキャップとパイルキャップ定着部とは接合鉄筋により接合され、接合鉄筋はパイルキャップ内のコンクリートに定着する第1接合鉄筋部と、基礎杭内のコンクリートに定着する第2接合鉄筋部と、杭頭接合部に設けられ、杭頭曲げモーメントにより接合鉄筋に発生する引張力が所定の値を越えた場合に内部に引張降伏によるヒンジを形成させる回転量制御部とを備え、回転量制御部内部のヒンジにより杭頭接合部の回転剛性を所定の値に低減させ、地震時の免震装置の回転量を許容回転量以内に制御することが記載されている。すなわち、引張降伏によるヒンジの発生により、接合鉄筋などに伸びが生じ、パイルキャップの回転バネの性能が低下する。この回転バネの性能低下によりパイルキャップの回転力が減少し、地震時の積層ゴム免震装置の有害な変形が回避される。
【0013】
上述した、特許文献2の回転制御バネ機構、及び特許文献3の免震装置回転制御機構は、地震時に免震装置の回転を制御し、免震装置に有害な回転を発生させないための機構である。このように、基礎梁を低減して合理化し、或いは基礎杭の杭頭の接合を半剛接合とする広義の杭頭免震工法の有する問題は、免震装置にこのような機構を設けることで解消された。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】特許第3899354号
【特許文献2】特許第4934769号
【特許文献3】特許第5082085号
【非特許文献】
【0015】
【非特許文献1】高減衰ゴム系積層ゴム支承の水平2方向加力時における限界性能に関する新たな知見について 技術委員会免震部材部会他 MENSHIN No.87 2010.2
【非特許文献2】新技術調査「杭頭半剛接接合工法」の調査報告 (財)建設コスト管理システム研究会 新技術調査検討会 建設コスト研究 2008WINTER
【発明の概要】
【発明が解決しようとする課題】
【0016】
上述したように、地震時に免震建物に設けられた免震装置に発生する回転量を制御し、免震装置に有害な回転を発生させないための機構が提案されている。しかし、地震時において免震建物全体がどのように挙動し、その免震建物に設けられた免震装置が受ける回転量、及びせん断変形量などが高い精度で把握できればこのような機構をより有効に生かすことが可能となる。なぜならば、地震時において、免震建物に設けられた免震装置の挙動は、柱梁等の構造体の挙動に対して精密機器に近いより緻密な挙動であり、その精密な制御が可能だからである。
【0017】
従来の免震建物用地震応答解析手法は、この免震装置に発生する回転量等を厳密に把握できないため、免震装置にとって安全側の設計となるように基礎梁を剛としてその基礎梁に免震装置を設けていた。しかし、地震時において建物内に設けられた免震装置が受ける曲げ変形、及びせん断変形などを精度よく算定し、その安全性を確実に評価できる免震建物用地震応答解析手法が提案されれば、上述した安全側の設計は不要となり、より次元の高い免震建物の耐震設計が可能となる。
【0018】
例えば、従来の基礎梁を低減、或いは省略して合理化する工法は、より精度の高い免震建物用地震応答解析手法により、地震時における免震建物の挙動を精度よく把握できることで、より合理的な設計が可能となる。また、杭頭を剛接合した杭に多数の被害が発生し、杭頭部に応力が集中する、いわゆる「杭頭剛接合工法」に対して「杭頭半剛接合構法」を採用する場合においても、より精度の高い免震建物用地震応答解析手法により、地震時における半剛接とされた杭頭の挙動を高い精度で把握できることで、より合理的な設計が可能となる。
【0019】
また、上述した広義の杭頭免震工法は、当初は比較的良好な地盤での杭基礎を対象としていたが、特殊な地盤条件を有する敷地に建つ免震建物に採用されつつある。特に、軟弱地盤においては地震時における免震建物の挙動をより精度よく把握しなければならない。そこで、地盤の性状の特殊性をより的確に建物の設計に反映でき、免震装置の耐震安全性を十分に評価できる免震建物用地震応答解析手法が必須となる。
【0020】
本願の目的は、かかる課題を解決し、地震時において免震建物に設けられた免震装置の挙動を高い精度で把握し、その安全性を確実に評価可能な免震建物用地震応答解析手法、及び免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法を提供することである。
【課題を解決するための手段】
【0021】
上記目的を達成するため、本発明に係る免震建物用地震応答解析手法は、
免震建物の上部構造、基礎杭及びパイルキャップを含む下部構造、及び上部の大梁と下部のつなぎスラブとの間に設けられる免震層に関する地震応答解析モデルを用いた免震建物用地震応答解析手法において、上部構造は、建物の各層が質点及びせん断バネに置換され、免震層の上部大梁は一つの質点及び両端部をローラー支持とした部材要素に置換され、免震層は、免震装置の回転変形量を時刻歴にて算出する曲げバネと、免震装置の水平変位量を時刻歴にて算出するせん断バネと、により免震装置が置換され、下部構造は、免震層の下部のつなぎスラブは一つの質点及び両端部をローラー支持とした部材要素に置換され、基礎杭は縦方向に分割された複数の部材要素及び複数の質点に置換され、地盤のせん断剛性が前記複数の質点に連結された複数のせん断バネに置換され、基礎杭の柱頭部とパイルキャップとの半剛接接合の固定度は柱頭に設けられた曲げバネにより評価され、設計用地震動が基礎杭の各質点に同時刻に作用され、地震時における免震装置の水平変位により生じる偏心曲げモーメントが付加曲げとして時刻歴により曲げバネに作用され、その結果、上部構造から基礎杭に至る一体化された地震応答解析モデルの各部の時刻歴応答結果が同時刻に算出され、一体化された上部構造及び下部構造における地震時の挙動の影響を受けた曲げバネの変形量に関する時刻歴応答結果から算定された免震装置の回転量と、設定された前記免震装置の許容回転量との関係から、地震時における免震装置の回転変形性能に対する安全性が評価されることを特徴とする。
【0022】
上記構成により、本免震建物用地震応答解析手法は、建物の上部構造、免震層、基礎構造、杭頭連結部、基礎杭、及び地盤を一体化した構造モデルとし、その中に免震装置をモデル化して組み込んだ免震層を設けた。これにより、地震時の構造体全体の挙動のなかでの免震装置が受ける応力や変形を精度よく算定することが可能となり、構造体全体について建物内に設けられた免震装置の影響を精度よく反映させることが可能となった。すなわち、従来の地震応答解析手法では便宜的に分離して解析されていた上部構造、及び、基礎構造、杭頭連結部、及び基礎杭からなる下部構造を一体化して解析し、さらに、免震装置という高度な解析精度が要求される装置に対して免震層を設定することで安全性が確実に評価できる地震応答解析手法とした。
【0023】
また、免震建物用地震応答解析手法は、設計用地震動を基礎杭の各部に同時刻に作用させた。これにより、上部構造から基礎杭に至る一体化された構造体の各時刻歴応答結果を同時刻に算出することが可能となった。従来の解析手法では、杭の設計については、時刻歴解析から杭に作用する慣性力を得て、この慣性力による応力と、付加曲げを含む地盤の変形による応力を二乗和平方根により加算する手法が採用されていた。本免震建物用地震応答解析手法では、上部構造から基礎杭に至る一体化された構造体の各時刻歴応答結果が同時刻に算出でき、より精度の高い地震応答解析結果を得ることができる。
【0026】
また、免震建物用地震応答解析手法は、地震応答解析モデルには、基礎杭の下端部に設けられた
一つの節点に設計用地震動として加速度波形が入力され、基礎杭の縦方向の
複数の質点には設計用地震動として地震時変位波形が
地盤軸方向バネを介して入力されることが好ましい。これにより、設計用地震動を基礎杭の各部に同時刻に作用させ、より精度の高い解析結果を得ることができる。
【0028】
また、免震建物用地震応答解析手法は、地震応答解析モデルには、群杭を1本の杭に集約したモデル、又は群杭を多数本の杭とするモデル、のいずれかが用いられることが好ましい。これにより、群杭の効果を解析モデルに反映させることができ、群杭の耐震設計において設計条件などからより簡易な応答解析モデルと、より緻密な応答解析モデルとのいずれかを選択できる。
【0029】
さらに、免震建物用地震応答解析手法は、地震応答解析モデルの基礎杭には、建物直下や近傍の地盤質量が付加質量として作用され、建物直下や近傍の地盤のせん断剛性が付加地盤バネとして作用されることが好ましい。これにより、地震時において基礎杭に対する地盤の影響をより精度よく反映する応答解析モデルとすることができる。
【0030】
また、前記免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法は、曲げバネの変形量に関する時刻歴応答結果から算定された免震装置の回転量と、設定された前記免震装置の許容回転量との関係から地震時における免震装置の回転変形性能に対する安全性を評価することが好ましい。これにより、前記地震応答解析手法により一体化された構造体の各時刻歴応答結果が同時刻に算出でき、より精度の高い解析結果が得られると同時に、地震時における免震装置の回転変形に関する耐震安全性を確実に評価することができる。
【0031】
さらに、前記免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法は、せん断バネの挙動から算出された免震装置の水平変位量と設定された前記免震装置の許容水平変位量との関係から地震時における免震装置の水平変位性能に対する安全性を評価することが好ましい。これにより、前記地震応答解析手法により一体化された構造体の各時刻歴応答結果が同時刻に算出でき、より精度の高い解析結果が得られると同時に、地震時における免震装置の水平移動に関する耐震安全性を確実に評価することができる。
【発明の効果】
【0032】
以上のように、本発明に係る
免震建物の免震建物用地震応答解析手法、及び免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法によれば、地震時において免震建物に設けられた免震装置の挙動を高い精度で把握し、その安全性を確実に評価可能な免震建物用地震応答解析手法、及び免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法を提供することができる。
【図面の簡単な説明】
【0033】
【
図1】本発明に係る免震建物用地震応答解析手法が用いられる免震建物の一つの実施例を示す断面図である。
【
図2】免震建物に設けられた免震層の構成についての一つの実施例の概略構成を示す断面図である。
【
図3】
図2に示す免震装置回りの地震時における変形モードを示す断面図である。
【
図4】免震建物用地震応答解析手法に用いられる一つの基本解析モデルの概要を示す説明図である。
【
図5】
図4の基本解析モデルの免震層に付加曲げモーメントを入力し、下部構造に付加地盤の部材要素を追加した連成解析モデルの概要を示す説明図である。
【
図6】上部構造、下部構造、及び免震層を一体化し、基礎杭の全体をモデル化した一体型・杭全体モデルを示す断面図である。
【
図7】免震建物に設けられた免震装置の地震時における回転変形量を制御する回転制御機構の一つの実施例を示す説明図である。
【
図8】免震装置の耐震安全性評価手法のステップを示すフロー図である。
【
図9】基礎免震工法の一つの実施例の概略構成、及び基礎免震工法に用いられる免震装置が地震時において想定される変形モードを示す断面図である。
【
図10】基礎免震工法に対応する一つの地震応答解析モデルである上部構造のスウェイ・ロッキング(SR)モデルを示す説明図である。
【発明を実施するための形態】
【0034】
(免震建物)
以下に、図面を用いて本発明に係る免震建物用耐震安全評価手法の実施形態につき、詳細に説明する。
図1に、本免震建物用耐震安全評価手法が用いられる免震建物20の一つの実施例を断面図で示す。免震建物用耐震安全評価手法は、柱24、梁25、及び床スラブ26からなる建物の上部構造21と、地盤32に打設されて建物を支持する基礎杭30などからなる下部構造22と、上部構造21及び下部構造22の間であって免震装置33が設けられる免震層23と、からなる免震建物20に用いられる。ここで、本明細書では、免震建物20において免震層23より上部の構造体を上部構造21とし、免震層23より上部の構造体を下部構造22と称し、上部構造21及び下部構造22が免震層23により連結されるという構成とするが、この構成に限らない。
【0035】
本実施形態では、下部構造22には免震装置33が設置される杭頭連結部であるパイルキャップ29、及び基礎構造であるつなぎスラブ27が設けられるが、免震建物20の構造要素はこれらの構成には限らない。例えば、つなぎスラブ29は扁平梁等の梁材でも良い。また、例えば、パイルキャップ29が省略されて免震装置33が直接基礎杭30に設置される「杭頭免震工法」であっても良い。また、上部構造21は、例えば、鉄骨造、鉄筋コンクリート造、鉄骨鉄筋コンクリート造などのあらゆる構造形式であって良い。さらに、地盤32に設けられる基礎杭30は、例えば、鋼管杭、コンクリート場所打杭、PC杭などのあらゆる杭形式であって良い。
【0036】
(免震層の構成)
図2に、本免震建物用地震応答解析手法が用いられる免震建物20に設けられた免震層23の構成についての一つの実施例の概略構成を示す。また、
図3に、
図2に示す免震層23の地震時における変形モードを示す。上部構造21は、柱24、曲げ剛性の高い梁25及び床スラブ26から構成される。一方、免震装置33と基礎杭の杭頭部39とを接続するパイルキャップ29は、比較的曲げ剛性の低いつなぎスラブ27により相互に連結される。このつなぎスラブ27は、地震による水平力を受けた場合に、複数の基礎杭30をばらばらに水平変位することなくほぼ同一方向に変位させ、複数の基礎杭30全体で水平力に抵抗させる。
【0037】
図9に示す従来の免震建物40では、基礎梁47を剛とし、その基礎梁47に免震装置53を設置するという、いわゆる「基礎免震工法」が採用されていた。この基礎免震工法では、地震時において免震層43では曲げ変形よりもせん断変形が卓越する。従って、免震装置53は、横方向に大きくスウェイ(δ)するものの、免震装置53の回転量(Θ)については無視できる量であった。本免震建物20では、従来の曲げ剛性の高い基礎梁47を比較的曲げ剛性の低いつなぎスラブ27とすることで梁要素を合理化する構法が用いられる。これにより、
図3に示すように、地震時において免震装置33にはより大きな回転量(Θ)が発生する。すなわち、曲げ剛性の高い大梁45が接続する免震装置の上フランジ34aに対し、曲げ剛性が比較的低いつなぎスラブ27が接続する免震装置の下フランジ34bとの間に回転量(Θ)が発生する。この回転量(Θ)は、2方向曲げMx及びMyそれぞれに対応して2方向回転量Θx、Θyが生じ、最大の回転量(Θ
max)は、(Θx+Θy)
1/2となり、この回転量(Θ
max)により免震装置33の機能が低下する虞が生じる。
【0038】
(免震建物用地震応答解析手法)
図4及び
図5に、本発明に係る免震建物用地震応答解析手法に用いられる免震建物用地震応答解析モデル1を示す。まず
図4に、免震建物用地震応答解析モデル1の一つである基本解析モデル1aの概要を示す。基本解析モデル1aは、建物の上部構造2、免震装置33が設けられる免震層4、基礎構造の一つの実施例であるつなぎスラブ6、杭頭連結部の一つの実施例であるパイルキャップ7、基礎杭8及び地盤を一体化した。さらに基礎杭8を縦方向に連続するモデルに集約した「一体型・杭集約モデル」である。なお、この基本解析モデル1aにおいて、大きな黒丸は「質量(m)」を示し、小さな黒丸は「節点」を示し、棒線は「部材要素」を示す。
【0039】
(基本解析モデルの構成)
上部構造2の基本解析モデル1aは、建物の各層の質量(m)が質点17aに置換され、建物の各層のせん断剛性(k)がせん断バネ16aに置換された多質点せん断型の解析モデルである。また、免震装置33が設けられる免震層4の上部の大梁の部材要素5は、両端部がローラー支持に置換され、大梁回りの質量は質点17bに集約される。さらに、免震層4の下部のつなぎスラブ27の部材要素6は、両端部がローラー支持に置換され、つなぎスラブ等の質量は質点17cに集約される。また、基礎杭は縦方向の部材要素8に分割され、各部材要素8の質量は質点17dに置換される。また、地盤のせん断剛性はせん断バネ16cに置換される。そして、基礎杭の部材要素8の杭頭部10とパイルキャップの部材要素7との接合部の固定度は、半剛接接合となるため杭頭曲げバネ15bにより評価される。
【0040】
(免震階のモデル化)
免震層4には、免震装置33の回転変形量を時刻歴にて算出する免震層曲げバネ15aが設けられる。また、免震層4には、免震装置33の水平変位量を時刻歴にて算出する免震層せん断バネ16bが設けられる。これらの免震層曲げバネ15a及び免震層せん断バネ16bにより、免震層4において地震時に免震装置33が受ける曲げ変形及びせん断変形が評価できる。このように、上部構造2と下部構造3との間に免震装置33が設けられる免震層4を設け、免震層曲げバネ15a及び免震層せん断バネ16bによるモデル化することで地震時に免震装置33が受ける変形量が明確に把握できる。
【0041】
(連成解析モデルの構成)
図5に、
図4の基本解析モデル1aの免震層4に付加曲げモーメント12を入力し、下部構造3に付加地盤の部材要素9を追加した連成解析モデル1bの概要を示す。この連成解析モデル1bも基本解析モデル1aと同様に、建物の上部構造2、免震装置33が設けられる免震層4、基礎構造の一つの実施例であるつなぎスラブ6、杭頭連結部の一つの実施例であるパイルキャップ7、基礎杭8、及び地盤を一体化した。さらに基礎杭8を縦方向に連続するモデルに集約した「一体型・杭集約モデル」である。なお、この連成解析モデル1bにおいても、大きな黒丸は「質量(m)」を示し、小さな黒丸は「節点」を示し、棒線は「部材要素」を示す。
【0042】
そして、
図4の基本解析モデル1aに対して免震層4の変位(δ)により生じる偏心曲げモーメント12を時刻歴で免震層4に加えることで、免震層4のP−δ効果を考慮したより精度の高い地震時の挙動が反映できる。また、基礎杭の部材要素8には、建物直下や近傍の地盤の質量が付加地盤の質量として質点17eに作用される。また、建物直下や近傍の地盤の剛性が付加地盤バネ16dとして作用される。これにより、建物直下や近傍の地盤の影響を地震応答解析に加味することが可能となり、特に、軟弱地盤の杭挙動に対する影響が地震応答解析に反映できる。
【0043】
(基礎杭のモデル化)
図6に、上部構造2,下部構造3,及び免震層4を一体化し、基礎杭8の全体をモデル化した一体型・杭全体モデルを示す。
図6(a)は、免震建物20の平面図を示す。この平面図では、断面で示される柱24が梁25により接続され、床面には小梁19が設けられている。この平面図を一点鎖線で示される構面18で縦方向に切断した構造体を
図6(b)でモデル化する。上述した基本解析モデル1a及び連成解析モデル1bは、基礎杭30全体を1本の基礎杭の部材要素8に集約したモデルとしている。このモデル化では、基礎杭30を含む構造体全体の地震応答を把握することができるが、個々の免震装置33や基礎杭30の挙動を把握することは困難である。一方、
図6の杭全体モデルは、免震建物20の一つの構面を取り出し、上部構造21を構面内で集約し、
図2に示す、免震装置33が設けられた免震層23、つなぎスラブ27、パイルキャップ29、基礎杭30、及び地盤32を個々にモデル化した全体モデルに群杭を多数本の基礎杭30で評価したモデルとしている。そして、免震層4は、
図4及び
図5の基本解析モデル1aと同様に、免震層曲げバネ15a及び免震層せん断バネ16bが免震装置33ごとに設けられる。このモデル化により付加曲げモーメント12が免震装置33ごとに入力できる。これにより、個々の免震装置及び基礎杭の挙動をより精度よく地震応答解析に反映させることができる。
【0044】
(地震動の入力方法)
図4及び
図5に示すように、免震建物用地震応答解析モデル1には、基礎杭の部材要素8の杭下端部11に地震動入力節点14が設けられ、設計用地震動として加速度波形が入力される。また、基礎杭の部材要素8の縦方向の所定のピッチに地震動入力節点13が設けられ、設計用地震動として地震時変位波形が地盤軸方向バネ16cを介して入力される。すなわち、本免震建物用地震応答解析手法は、設計用地震動を基礎杭の部材要素8の各部に同時刻に作用させ、上部構造2から免震層4、下部構造3に至る一体化された構造モデルの各部の時刻歴応答結果を同時刻に算出する。
【0045】
(免震装置の回転制御機構)
図7に、免震建物20に設けられた免震装置33の地震時における回転変形量を制御する回転制御機構の一つの実施例を示す。本免震建物用地震応答解析結果に基づき免震装置33に有害な回転を発生させないように、後述するように構造設計上の対策が検討される。特許文献2及び特許文献3には、その対策の一つの実施形態として、免震装置33の回転制御機構が提案されている。免震装置33の下部のパイルキャップ29及び基礎杭30には、接合鉄筋36が設けられ、上部アンカー35a及び下部アンカー35bにより定着され、つなぎスラブ27、パイルキャップ29及び基礎杭30が一体化されている。接合鉄筋36は、円形の基礎杭30の断面に合わせて複数の接合鉄筋36が円形に配置されている。この接合鉄筋は間隔(d)だけ離れている。また、接合鉄筋36には、パイルキャップ29と基礎杭30との境界を挟んでカップラー37が設けられる。また、パイルキャップ29と基礎杭30との境界には回転剛性調整シート38が設けられている。
【0046】
特許文献2及び特許文献3に記載されているように、上述した各構成要素は、免震装置33の回転制御機構として機能する。すなわち、パイルキャップ29と基礎杭の杭頭部39とは完全固定ではなく半剛接になる。この半剛接接合の固定度(φ)を完全固定の場合φ=1とし、ピン接合の場合をφ=0とすると、0〜1の中間の値となる。この固定度(φ)を変化させることで免震装置33が地震時に受ける回転量が調整できる。例えば、接合鉄筋の間隔(d)を広げると接合部の曲げ剛性(EI)が高くなり、固定度が1に近くなる。一方、接合鉄筋の間隔(d)を狭めると接合部の曲げ剛性(EI)が低くなり、固定度が0に近くなる。また、カップラー37に調整された降伏強度又は断面積を有する材料を使用し、地震時に引張降伏させてヒンジを発生させてパイルキャップ29の回転性能を低下させることができる。さらに、基礎杭の杭頭部39に設けられた回転剛性調整シート38の圧縮力を負担するコンクリート断面の範囲を制限して接合鉄筋36に発生する引張力を制御することができる。これらに免震装置33の地震時における回転変形量を調整する方法は、上記方法に限らず、例えば、鉄筋やコンクリートの強度を調整したり、断面積を調整したりする仕様変更によっても可能となり、その他の方法も可能である。
【0047】
(免震装置の耐震安全性評価手法)
免震建物用地震応答解析における曲げバネ15aの変形量に関する時刻歴応答結果から算定された免震装置33の曲げ回転量(θ)と、設定された免震装置33の許容回転量(Θ
0)との関係から地震時における免震装置33の回転変形性能に対する安全性を評価する。すなわち、曲げバネ15aの挙動から算出された免震装置33の曲げ回転量(θ)が許容曲げ回転量(Θ
0)以内に収まるように、例えば、つなぎスラブ27、基礎杭30、パイルキャップ29などの曲げ剛性(EI)を調整する。免震装置33回りの曲げ剛性(EI)は、パイルキャップ29と基礎杭の杭頭部39との固定度(φ)により調整できる。また、地震時に接合鉄筋36のカップラー37を引張降伏させてヒンジを発生させてパイルキャップ29の回転性能を低下させることで調整できる。さらに、剛性調整シート38により調整できる。
【0048】
また、建物の一般的な耐震設計では、上部構造2の上部構造せん断バネ16aの挙動から算出された各階の水平変位量(δ)が許容水平変位量(Δ
0)以内に収まるように上部構造2の各階のせん断剛性(GA)が調整される。本発明ではこれらの耐震設計に加え、免震装置33の耐震安全性評価の一環として免震層せん断バネ16bの挙動から算出された免震装置33の水平変位量(δ)が許容水平変位量(Δ
0)以内に収まるように免震層23のせん断剛性(GA)が調整される。例えば、免震層23は地震力に対してせん断変形が曲げ変形に対して卓越しているため、免震層23におけるせん断剛性(GA)とを調整してせん断変形量を抑える、などの対策を行うことができる。
【0049】
図8に、免震装置33の耐震安全性評価手法のステップをフロー図で示す。各ステップは符号S1から符号S6により示す。まず、積層ゴム支承である免震装置33の地震時における許容曲げ回転量(Θ
0)及び許容水平変位量(Δ
0)を設定する(S1)。次に、鉄筋、コンクリート等の仕様を決めて免震層4における曲げ剛性(EI)、及びせん断剛性(GA)を算出する(S2)。また、パイルキャップ29に接合される基礎杭30の杭頭の固定度(φ)を算出する(S3)。そして、免震建物用地震応答解析プログラムに曲げ剛性(EI)、せん断剛性(GA)、及び固定度(φ)を入力する(S4)。そして、地震応答解析結果から、最大曲げ回転量(θ
max)が許容曲げ回転量(Θ
0)より小さいか否かの検討を行い(S5)、小さければ次のステップへ進み、大きければS2又はS3に戻る。また、地震応答解析結果から、最大水平変位量(δ
max)が許容水平変位量(Δ
0)より小さいか否かの検討を行い(S6)、小さければ終了し、大きければS2又はS3に戻る。
【符号の説明】
【0050】
1 免震建物用地震応答解析モデル,1a 基本解析モデル,1b 連成解析モデル、2,62 上部構造のモデル,3,69 下部構造のモデル、4,64 免震層のモデル、5 大梁の部材要素、6 つなぎスラブ又は基礎構造の部材要素、7 パイルキャップ又は杭頭連結部の部材要素、8 基礎杭の部材要素、9 付加地盤の部材要素、10 杭頭部、11 杭下端部、12 付加曲げモーメント(P−δ曲げモーメント)、13 地震動(時刻歴変位)入力節点、14 地震動(時刻歴加速度)入力節点、15 曲げバネ,15a 免震層曲げバネ,15b 杭頭曲げバネ、16,66 せん断バネ,16a 上部構造せん断バネ,16b,68 免震層せん断バネ,16c 地盤軸方向バネ,16d 付加地盤せん断バネ、16e 杭先端地盤軸方向バネ、17,67 質点,17a 質点(上部構造),17b 質点(大梁接合部),17c 質点(パイルキャップ、つなぎスラブ等),17d 質点(基礎杭),17e 質点(付加地盤)、18 構面、
19 小梁、20 (免震建物用地震応答解析手法が用いられる)免震建物、40 基礎免震工法による免震建物、21,41 上部構造、22,42 下部構造、23,43 免震層、24,44 柱、25,45 梁、26,46 床スラブ、27 つなぎスラブ、28,48 コンクリートスラブ、29,49 パイルキャップ(杭頭連結部)、30,50 基礎杭、32,52 地盤、33,53 免震装置、34a 免震装置の上フランジ,34b 免震装置の下フランジ、35 アンカー,35a 上部アンカー,35b 下部アンカー、36 接合鉄筋、37 カップラー、38 回転剛性調整シート、39,51 基礎杭の杭頭部、47 基礎梁、60 スウェイ・ロッキング(SR)モデル、61 固定点、63 スウェイバネ、65 ロッキングバネ、m 質量、k 剛性。
【要約】
【課題】地震時において免震建物に設けられた免震装置の挙動を高い精度で把握し、その安全性を確実に評価可能な免震建物用地震応答解析手法、及び免震建物用地震応答解析手法を用いた免震装置の耐震安全性評価手法を提供する。
【解決手段】免震建物用地震応答解析手法は、建物の上部構造2と、免震装置を含む免震層4と、複数の基礎杭8の杭頭部10同士を連結するつなぎスラブ6と、基礎杭8、及び免震装置が設置されてつなぎスラブ6と杭頭部10とを接合するパイルキャップ7からなる下部構造3との各部材要素を、地盤のモデルを含めて一体化し、基礎杭8を精度よく集約した免震建物用地震応答解析モデル1を構成し、設計用地震動を基礎杭8の各部11,13に同時刻に作用させ、上部構造2から基礎杭8に至る一体化された構造モデルの各部の時刻歴応答結果を同時刻に算出する。
【選択図】
図5