(58)【調査した分野】(Int.Cl.,DB名)
前記湾曲リボンは、5ミクロン〜50ミクロンの範囲にわたって選択される幅と、50ナノメートル〜500ナノメートルにわたって選択された厚さと、を有している、請求項4に記載の伸縮可能な半導体素子。
前記湾曲した表面は、前記支持面に対して連続的に結合されている、又は、前記湾曲した表面は、前記湾曲した表面に沿う選択された点で前記支持面に対して結合されている、請求項1に記載の伸縮可能な半導体素子。
前記結晶半導体構造は、Si、Ge、ダイヤモンド、SiC、SiGe、AlSb、AlAs、Aln、AlP、BN、GaSb、GaAs、GaN、GaP、InSb、InAs、InN、InP、AlxGa1−xAs、CsSe、CdS、CdSe、CdTe、ZnO、ZnSe、ZnS、HgS、PbS、ZnTe、CuCl、PbS、PbTe、SnS、PbI2、MoS2、GaSe、CuO、Cu2O、AlGaAs、AlInAs、AlInP、GaAsP、GaInAs、GaInP、AlGaAsSb、AlGaInP、及び、GaInAsPからなる群から選択される材料である、請求項1に記載の伸縮可能な半導体素子。
前記予め歪みが加えられた弾性基板は、第1の軸に沿って拡張される、又は、前記第1の軸並びに前記第1の軸と直交する第2の軸に沿って拡張される、請求項12に記載の方法。
前記結晶半導体構造は、Si、Ge、ダイヤモンド、SiC、SiGe、AlSb、AlAs、Aln、AlP、BN、GaSb、GaAs、GaN、GaP、InSb、InAs、InN、InP、AlxGa1−xAs、CsSe、CdS、CdSe、CdTe、ZnO、ZnSe、ZnS、HgS、PbS、ZnTe、CuCl、PbS、PbTe、SnS、PbI2、MoS2、GaSe、CuO、Cu2O、AlGaAs、AlInAs、AlInP、GaAsP、GaInAs、GaInP、AlGaAsSb、AlGaInP、及び、GaInAsPからなる群から選択される材料である、請求項17に記載の伸縮可能な電気回路。
前記電気デバイスは、トランジスタ、ダイオード、発光ダイオード、レーザ、有機発光ダイオード、マイクロ電子機械システム、及び、ナノ電子機械システムからなる群から選択される、請求項17に記載の伸縮可能な電気回路。
前記予め歪みが加えられた弾性基板は、第1の軸に沿って拡張される、又は、前記第1の軸並びに前記第1の軸と直交する第2の軸に沿って拡張される、請求項27に記載の方法。
【図面の簡単な説明】
【0065】
【
図1】単結晶シリコンのリボンを備える印刷可能半導体素子を製造して組み立てるための本発明の典型的な方法を概略的に示している。
【
図2】基板の受け面上に印刷可能半導体素子を組み立てるための選択的乾式転写コンタクト印刷方法を示す概略図を与えている。
【
図3A】本発明の選択的乾式転写コンタクト印刷方法において有益なデバイス、デバイス構造、デバイス部品を示す概略図である。
【
図3B】本発明の選択的乾式転写コンタクト印刷方法において有益なデバイス、デバイス構造、デバイス部品を示す概略図である。
【
図3C】本発明の選択的乾式転写コンタクト印刷方法において有益なデバイス、デバイス構造、デバイス部品を示す概略図である。
【
図3D】ポリカーボネートレンズ(FL100mm)の球面上に印刷されたフォトダイオードの配列の写真を示している。
【
図3E】球面ガラスレンズ(FL1000mm)の湾曲面上に印刷されたフォトダイオードの配列の走査型電子顕微鏡写真を示している。
図3Eに示された画像のコントラストは、pドープ領域を示すために僅かに高められている。
【
図3F】
図3Eに描かれたフォトダイオードの光反応を示す、電流(μA)とバイアス電位(ボルト)との間の関係のプロットを与えている。
【
図4A1】乾式転写コンタクト印刷を使用する本発明の組立方法における印刷可能半導体素子の好ましい形状を示す斜視図である。
【
図4A2】乾式転写コンタクト印刷を使用する本発明の組立方法における印刷可能半導体素子の好ましい形状を示す平面図である。
【
図4B1】乾式転写コンタクト印刷を使用する本発明の組立方法における印刷可能半導体素子の好ましい形状を示す斜視図である。
【
図4B2】乾式転写コンタクト印刷を使用する本発明の組立方法における印刷可能半導体素子の好ましい形状を示す平面図である。
【
図5A】選択された物理的寸法を有する単結晶シリコンのマイクロストリップを備える印刷可能半導体素子の光学顕微鏡写真を示している。
【
図5B】選択された物理的寸法を有する単結晶シリコンのマイクロストリップを備える印刷可能半導体素子の走査型電子顕微鏡写真を示している。
【
図5C】選択された物理的寸法を有する単結晶シリコンのマイクロストリップを備える印刷可能半導体素子の別の走査型電子顕微鏡写真を示している。
【
図6】PDMSコーティングされたポリイミドシート上の単結晶シリコンマイクロストリップを備える転写された印刷可能半導体素子の画像を示している。
【
図7】印刷可能半導体素子を有する薄膜トランジスタの光学顕微鏡写真画像を示している。
【
図8】予め酸化されたSiウエハ上に形成されたデバイスの電流−電圧(IV)特性を示すプロットを与えている。
【
図9】ITOゲート及び高分子誘電体でコーティングされたマイラーシート上に形成されたデバイスのV
DS=0.1Vで測定された転写特性を示すプロットを与えている。
【
図10A】複合印刷可能半導体素子を有する薄膜トランジスタの配列を形成するための本発明の方法を示す概略図を与えている。
【
図10B】複合印刷可能半導体素子を有する薄膜トランジスタの配列を形成するための本発明の方法を示す概略図を与えている。
【
図10C】複合印刷可能半導体素子を有する薄膜トランジスタの配列を形成するための本発明の方法を示す概略図を与えている。
【
図10D】複合印刷可能半導体素子を有する薄膜トランジスタの配列を形成するための本発明の方法を示す概略図を与えている。
【
図10E】複合印刷可能半導体素子を有する薄膜トランジスタの配列を形成するための本発明の方法を示す概略図を与えている。
【
図10F】複合印刷可能半導体素子を有する薄膜トランジスタの配列を形成するための本発明の方法を示す概略図を与えている。
【
図10G】複合印刷可能半導体素子を有する薄膜トランジスタの配列を形成するための本発明の方法を示す概略図を与えている。
【
図10H】複合印刷可能半導体素子を有する薄膜トランジスタの配列を形成するための本発明の方法を示す概略図を与えている。
【
図11A】集積ゲート電極、ゲート誘電体、半導体、ソース電極、ドレイン電極を備える印刷可能なデバイスを製造するための本発明の方法を示す図を与えている。
【
図11B】集積ゲート電極、ゲート誘電体、半導体、ソース電極、ドレイン電極を備える印刷可能なデバイスを製造するための本発明の方法を示す図を与えている。
【
図11C】集積ゲート電極、ゲート誘電体、半導体、ソース電極、ドレイン電極を備える印刷可能なデバイスを製造するための本発明の方法を示す図を与えている。
【
図11D】集積ゲート電極、ゲート誘電体、半導体、ソース電極、ドレイン電極を備える印刷可能なデバイスを製造するための本発明の方法を示す図を与えている。
【
図12】本発明の伸縮可能な印刷可能半導体素子を示す原子間力顕微鏡写真を与えている。
【
図13】湾曲した内面を有する湾曲半導体構造の拡大図を与える原子間力顕微鏡写真を示している。
【
図14】本発明の伸縮可能な印刷可能半導体素子の配列の原子間力顕微鏡写真を示している。
【
図15】本発明の伸縮可能な印刷可能半導体素子の光学顕微鏡写真を示している。
【
図16】その支持面上に3次元レリーフパターンを有するフレキシブル基板に対して結合された半導体構造を有する本発明の伸縮可能な印刷可能半導体素子の原子間力顕微鏡写真を示している。
【
図17】本発明の伸縮可能な半導体素子を形成する典型的な方法を示すフローチャートを示している。
【
図18A】Si−Geエピ基板から印刷可能半導体素子を形成するための典型的な方法を示している。
【
図18B】バルクシリコン基板、好ましくは単結晶シリコン基板から印刷可能半導体素子を製造するための典型的な方法を示している。
【
図18C】バルクシリコン基板、好ましくは単結晶シリコン基板から印刷可能半導体素子を製造する他の典型的な方法を示している。
【
図18D】バルクシリコン基板、好ましくは単結晶シリコン基板から印刷可能半導体素子を製造する更に他の典型的な方法を示している。
【
図18E】超薄シリコン基板から印刷可能半導体素子を製造する典型的な方法を示している。
【
図18F】多結晶シリコンの薄膜から支持基板上に印刷可能半導体素子を形成するための典型的な方法を示している。
【
図18G】多結晶シリコンの薄膜からSiO
2基板上に印刷可能半導体素子を形成するための典型的な方法を示している。
【
図18H】
図18H(1)及び
図18H(2)は、本発明の印刷可能半導体素子を使用して単結晶半導体薄膜を形成するための方法を示している。
【
図18I】GaAs基板からマイクロワイヤを備える印刷可能半導体素子を製造する典型的な方法を示している。
【
図18J】単結晶シリコンリボンを備える印刷可能半導体素子を製造するための代替の方法を示している。
【
図18K】単結晶シリコンリボンを備える印刷可能半導体素子を製造するための代替の方法を示している。
【
図19】GaAsのナノワイヤ配列を形成するとともに、これを、硬化ポリウレタン(PU)の薄層でコーティングされたポリ(エチレンテレフタレート)(PET)シートを備えるプラスチック基板等の基板に対して転写する典型的な方法のステップを示す概略図を与えている。
【
図20A】孤立したSiO
2ラインでパターニングされたGaAsウエハから得られる自立構造のGaAsワイヤの走査型電子顕微鏡写真を示している。
【
図20B】2μm幅のSiO
2ラインでパターニングされたGaAsウエハをエッチングすることにより得られる個々のワイヤの走査型電子顕微鏡写真画像を示している。
【
図20C】2μm幅のSiO
2ラインでパターニングされたGaAsウエハをエッチングすることにより得られる個々のワイヤの走査型電子顕微鏡写真画像を示している。
【
図20D】2μm幅のSiO
2ラインでパターニングされたGaAsウエハをエッチングすることにより得られる個々のワイヤの走査型電子顕微鏡写真画像を示している。
【
図20E】2μm幅のSiO
2ラインでパターニングされたGaAsウエハをエッチングすることにより得られる個々のワイヤの走査型電子顕微鏡写真画像を示している。
【
図20F】エッチング時に本方法により形成されたワイヤの上端面の平均幅wwiresの依存性を示すプロットを与えている。
【
図21A】PDMS基板及びPU/PET基板上に印刷された様々なGaAsワイヤ配列の一つの画像を示している。
【
図21B】PDMS基板及びPU/PET基板上に印刷された様々なGaAsワイヤ配列の一つの画像を示している。
【
図21C】PDMS基板及びPU/PET基板上に印刷された様々なGaAsワイヤ配列の一つの画像を示している。
【
図21D】PDMS基板及びPU/PET基板上に印刷された様々なGaAsワイヤ配列の一つの画像を示している。
【
図21E】PDMS基板及びPU/PET基板上に印刷された様々なGaAsワイヤ配列の一つの画像を示している。
【
図21F】PDMS基板及びPU/PET基板上に印刷された様々なGaAsワイヤ配列の一つの画像を示している。
【
図21G】PDMS基板及びPU/PET基板上に印刷された様々なGaAsワイヤ配列の一つの画像を示している。
【
図22A】PMDS基板及びPU/PET基板上のInPワイヤ配列の走査型電子顕微鏡写真画像を示している。
【
図22B】PMDS基板及びPU/PET基板上のInPワイヤ配列の走査型電子顕微鏡写真画像を示している。
【
図22C】PMDS基板及びPU/PET基板上のInPワイヤ配列の走査型電子顕微鏡写真画像を示している。
【
図23】
図23Aは、GaAsワイヤ配列を備える典型的な2端子ダイオードデバイスの概略図及び画像を示している。
図23Bは、GaAsワイヤ配列を備える2端子ダイオードデバイスが期待されたダイオード特性を示したことを表わしている、異なる曲げ半径で2端子ダイオードデバイスにおいて記録された電流−電圧(I−V)曲線を示している。
図23Cは、異なる曲げ半径で曲げた後の弛緩状態後の2端子ダイオードデバイスに関して測定された電流−電圧(I−V)曲線を示している。
【
図24】磁気タグを備えるハンドル素子を有する印刷可能半導体素子をソリューション印刷するための本発明の典型的な方法を示す概略図を与えている。
【
図25】本発明のソリューション印刷方法を使用して、薄いニッケル層を備えるハンドル素子を有するマイクロ構造の整然とした配列を形成するための本発明のソリューション印刷方法の使用を実際に示す幾つかの光学画像を与えている。
【
図26A】本発明の典型的な湾曲できる薄膜トランジスタデバイスを製造するために使用されるステップを示している。
【
図26B】薄膜トランジスタのボトムゲートデバイス構造の概略図を、デバイス配列の一部の高倍率光学画像及び低倍率光学画像と共に示している。
【
図27A】接点の影響を無視する標準的な電界効果トランジスタモデルの適用によって評価される、飽和状態で140cm
2/Vs及び線形状態で260cm
2/Vsの有効デバイス移動度を示す本発明の湾曲可能な薄膜トランジスタの電流電圧特性を示している。
【
図27B】線形(左軸)スケール及び対数(右軸)スケール上にプロットされた幾つかのデバイスの転写特性を示している。
【
図27C】本方法によって製造された幾つかの湾曲可能な薄膜トランジスタの線形有効移動度の分布を示している。
【
図28A】印刷可能な単結晶シリコン半導体素子の顕著な柔軟性を示すソリューションキャスティングされたリボンの高分解能走査型電子顕微鏡写真(左側の挿入画)を示している。
図28Aの右側の挿入画は、この研究で評価された湾曲可能な薄膜トランジスタを曲げるために使用される実験装置の画像を示している。
【
図28B】
図28Bは、引っ張り歪み及び圧縮歪みに晒されたときのエポキシ誘電体のキャパシタンスの僅かな(〜<1%)線形変化を示している(上側の挿入画を参照)。
図28Bの下側の挿入画は、ゲートバイアス電圧及びドレインバイアス電圧の両方が4Vの場合において測定されたデバイスの飽和電流の変化を示している。
【
図29A】PET基板上に印刷可能ヘテロ半導体素子を備えるトランジスタを形成するための製造プロセスの概略図を示している。
【
図29B】本技術を使用して製造されたヘテロ印刷可能半導体素子を有する幾つかのデバイスの光学画像を示している。
【
図30A】接触抵抗を特徴付けるために使用される接触パッド及び印刷可能ヘテロ半導体素子の配置(挿入画参照)に関して、Lに応じた正規化抵抗R
totalWのプロットを示している。
【
図30B】パターニングされたSOGの拡散バリア(
図29Aの概略図参照)としての使用がドーパンドをシリコン中の所望の領域に局部集中させたことを表わす飛行時間型二次イオン質量分析(TOF−SIMS)測定を示している。
図30Bに示される画像において、明るい赤色は、高いリン濃度を示している。
【
図31A】エポキシ/ITO/PET基板上の印刷可能コンタクトドープシリコン半導体素子を備えるトランジスタに対応する測定を示し、PET基板上にドープ接点を有し且つL=7ミクロンでW=200ミクロンの単結晶シリコントランジスタの一般的な電流−電圧特性を示している。下から上に向かってV
Gが−2Vから6Vへと変化している。
【
図31B】エポキシ/ITO/PET基板上の印刷可能コンタクトドープシリコン半導体素子を備えるトランジスタに対応する測定を示し、上から下に向かって97ミクロン、72ミクロン、47ミクロン、22ミクロン、7ミクロン、2ミクロンのチャンネル長を有するデバイスの転写曲線(V
d=0.1V)を示している。それぞれの場合のチャンネル幅は200ミクロンである。
【
図31C】エポキシ/ITO/PET基板上の印刷可能コンタクトドープシリコン半導体素子を備えるトランジスタに対応する測定を示し、異なるゲート電圧におけるチャンネル長Lに応じたON状態でのデバイスの幅−正規化された抵抗(R
ONW)を示している。実線が線形適合を表わしている。スケーリングは、この範囲のチャンネル長におけるデバイス性能への影響を無視できる接触と一致している。
図31Cの挿入画は、
図31Cにおける線形適合の傾きの逆数から決定されるシートコンダクタンス[Δ(R
ONW)/ΔL]
−1を、ゲート電圧の関数として示している。
【
図31D】エポキシ/ITO/PET基板上の印刷可能コンタクトドープシリコン半導体素子を備えるトランジスタに対応する測定を示し、無ドープ(三角形)接点及びドープ(正方形)接点を有するデバイスに関して線形状態で評価された有効移動度をチャンネル長の関数として示している。
【
図32A】曲げられていない状態の値(μ
0eff)により正規化された有効デバイス移動度の変化を歪み(曲げ半径)の関数として示している。
【
図32B】圧縮歪みを0%と0.98%との間で変化させる数百の曲げサイクル(9.2mmの半径まで)後における正規化された有効移動度μ
eff/μ
0effを示している。
【
図33】シリコンウエハ(100)上に直接に結合された窒化ガリウムマイクロ構造を備える本発明のヘテロ集積方法を使用して製造された複合半導体構造の一例を示している。
【
図34A】印刷可能なP−N接合を備える太陽電池を形成するための製造経路における処理ステップを概略的に示すプロセスフローチャートを示している。
【
図34B】
図34Aに示される製造経路によって形成された太陽電池デバイス構造の概略図を示している。
【
図34C】
図34Bに示される構造を有する太陽電池デバイスの照明時に観察されるフォトダイオード応答を示している。
【
図35A】印刷可能なP及びNドープ半導体層を備える太陽電池を形成するための代替の製造経路における処理ステップを概略的に示すプロセスフローチャートを与えている。
【
図35B】
図35Aに示される製造経路を使用して形成される太陽電池デバイスの概略図を示している。
【
図35C】
図35Bに概略的に示される太陽電池の平面図のSEM画像を示している。
【
図35D】
図35Cに示される太陽電池のフォトダイオード応答を明らかにする電流−バイアスのプロットを示している。
【
図35E】
図35Cに示される太陽電池のフォトダイオード応答を明らかにする幾つかの異なる照明強度に対応する電流−バイアスのプロットを示している。
【
図36A】伸縮可能な薄膜トランジスタの配列を形成する典型的な方法を示すプロセスフローチャートを示している。
【
図36B】弛緩形態及び伸張形態における伸縮可能な薄膜トランジスタの配列の光学顕微鏡写真を示している。
【
図37A】プラスチック基板上へμs−Si素子をパターニングするための本発明の処理方法(方法I)を示す概略図を与えている。
【
図37B】プラスチック基板上へμs−Si素子をパターニングするための本発明の代替の処理方法(方法II)を示す概略図を与えている。
【
図38】
図38Aは、本発明の方法において使用される所謂ピーナッツ形状のμs−Si対象物の構成を示している。
図38Aの挿入された光学画像は、犠牲SiO
2部分を残したままチャンネルの下側の埋設酸化物が除去される最適化されたHFエッチング状態を示している。
図38Bは、Si対象物がHF溶液内でオーバーエッチングされるときのこの順位の損失の一例を示している。
図38C、38D、38E、38Fは、方法Iを使用して行なわれるμs−Si転写の各ステップの進行を示す一連の顕微鏡写真を示している。
【
図39A】3600PDMSスタンプによるPU/PETシート上へのμs−Siの選択的な転写の光学画像を示している。
【
図39B】3600PDMSスタンプによるPU/PETシート上へのμs−Siの選択的な転写の光学画像を示している。
【
図39C】μs−Siが化学的に結合された後に転写されたSylgard 184コーティングされたPET基板の領域の光学顕微鏡写真である。
【
図39D】この方法で転写されたμs−Siの高倍率画像が示されている。
【
図40A】方法Iを使用する転写に基づいてピーナッツ形状のμs−Siを使用して製造されたデバイスの典型的なデバイス形状を示している。
【
図40B】様々なゲート電圧(Vg=−2.5V〜20V)におけるμs−Si TFTのI−V曲線を示している。
【
図40C】一定のソース−ドレイン電圧(Vsd=1V)で測定された転写特性を示しており、有効移動度が173cm
2/Vsであったことを示している。
図40Cの挿入画は、本発明の実際のデバイスの光学顕微鏡写真を示している。
【
図41】ポリ(エチレンテレフタレート)(PET)基板上にμs−GaAs MESFETを製造するためのプロセスに含まれるステップを示す概略的なプロセスフローチャートを与えている。異方性化学エッチングは、標準的な(100)GaAsウエハからワイヤを形成する。エラストマースタンプを使用する印刷技術は、これらのワイヤを空間的な方向を維持する態様(すなわち、順序付けられた配列)でウエハからプラスチックデバイス基板へと転写する。PRはフォトレジストを示している。
【
図42A】プラスチック基板(PU/PET)上におけるGaAsワイヤに基づくMESFETの幾何学的構成の断面図を示す概略図を与えている。ソース/ドレイン電極は、n−GaAs層に対するオーム接点を形成する。
【
図42B】プラスチック上における2つのGaAsワイヤに基づくMESFETの代表的な画像を示しており、各MESFETは、
図41のプロセスフローチャートにしたがって製造された10本のGaAsワイヤの配列を使用する。
【
図42C】数百個のトランジスタを有する2cm×2cmPETシートの画像であって、当該シートの柔軟性を明らかにしている画像を示している。
【
図43A】
図42Bに示されたものと同様な、50μmのチャンネル長、15μmのゲート長を有するGaAs MESFETからの結果を示しており、5Vのステップを伴う0.5〜−2.0Vのゲート電圧における電流−電圧(ドレイン電極とソース電極との間)曲線を示している。
【
図43B】
図42Bに示されたものと同様な、50μmのチャンネル長、15μmのゲート長を有するGaAs MESFETからの結果を示しており、異なるV
DSで測定された本発明のGaAs MEDFETの転写特性(すなわち、I
DS対V
GS)を示している。
【
図43C】
図42Bに示されたものと同様な、50μmのチャンネル長、15μmのゲート長を有するGaAs MESFETからの結果を示しており、MESFETにおいて予期される線形関係を明確に示す(I
DS)
1/2−V
GSとしてプロットされたV
DS=4Vにおける転写曲線を示している。
【
図44A】曲げる前におけるフレキシブルPET基板上におけるGaAsワイヤに基づくMESFETのゲート変調された電流−電圧特性を示している。
【
図44B】8.4mmの曲げ半径まで曲げた後におけるフレキシブルPET基板上におけるGaAsワイヤに基づくMESFETのゲート変調された電流−電圧特性を示している。
【
図44C】
図44Cは、湾曲基板をその平坦な曲げられていない状態まで弛緩させた後におけるGaAsワイヤに基づくMESFETのゲート変調された電流−電圧特性を示している。
【
図44D】湾曲(異なる表面歪みを用いる)/非湾曲に関する3サイクルにおけるV
DS=4V及びV
GS=0VでのI
DSの変化を示しており、これらのMESFETが、それらの性能を大きく変化させることなく(<20%)、デバイスにおける引っ張り歪みを0%と1.2%との間で変化させる複数の曲げサイクルを凌いでいることを表わしている。
【
図45】プラスチック基板上のP型ボトムゲート薄膜トランジスタにおける本発明の典型的なデバイス構造を示す概略図を与えている。
【
図46】プラスチック基板上の相補型論理ゲートにおける本発明の典型的なデバイス構造を示す概略図を与えている。
【
図47】プラスチック基板上のトップゲート薄膜トランジスタにおける本発明の典型的なデバイス構造を示す概略図を与えている。
【発明を実施するための形態】
【0066】
図面を参照すると、同様の数字は同様の要素を示しており、また、複数の図面に現れる同じ番号は同じ要素を示している。更に、以下では、次の定義が適用される。
【0067】
「印刷可能」は、基板を高温(すなわち、約400セ氏温度以下の温度)に晒すことなく基板上又は基板中に転写でき、組み立てることができ、パターニングでき、組織化することができ及び/又は集積することができる材料、構造、デバイス、構成部品及び/又は集積機能デバイスに関連している。本発明の1つの実施形態において、印刷可能な材料、要素、デバイス部品、デバイスは、ソリューション印刷(solution printing)又は乾式転写コンタクト印刷(dry transfer contact printing)により、基板上又は基板中に転写でき、組み立てることができ、パターニングでき、組織化することができ及び/又は集積することができる。
【0068】
本発明の「印刷可能半導体素子」は、例えば乾式転写コンタクト印刷方法及び/又はソリューション印刷方法を使用することにより基板表面上に組み立てることができ及び/又は集積することができる半導体構造を備えている。1つの実施形態において、本発明の印刷可能半導体素子は、単一単結晶半導体構造、多結晶半導体構造、微結晶性無機半導体構造である。この説明のこの文脈において、単一構造は、機械的に接続される特徴形態を有するモノリシック素子である。本発明の半導体素子は、ドーピングされていなくてもよく或いはドーピングされていてもよく、ドーパントの選択された空間分布を有していてもよく、また、P型ドーパント及びN型ドーパントを含む複数の異なるドーパント材料がドーピングされていてもよい。本発明は、約1ミクロン以上の少なくとも1つの断面寸法を有するマイクロ構造の印刷可能半導体素子と、約1ミクロン以下の少なくとも1つの断面寸法を有するナノ構造の印刷可能半導体素子とを含む。多くの用途で役立つ印刷可能半導体素子は、従来の高温処理技術を使用して形成される高純度結晶ウエハ等の高純度バルク材料の「トップダウン」処理から得られる素子を備えている。1つの実施形態において、本発明の印刷可能半導体素子は、導電層、誘電体層、電極、更なる半導体構造又はこれらの任意の組み合わせ等の少なくとも1つの更なるデバイス部品又は構造に接続された動作可能な半導体を有する複合構造を備えている。1つの実施形態において、本発明の印刷可能半導体素子は、伸縮可能な半導体素子及び/又は異種の半導体素子を備えている。
【0069】
「断面寸法」とは、デバイス、デバイス部品又は材料の断面の寸法のことである。断面寸法としては、幅、厚さ、半径、直径が挙げられる。例えば、リボン形状を有する印刷可能半導体素子は、長さと、厚さ及び幅といった2つの断面寸法とによって特徴付けられる。例えば、円筒形状を有する印刷可能半導体素子は、長さと断面寸法直径(或いは半径)とによって特徴付けられる。
【0070】
「充填比」とは、材料、素子及び/又はデバイス部品によって占められる第1及び第2の電極等の2つの素子間の領域の比率(パーセンテージ)のことである。本発明の1つの実施形態において、第1及び第2の電極は、第1の電極と第2の電極との間の充填比を20%以上にする、好ましくは一部の用途において50%以上にする、更に好ましくは一部の用途において80%以上にする1又は複数の印刷可能半導体素子と電気的に接触した状態で設けられる。
【0071】
「基板によって支持される」とは、少なくとも一部が基板表面上に存在する構造又は少なくとも一部が構造と基板表面との間に位置される1つ以上の中間構造上に存在する構造のことである。また、用語「基板によって支持される」とは、基板中に部分的に或いは完全に組み込まれた構造のことであってもよい。
【0072】
「ソリューション印刷」とは、印刷可能半導体素子等の1つ以上の構造がキャリア媒体中に分散されて基板表面の選択された領域へ一括して供給されるプロセスを示そうとするものである。1つの典型的なソリューション印刷方法において、基板表面の選択された領域に対する構造の供給は、パターニングを受ける基板表面の形態的特徴及び/又は物理的特徴とは無関係な方法によって達成される。本発明において使用できるソリューション印刷方法としては、インクジェット印刷、熱転写印刷、毛管作用印刷が挙げられるが、これらに限定されない。
【0073】
「略長手方向に向けられた」とは、印刷可能半導体素子等の素子群の長手方向軸が選択されたアライメント軸と略平行に向けられるような方向性のことである。この定義におけるこの文脈において、選択された軸と略平行とは、完全に平行な方向から10度の範囲内にある方向、より好ましくは完全に平行な方向から5度の範囲内にある方向のことである。
【0074】
「伸縮可能」とは、破壊を受けることなく歪まされる材料、構造、デバイス又はデバイス部品の能力のことである。典型的な実施形態において、伸縮可能な材料、構造、デバイス又はデバイス部品は、破壊されることなく約0.5%を超える変形を受けてもよく、好ましくは一部の用途においては破壊されることなく約1%を超える変形を受けてもよく、更に好ましくは一部の用途においては破壊されることなく約3%を超える変形を受けても良い。
【0075】
用語「フレキシブルな」及び「屈曲可能な」は、この説明においては同意語として使用されており、材料、構造、デバイス又はデバイス部品の破壊点と見なされる著しい歪みをもたらす変化を受けることなく湾曲形状へ変形される材料、構造、デバイス又はデバイス部品の能力を示している。典型的な実施形態において、フレキシブルな材料、構造、デバイス又はデバイス部品は、約5%以上の歪みをもたらすことなく、好ましくは一部の用途においては約1%以上の歪みをもたらすことなく、更に好ましくは一部の用途においては約0.5%以上の歪みをもたらすことなく湾曲形状へ変形されてもよい。
【0076】
「半導体」とは、非常に低い温度で絶縁体であるが、約300ケルビンの温度でかなりの導電率を有する材料である任意の材料のことである。この説明において、半導体という用語の使用は、マイクロエレクトロニクス及び電気デバイスの技術でのこの用語の使用と整合させようとするものである。本発明において有用な半導体は、シリコン、ゲルマニウム、ダイヤモンド等の単体半導体や、SiC及びSiGe等のIV族化合物半導体、AlSb、AlAs、Aln、AlP、BN、GaSb、GaAs、GaN、GaP、InSb、InAs、InN、InP等のIII-V族半導体、Al
XGa
1−XAs等のIII-V族三元半導体合金、CsSe、CdS、CdTe、ZnO、ZnSe、ZnS、ZnTe等のII-VI族半導体、I-VII族半導体CuCl、PbS、PbTe、SnS等のIV-VI族半導体、Pbl
2、MoS
2、GaSe等の層半導体、CuO、Cu
2O等の酸化物半導体等といった化合物半導体を備えていてもよい。半導体という用語は、真性半導体と、所定の用途又はデバイスのために役立つ有益な電気的特性を与えるためにp型ドーピング材料及びn型ドーピング材料を有する半導体を含む1つ以上の選択された材料がドーピングされた外因性半導体とを含んでいる。半導体という用語は、半導体及び/又はドーパントの混合物を備える複合材料を含んでいる。本発明の一部の用途において有用な特定の半導体材料としては、Si、Ge、SiC、AIP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InP、InAs、GaSb、InP、InAs、InSb、ZnO、ZnSe、ZnTe、CdS、CdSe、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、PbS、PbSe、PbTe、AlGaAs、AlInAs、AlInP、GaAsP、GaInAs、GaInP、AlGaAsSb、AlGaInP、GaInAsPが挙げられるが、これらに限定されない。センサや発光ダイオード(LED)及び固体レーザ等の発光材料の分野における本発明の適用においては、多孔質シリコン半導体材料が有用である。半導体材料の不純物は、半導体材料自体以外の原子、元素、イオン及び/又は分子又は半導体材料に対して与えられる任意のドーパントである。不純物は、半導体材料中に存在し且つ半導体材料の電気的特性に悪影響を与える場合がある望ましくない材料であり、酸素、炭素、重金属を含む金属を含んでいるがこれらに限定されない。重金属の不純物としては、周期表の銅と鉛との間にある元素のグループ、カルシウム、ナトリウム、全てのイオン、化合物及び/又はそれらの複合体が挙げられるが、これらに限定されない。金は、半導体の電気的特性を著しく低下させる特定の重金属である。
【0077】
「プラスチック」とは、一般に加熱されるときに成型又は形成でき、且つ所望の形状へと硬化できる合成材料又は天然材料又はこれらの材料の組み合わせのことである。本発明のデバイス及び方法において有用な典型的なプラスチックとしては、高分子、樹脂、セルロース誘導体が挙げられるが、これらに限定されない。この説明において、プラスチックという用語は、構造的エンハンサー、フィラー、繊維、可塑剤、安定剤、又は、所望の化学的又は物理的な特性を与えることができる添加物等の1つ以上の添加物を伴う1つ以上のプラスチックを備える複合プラスチック材料を含もうとするものである。
【0078】
「誘電体」及び「誘電材料」は、この説明においては同意語として使用されており、電流の流れに対して高い抵抗を示す物質のことである。有用な誘電材料としては、SiO
2、Ta
2O
5、TiO
2、ZrO
2、Y
2O
3、SiN
4、STO、BST、PLZT、PMN、PZTが挙げられるが、これらに限定されない。
【0079】
「高分子」とは、一般的にはモノマーと称される複数の繰り返しの化学基を備える分子のことである。高分子は、多くの場合、高い分子量によって特徴付けられる。本発明において使用できる高分子は、有機高分子又は無機高分子であってもよく、アモルファス状態、セミアモルファス状態、結晶状態又は部分結晶状態にあってもよい。高分子は、同じ化学的組成を有するモノマーを備えていてもよく、或いは、コポリマー等の異なる化学的組成を有する複数のモノマーを備えていてもよい。本発明の一部の用途においては、結合されたモノマー鎖を有する架橋重合体が特に有益である。本発明の方法、デバイス、デバイス部品において使用できる高分子としては、プラスチック、エラストマー、熱可塑性エラストマー、弾塑性体、サーモスタット、熱可塑性物質、アクリラートが挙げられるが、これらに限定されない。典型的な高分子としては、アセタール高分子、生分解性高分子、セルロース高分子、フッ素重合体、ナイロン、ポリアクリロニトリル高分子、ポリアミドイミド高分子、ポリイミド、ポリアリレート、ポリベンズイミダゾール、ポリブチレン、ポリカーボネート、ポリエステル、ポリエーテルイミド、ポリエチレン、ポリエチレンコポリマー、改質されたポリエチレン、ポリケトン、ポリメチルメタクリレート、ポリメチルペンテン、ポリフェニレンオキシド及びポリフェニレンサルファイド、ポリフタルアミド、ポリプロピレン、ポリウレタン、スチレン樹脂、スルホン系樹脂、ビニル系樹脂又はこれらの任意の組み合わせが挙げられるが、これらに限定されない。
【0080】
「エラストマー」とは、伸長させ或いは変形させることができ且つ実質的な永久歪みを伴うことなくその当初の形状に戻すことができる高分子材料のことである。エラストマーは、一般に、ほぼ弾性的な変形を受ける。本発明において有用な典型的なエラストマーは、ポリマー、コポリマー、複合材料又はポリマーとコポリマーとの混合物を備えていてもよい。エラストマー層とは、少なくとも1つのエラストマーを備える層のことである。また、エラストマー層は、ドーパント及び他の非エラストマー材料を含んでいてもよい。本発明において有用なエラストマーとしては、熱可塑性エラストマー、スチレン材料、オレフィン材料、ポリオレフィン、ポリウレタン、熱可塑性エラストマー、ポリアミド、合成ゴム、PDMS、ポリブタジエン、ポリイソブチレン、ポリ(スチレン−ブタジエン−スチレン)、ポリウレタン、ポリクロロプレン、シリコンを挙げることができるが、これらに限定されない。
【0081】
用語「電磁放射線」とは、電場及び磁場の波のことである。本発明の方法において有用な電磁放射線としては、ガンマ線、X線、紫外線、可視光線、赤外線、マイクロ波、電波、又は、これらの任意の組み合わせが挙げられるが、これらに限定されない。
【0082】
「良好な電子的特性」及び「高性能」は、この説明においては同意語として使用され、電子信号スイッチング及び/又は増幅等の所望の機能を与える電界効果移動度、閾値電圧、on−off比等の電子的特性を有するデバイス及びデバイス部品を示している。良好な電子的特性を示す本発明の典型的な印刷可能半導体素子は、100cm
2V
−1s
−1以上、好ましくは一部の用途においては約300cm
2V
−1s
−1以上の固有の電界効果移動度を有していてもよい。良好な電子的特性を示す本発明の典型的なトランジスタは、約100cm
2V
−1s
−1以上、好ましくは一部の用途においては約300cm
2V
−1s
−1以上、更に好ましくは一部の用途においては約800cm
2V
−1s
−1以上の固有の電界効果移動度を有していてもよい。良好な電子的特性を示す本発明の典型的なトランジスタは、約5ボルト未満の閾値電圧及び/又は約1×10
4を超えるon−off比を有していてもよい。
【0083】
「大面積」とは、デバイス製造のために使用される基板の受け面の面積等、約36平方インチ以上の面積のことである。
【0084】
「デバイス電界効果移動度」とは、電気デバイスに対応する出力電流データを使用して計算されるトランジスタ等の電気デバイスの電界効果移動度のことである。
【0085】
「コンフォーマル接触」とは、表面、コーティングされた表面、及び/又は、基板表面上に(印刷可能半導体素子等の)構造を転写し、組み立て、組織化し、集積するために役立ち得る材料がその上に堆積された表面の間で成される接触のことである。1つの態様において、コンフォーマル接触は、基板表面の形状全体に対するコンフォーマブルな転写デバイスの1つ以上の接触面のマクロ適応を伴う。他の態様において、コンフォーマル接触は、アウトボイドとの密接をもたらす基板表面に対するコンフォーマブルな転写デバイスの1つ以上の接触面のミクロ適応を伴う。コンフォーマル接触という用語は、ソフトリソグラフィの技術におけるこの用語の使用と整合させようとするものである。コンフォーマル接触は、コンフォーマブルな転写デバイスの1つ以上の露出した接触面と基板表面との間で成されてもよい。或いは、コンフォーマル接触は、1つ以上のコーティングされた接触面、例えばその上に転写材料、印刷可能半導体素子、デバイス部品及び/又はデバイスが堆積されたコンフォーマブルな転写デバイスの接触面と基板表面との間で行なわれてもよい。或いは、コンフォーマル接触は、コンフォーマブルな転写デバイスの1つ以上の露出された或いはコーティングされた接触面と、転写材料、ソリッドフォトレジスト層、プレポリマー層、液体、薄膜又は流体等の材料でコーティングされた基板表面との間で行なわれてもよい。
【0086】
「配置精度」とは、電極等の他のデバイス部品の位置に関連する或いは受け面の選択された領域に関連する選択された位置に対して印刷可能半導体素子等の印刷可能な素子を転写するための転写方法又はデバイスの能力のことである。「良好な配置」精度とは、他のデバイス又はデバイス部品に関連する或いは絶対的に正確な位置からの50ミクロン以下の空間的偏り、好ましくは一部の用途においては20ミクロン以下の空間的偏り、更に好ましくは一部の用途においては5ミクロン以下の空間的偏りを伴う受け面の選択された領域に関連する選択された位置に対して印刷可能な素子を転写できる方法及びデバイスを示している。本発明は、良好な配置精度をもって転写される少なくとも1つの印刷可能な素子を備えるデバイスを提供する。
【0087】
「忠実度」とは、印刷可能半導体素子のパターン等の、素子の選択されたパターンが、基板の受け面に対してどの程度うまく転写されるかについての尺度のことである。良好な忠実度は、個々の素子の相対位置及び方向が転写中に保たれる、例えば個々の素子の選択されたパターン内でのそれらの位置からの空間的な偏りが500ナノメートル以下、好ましくは100ナノメートル以下となる、素子の選択されたパターンの転写を示している。
【0088】
「ヤング率」は、所定の物質における歪みに対する応力の比率を示す材料、デバイス又は層の機械的な特性である。ヤング率は、以下の式によって与えられてもよい。
【数1】
ここで、Eはヤング率であり、L0は平衡長、ΔLは加えられた応力下での長さ変化、Fは加えられた力、Aは力が加えられる面積である。また、ヤング率は、以下の方程式によりラメ定数に関して表わされてもよい。
【数2】
ここで、λ及びμはラメ定数である。高いヤング率(すなわち「高弾性率」)及び低いヤング率(すなわち「低弾性率」)は、所定の材料、層又はデバイスにおけるヤング率の大きさの相対的な記述子である。本発明において、高いヤング率は、低いヤング率よりも大きく、好ましくは一部の用途において約10倍大きく、より好ましくは他の用途において約100倍大きく、更に好ましくは更に他の用途において約1000倍大きい。
【0089】
以下の説明においては、本発明の正確な性質の完全な解釈を与えるために、本発明のデバイス、デバイス部品及び方法の多数の特定の詳細が示されている。しかしながら、当業者であれば分かるように、これらの特定の詳細が無くても本発明を実施できる。
【0090】
本発明は、印刷可能半導体素子を製造し、印刷可能半導体素子を基板表面上に組み立てるための方法及びデバイスを提供する。本発明は、単結晶無機半導体、1つ以上の他のデバイス部品に動作可能に接続された半導体構造を備える複合半導体素子、及び、伸縮可能な半導体素子を含む印刷可能な様々な半導体素子を提供する。本発明の方法、デバイス及びデバイス部品は、フレキシブルプラスチック基板上の薄膜トランジスタ等、高性能電子デバイス及び光電子デバイス並びにデバイスの配列を形成できる。
【0091】
図1は、単結晶シリコンのリボンを備える印刷可能半導体素子を製造して組み立てるための本発明の典型的な方法を概略的に示している。プロセスは、薄い単結晶シリコン層105と、埋設SiO
2層107と、Si処理層108とを有するシリコンオンインシュレータ(SOI)基板100を形成することによって始まる。場合によって、薄い単結晶シリコン層105上の表面自然酸化物層は、それが存在する場合には、例えばSOI基板100の表面を希釈(1%)HFに晒すことにより除去されてもよい。自然酸化物層を適切に剥離する際には、SOI基板100の外面110の選択された領域がマスキングされ、それにより、外面110上には、マスク要素120のパターン、マスク領域125、露出面領域127が形成される。
図1に示される実施形態において、外面110は、外面110のマスク領域125のエッチングを妨げることができるマスク要素120を与える矩形のアルミニウム表面層及び金表面層を用いてパターニングされる。マスク要素120は、正方形、矩形、円、楕円、三角形の形状又はこれらの形状の任意の組み合わせを含むがこれらに限定されない任意のサイズ及び形状を有していてもよい。典型的な実施形態において、所望の幾何学的形状を有するマスク要素を与えるAl/Au層のパターンは、ミクロコンタクト印刷技術、ナノコンタクト印刷技術又はフォトリソグラフィ、エッチング方法(Auに関してはTFA;Alに関してはAL−11プレミックスCyantecエッチャント)を使用して製造される。薄い金属膜を備えるマスク要素の堆積は、例えばAl(20nm;0.1nm/s)及びその後のAu(100nm;1nm/s)の連続的な堆積により、Temescal BJD1800等の電子ビーム蒸発器によって行なわれてもよい。
【0092】
SOI基板100の外面110は下方へ異方性エッチングされる。
図1に示されるように、材料は露出面領域127から選択的に除去されるが、マスク要素120はマスク領域125のエッチングを防止、それにより、僅かに傾斜する側壁141を有する単結晶シリコン構造を備える複数のレリーフ特徴形態140が形成される。レリーフ特徴形態が約100ナノメートルの厚さ147を有する側壁141を持っている典型的な実施形態においては、露出面領域127が約3.5分間にわたってテトラメチルアンモニウム水酸化物(TMAH)に晒される。この実施形態において、エッチングは、好ましくは平均表面位置から10ナノメートル未満の偏りをもって、Al/Auマスク要素120を有する単結晶シリコンのレリーフ特徴形態140上に滑らかな側壁を形成する。レリーフ特徴形態140は、例えば高濃度(49%)HFを使用して下側のSiO
2層107が部分的に或いは完全に等方性エッチングされるときに、基板100からリフトオフされてもよい。レリーフ特徴形態140のリフトオフは、マスク要素によって覆われた1つの表面を有する別個の単結晶シリコン構造を備える印刷可能半導体素子150を形成する。マスク要素120、すなわち、この例ではAl/Au層は、除去されてもよく、或いは、例えば薄膜トランジスタにおけるソース電極及びドレイン電極として最終的なデバイス構造中に直接に組み込まれてもよい。
図1に示されるように、印刷可能半導体素子150は、乾式転写コンタクト印刷技術(矢印166で概略的に示されている)又はソリューション成形方法(矢印165により概略的に示されている)によりプラスチック基板等の基板表面160の受け面上に組み立てられてもよい。両方の組立方法は、周囲環境において室温で実行されてもよく、したがって、低コストなフレキシブルプラスチック基板を含む広範囲な基板と適合する。
【0093】
印刷可能半導体素子を組み立てるための乾式転写コンタクト印刷方法を使用すると、印刷可能半導体素子のSOI基板からのリフトオフの直前に印刷可能半導体素子の既知の方向及び位置をうまく利用できるという利点が得られる。この場合、印刷可能半導体素子をSOIからデバイス基板上の所望の位置まで移動させる(SiO
2をエッチングした後で且つシリコンを除去する前)ために、ソフトリソグラフィ転写印刷技術の手順に類似する手順が使用される。特に、コンフォーマブルなエラストマー転写素子は、対象物をSOI表面から拾い上げるとともに、それらを所望の基板に対して転写する。同様に、印刷可能半導体素子は、対象基板の表面上に形成されたレセプタクルパッドを使用してAu冷間溶接により薄いプラスチック基板上に対して直接に転写できる。
【0094】
典型的な方法において、印刷可能半導体素子150の少なくとも一部は、エラストマー転写スタンプ等のコンフォーマブルな高分子転写デバイス175、高分子転写デバイス又は複合高分子転写デバイスの接触面170とコンフォーマル接触され、それにより、印刷可能半導体素子150の少なくとも一部が接触面150上に接着される。コンフォーマブルな転写デバイス175の接触面170上に堆積された印刷可能半導体素子150は、好ましくは接触面170と基板160の受け面との間でコンフォーマルな接触を成す態様で基板160の受け面と接触される。接触面170は、基板160の受け面と接触される印刷可能半導体素子150から分離され、それにより、印刷可能は半導体素子150が受け面上に組み立てられる。本発明のこの実施形態は、明確な位置及び空間的方向で印刷可能半導体素子150を備えるパターンを受け面上に形成することができる。
図1に示される実施形態において、印刷可能半導体素子150は、基板160の受け面上に存在する金パッド162に対して動作可能に接続される。
【0095】
図2は、基板の受け面上に印刷可能半導体素子を組み立てるための選択的乾式転写コンタクト印刷を示す概略図を与えている。複数の印刷可能半導体素子300は、明確な位置及び空間的方向により特徴付けられる印刷可能半導体素子300の第1のパターン310でマザー基板305上に形成される。コンフォーマブルな転写デバイス315は、複数の別個の結合領域325を伴う接触面320を有するコンフォーマブルな転写デバイス315は、マザー基板305上の印刷可能半導体素子300の少なくとも一部とコンフォーマル接触される。接触面320上の結合領域325は、印刷可能半導体素子310における親和性によって特徴付けられ、化学的に改質された領域であってもよく、このような領域は、PDMS層の表面から延びる水酸基を有しており、或いは、1つ以上の接着層でコーティングされる。コンフォーマル接触は、結合領域325と接触する印刷可能半導体素子310の少なくとも一部を接触面320上に転写する。接触面320に対して転写された印刷可能半導体素子310は、プラスチック基板等のフレキシブル基板であってもよい基板335の受け面330と接触される。半導体素子310及び接触面320のその後の分離により、基板335の受け面330上に半導体素子310のアセンブリが得られ、それにより、第1のパターンの印刷可能半導体素子340とは異なる明確な位置及び空間的方向により特徴付けられる第2のパターンの印刷可能半導体素子340が形成される。
図2に示されるように、マザー基板305上に残存する印刷可能半導体素子340は、印刷可能半導体素子の第1及び第2のパターンとは異なる印刷可能半導体素子の第3のパターン345によって特徴付けられる。第3のパターン345を備える印刷可能半導体素子340は、その後、選択的乾式転写方法を含む本発明の印刷方法を使用して基板335又は他の基板上に転写され及び/又は組み立てられてもよい。
【0096】
図3A〜Cは、本発明の選択的乾式転写コンタクト印刷方法において有益なデバイス、デバイス構造、デバイス部品を示す概略図である。
図3Aは、マザー基板305上の複数の印刷可能半導体素子300を示している。この場合、選択された印刷可能半導体素子300は1つ以上の接着コーティング350を有している。
図3Aに示されるように、接着コーティング350は明確なパターンで設けられている。
図3Bは、複数の別個の結合領域325が明確なパターンで設けられた接触面320を有するコンフォーマブルな転写デバイス315を示している。
図3Cは、明確なパターンで設けられたレリーフ特徴形態360を備える3次元レリーフパターン355を有するコンフォーマブルな転写デバイス315を示している。
図3Cに示される実施形態において、レリーフパターン355は、1つ以上の接着層で場合によってコーティングされてもよい複数の接触面320を与える。接着コーティング350、結合領域325、レリーフ特徴形態360のパターンは、デバイス構造又は薄膜トランジスタ配列構造等のデバイス配列構造における印刷可能半導体素子300の相対的な位置及び空間的な方向に対応していることが好ましい。
【0097】
乾式転写印刷方法の使用は、広範囲の組成及び湾曲面を含む表面形態を有する基板上に印刷可能半導体素子を組み立て、組織化し、集積するために本発明において有用である。本方法及び組成の機能的な能力を明らかにするため、シリコンフォトダイオードを備える半導体素子が、エラストマースタンプを利用する乾式転写印刷方法を使用して様々な光学レンズの湾曲面上に直接に(すなわち、接着剤を用いずに)印刷された。
図3Dは、ポリカーボネートレンズ(FL100mm)の球面上に印刷されたフォトダイオードの配列の写真を示している。
図3Eは、球面ガラスレンズ(FL1000mm)の湾曲面上に印刷されたフォトダイオードの配列の走査型電子顕微鏡写真を示している。
図3Eに示された画像のコントラストは、pドープ領域を示すために僅かに高められている。
図3Fは、
図3Eに描かれたフォトダイオードの光反応を示す、電流(μA)とバイアス電位(ボルト)との間の関係のプロットを与えている。
【0098】
図4A1及び
図4A2は、乾式転写コンタクト印刷を使用する本発明の組立方法における印刷可能半導体素子の好ましい形状を示している。
図4A1は斜視図を示しており、
図4A2は平面図を示している。印刷可能半導体素子は、第1の端部505と中心領域510と第2の端部515とを有する中心長手方向軸502に沿って延びるリボン500を備えている。
図4Aに示されるように、リボン500の幅はその長さに沿って選択的に変わる。特に、第1の端部505及び第2の端部515は中心領域510よりも幅広い。典型的な方法において、リボン500は、マザー基板520をエッチングすることにより形成される。この実施形態において、マザー基板は、第1の端部505及び第2の端部515に近接する犠牲層525を備える2つのアライメント維持要素によりリボン500がマザー基板520に対して単に取り付けられるまでエッチャントに対して等方的に晒される。製造プロセスにおけるこの時点で、エッチングプロセスが停止され、リボン500がコンフォーマブルな転写デバイスに対して接触され及び/又は結合される。犠牲層525が破壊され、転写デバイスがマザー基板520から離される際にリボン500が解放される。この方法は、
図4に示される形状を有する複数の印刷可能半導体素子の乾式転写コンタクト印刷に適用されてもよい。本発明のこの方法の利点は、転写ステップ、組立ステップ、集積ステップ中にマザー基板520上の複数のリボン500の方向及び相対位置を正確に保つことができるという点である。犠牲層の厚さに関する典型的な範囲は、〜2μmから100μmまでの間のリボン幅において〜1μmから〜100nmまでである。面白いことには、リボンの開裂は一般に物体の端部(リボンがマザーウエハに対して取り付けられる点/縁に非常に近い)で起こる。幅広いリボンは、通常、リフトオフ中及びそれらがスタンプに対して接着される最中に歪曲しない。
【0099】
図4B1及び
図4B2は、乾式転写コンタクト印刷を使用する本発明の組立方法における印刷可能半導体素子の好ましい形状を示している。
図4B1は斜視図を示しており、
図4B2は平面図を示している。印刷可能半導体素子は、中心平行な長手方向軸528に沿って延びるリボン527を備えている。リボン527は、中心長手方向軸528に沿うリボンの少なくとも一端をマザー基板529に対して接続するアライメント維持要素530により選択された位置及び方向に保持される。アライメント維持要素530は、リボンの一端又は両端をそれらの中心長手方向軸に沿って規定しないことにより、リボン527のパターニング中に形成される。アライメント維持手段530が破壊され、リボン527は、転写デバイスの接触面を有するリボンとの接触時及びその後のマザー基板520からの離間時に解放される。
【0100】
ソリューション印刷により組立を達成するために、印刷可能半導体素子150の少なくとも一部がキャリア媒体中に分散され、これにより、半導体素子150及びキャリア媒体を備える懸濁液190が形成される。印刷可能半導体素子150は、基板に対して供給されるとともに、懸濁液を基板160の受け面上にソリューション印刷することにより組み立てられる。ソリューション印刷は、インクジェット印刷、熱転写印刷、スクリーン印刷を含むがこれらに限定されない当分野において既知である多くの技術により行なわれてもよい。
図1に示される実施形態において、印刷可能半導体素子150は、基板160の受け面上に存在する金パッド162に動作可能に接続される。
【0101】
図5A〜Cは、選択された物理的寸法を有する単結晶シリコンのマイクロストリップを備える一連の印刷可能半導体素子150の光学顕微鏡写真及び走査型電子顕微鏡写真を示している。印刷可能半導体素子は、エタノール懸濁液中に示されており、様々なタイプの基板上へのキャストとして示されている。
図5Aは、シリコンロッド(幅2ミクロン;厚さ2ミクロン;長さ〜15ミリメートル)のソリューションキャスティングされた絡みマットの光学顕微鏡写真を示している。挿入画は、エタノールの溶液中に分散された印刷可能なシリコンストリップ(それらのうちの約1000万)を示している。
図5Bの低分解能SEM画像は、露出されたシリコンウエハ上にソリューションキャスティングされた幾つかの平坦なマイクロストリップ(厚さ340ナノメートル;幅5ミクロン;長さ〜15ミリメートル)の機械的な柔軟性範囲を示している。
図5Cは、これらの物体のうちの1つの高分解能SEM画像を示している。異方性ウェットエッチング処理により形成された極めて滑らかな側壁に留意されたい。
【0102】
また、ワイヤ、板状体、ディスクの形態を成す印刷可能半導体素子が本発明の方法を使用して形成されてもよい。大面積ソフトリソグラフィ技術の使用により、単一の低コストな処理シーケンスで、50nmに至る横方向寸法及びほぼ任意の幾何学的形状を有する多数(すなわち数十億)の印刷可能半導体素子を製造することができる。20ナノメートルほどの横方向寸法を有する印刷可能半導体素子が本発明の方法により製造されてもよい。フレキシブルな電子システムの薄膜トランジスタでの使用において、長く(〜10ミクロン)且つ狭い(〜1ミクロン)単結晶シリコンのストリップを備える印刷可能半導体素子が特に有益である。
【0103】
図6は、約25ミクロンの厚さを有するPDMSコーティングされたポリイミドシート上の単結晶シリコンマイクロストリップを備える転写された印刷可能半導体素子の画像を示している。上側の挿入画は、このシステムの固有の柔軟性を示している。下側の挿入画は、薄いTi/Auコーティングされたマイラーシート上に冷間溶接された印刷可能なシリコン高密度マイクロストリップ(25ミクロン幅、〜2ミクロン間隔)の平面図顕微鏡写真を示している。
図6に示されるように、シリコンマイクロストリップを備える印刷可能半導体素子は、制御された方向にうまくアライメントされて転写される。組み立てにより引き起こされる印刷可能半導体素子のクラッキングは、基板が著しく曲げられた場合であっても、走査型電子顕微鏡を使用する注意深い検査において観察されなかった。下側にはめ込まれた顕微鏡写真画像により示されるように、Auコーティングされた薄いマイラーシートを使用すると、(エラストマー層を必要とすることなく)同様の結果が得られた。この方法では、100%に近い被覆密度を得ることができる。
【0104】
また、本発明は、誘電体素子、導電素子(すなわち電極)又は更なる半導体素子等の1つ以上の他のデバイス部品に対して動作可能に接続された半導体構造を備える複合印刷可能半導体素子を提供する。薄膜トランジスタを製造するために特に有用な本発明の典型的な印刷可能半導体素子は、集積半導体及び誘電体素子を備えている。このような複合印刷可能半導体素子は、高品質で漏れの無い誘電体を与えるとともに、薄膜トランジスタ中に誘電体素子を製造するための別個のスピンキャスティングステップの必要性を回避する。また、複合印刷可能半導体素子を使用することにより、低コストな印刷技術で大きな基板面積に効率的にデバイスを製造することができる。
【0105】
以下の文献は、コンタクト印刷技術及び/又はソリューション印刷技術により印刷可能半導体素子を転写し、組み立て、相互に接続するために本発明の方法で使用されてもよい自己組織化技術に関するものである。(1)“Guided molecular self−assembly:a review of recent effort”(Jiyun C Huie Smart Mater.Struct.(2003) 12,264−271);(2)“Large−Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems”(Whang,D.; Jin,S.; Wu,Y.; Lieber,C.M.Nano Lett.(2003) 3(9),1255−1259);(3)“Directed Assembly of One−Dimensional Nanostructures into Functional Networks”(Yu Huang,Xiangfeng Duan,Qingqiao Wei,Charles M.Lieber,Science (2001) 291,630−633);(4)“Electric−field assisted assembly and alignment of metallic nanowires”(Peter A.Smithら,Appl.Phys.Lett.(2000) 77(9),1399−1401)。
【0106】
本出願で引用された全ての文献は、それらが本出願の開示内容と矛盾しない程度まで、これらをその全体が参照として本明細書に組み込まれる。本明細書で与えられた一部の文献は、出発材料、更なる出発材料、更なる試薬、合成の更なる方法、分析の更なる方法、本発明の更なる使用の出所に関する詳細を与えるために、参照として本明細書に組み込まれる。当業者であれば分かるように、本明細書で具体的に説明したもの以外の方法、デバイス、デバイス素子、材料、手順、技術は、過度な実験に頼ることなく、本明細書で広く開示される本発明の手法に適用できる。本明細書で具体的に記載された方法、デバイス、デバイス素子、材料、手順、技術の全ての当分野において既知である機能的等価物は、本発明によって包含されるものである。
【0107】
2004年6月4日、2004年8月11日、2005年2月4日、2005年3月18日、2005年5月4日にそれぞれ出願された米国特許出願第60/577,077号、第60/601,061号、第60/650,305号、第60/663,391号、第60/677,617号は、本出願の開示内容と矛盾しない程度までその全体が参照として本明細書に組み込まれる。
【0108】
ここでは材料、組成、構成部品又は化合物のグループが開示されているが、これらのグループの個々の構成要素及びそれらの全てのサブグループが個別に開示されることは言うまでもない。マーカッシュグループ又は他のグループ分けが本明細書で使用される場合、グループの全ての個々の構成要素及びグループの可能な全てのコンビネーション並びにサブコンビネーションは、開示内容に個別に含まれるべく意図されている。本明細書で説明し、或いは例示する構成要素のすべての処方又は組み合わせは、特に指定のない限り、本発明を実施するために使用できる。明細書において例えば温度範囲、時間範囲或いは組成範囲等の範囲が与えられるときにはいつでも、全ての中間範囲及び部分範囲並びに与えられた範囲中に含まれる全ての個々の値は開示内容中に含まれるものとする。
【0109】
本明細書で使用される「備える」は、「含む」、「包含する」或いは「によって特徴付けられる」と同じ意味であり、包括的或いは制限がないものであり、更なる列挙されていない要素又は方法ステップを排除するものではない。本明細書で使用される「から成る」は、請求項の要素で特定されていない任意の要素、ステップ又は成分を排除するものである。本明細書で使用される「から本質的に成る」は、請求項の基本的且つ新規な特徴に実質的に影響を与えない材料又はステップを排除しない。ここでは、いずれの場合にも、「備える」、「から本質的に成る」、「から成る」のうちのいずれの用語も他の2つの用語のどれかと取って代えられてもよい。
【実施例1】
【0110】
印刷可能半導体素子を有する薄膜トランジスタ
【0111】
薄膜トランジスタ中に半導体チャンネルを形成できる本発明の印刷可能半導体素子の能力が実験的研究により検証された。具体的には、本発明の目的は、印刷方法によってフレキシブルプラスチック基板上に製造できる薄膜トランジスタを提供することである。また、本発明の目的は、従来の高温処理方法により製造される薄膜トランジスタと同様もしくはそれを超える電界効果移動度、on−off比、閾値電圧を有するプラスチック基板上の高性能薄膜トランジスタを提供することである。
【0112】
図7は、印刷可能半導体素子を有する薄膜トランジスタの光学顕微鏡写真画像を示している。図示のトランジスタ531は、ソース電極532と、ドレイン電極533と、印刷可能半導体素子534と、誘電体(
図7の顕微鏡写真には示されていない)と、ゲート電極(これも
図7の顕微鏡写真には示されていない)とを備えている。薄膜トランジスタは、ゲートとしてのインジウムスズ酸化物(ITO,〜100ナノメートル厚)及びゲート誘電体としての光硬化エポキシ(SU8−5;Microchem Corp)でコーティングされたマイラーシートから成る基板によって支持されている。誘電体のキャパシタンス(2.85nF/cm
2)は、デバイスの近傍に形成されたキャパシタ試験構造を使用して評価された。このデバイスは、340ナノメートルデバイス層厚及び14−22ohm cmの抵抗率を有するpドープSOIウエハ(Soitec)から製造された〜5ミリメートル長、20ミクロン幅、340ナノメートル厚のマイクロストリップを備えるソリューションキャスティングされた印刷可能半導体素子を使用する。水平な石英チューブ加熱炉内でドライ酸化により25ナノメートル厚のSiO
2層がシリコンの上面で成長された。ここには、リフトオフ技術によりAl(20ナノメートル)/Au(180ナノメートル)のソース電極及びドレイン電極が形成される。半導体チャンネル長は50ミクロンであり、幅は20ミクロンである。
【0113】
図8及び
図9は、印刷可能半導体素子を有する本発明の薄膜トランジスタから収集された電気的な測定値を示している。デバイスは、上端接触構造を伴うバックゲートSOIデバイスと同様に動作する。半導体は、その長さが50ミクロンに等しいチャンネル内で20ミクロンに等しい幅の単結晶シリコンのマイクロストリップを使用する。この場合の印刷可能半導体素子はソリューションキャスティング方法によりパターニングされた。ソース/ドレイン接点はフォトリソグラフィ及びリフトオフにより形成された。
【0114】
図8は、予め酸化されたSiウエハ上に形成されたデバイスの電流−電圧(IV)特性を示すプロットを与えている。
図9は、ITOゲート及び高分子誘電体でコーティングされたマイラーシート上に形成されたデバイスのV
DS=0.1Vで測定された転写特性を示すプロットを与えている。この曲線の勾配は、180cm
2/Vsの有効デバイス移動度を規定している(この場合には半導体素子マイクロストリップの幅に等しいソース電極及びドレイン電極の実際の幅を使用している)。印刷可能半導体素子に対する接触のためのAl/Auメタライゼーションは、pドープシリコン上のAl(4.2eVの仕事関数)メタライゼーションにおいて期待されるように、シリコンに対するかなり低い抵抗のショットキー障壁接点を与える。アルミニウムはシリコン中へ急速に拡散することで良く知られているが、ポストメタライゼーション高温アニーリングステップが実行されなかったため、局所的なアルミニウム−シリコン相互作用を回避するように特に注意はしなかった。このデバイスのon/off比は103よりも僅かに低い。
図9の転写特性の分析は、誘電キャパシタンスのための平行プレートモデルを使用して180cm
2V
−1s
−1の線形な電界効果移動度を示す。この分析は、接触の効果及び閾値電圧の処理誘発変化を無視する。
【0115】
完全な接触を伴う場合でも、非常に高いアスペクト比(すなわち、巨大な長さ−幅比率)の半導体素子をチャンネル領域(すなわち、ナノチューブ又はナノワイヤ)に組み込むトランジスタが従来のデバイスの応答とは異なる応答を有することを示唆する理論的な論拠がある。これらの影響を回避するため、本発明者らは、トランジスタチャンネル長と同じ程度の大きさの幅を有するマイクロストリップを備える印刷可能半導体素子を選択する。本明細書で観察される特性(移動度、正規化されたトランスコンダクタンス、on/off比)は、Siのエッチング後で且つリフトオフ前にSOI基板上に形成される薄膜トランジスタの特性の〜3/4である。これらの測定値において、埋設SiO
2酸化物は誘電体としての機能を果たし、また、シリコン支持基板はゲート電極としての機能を果たす。この結果は、印刷可能半導体素子を形成し且つそれをデバイス基板に対して転写するために使用される処理ステップが初期のパターニング及びシリコンエッチングステップから生じるシリコン又はその表面の特性を著しく変化させないということを明らかにする。また、この結果は、SU8誘電体を伴うファンデルワールス界面が良好なデバイス特性をサポートできることを示唆している。
【0116】
本実施例の製造方法の主な利点は、それが結晶成長及びシリコンの処理をプラスチック基板及びデバイスの他の構成要素から分離するという点である。また、本発明の印刷可能半導体素子を処理する方法は、処理シーケンス及び可能な材料選択において非常に自由度が高い。例えば、本明細書で示した集積ソース/ドレインメタライゼーションにおける方法と同様の方法でシリコンの一方側にSiO
2層を形成して(例えば、Si元素をリフトオフする前又はSOI埋設酸化物をSiデバイス層と共に取り除く前に熱酸化物を成長させることにより)集積誘電体を生じさせることができる。この方法で生じる誘電体は、プラスチック基板上の多くのソリューションキャスティングされた薄い誘電体における漏れ、ヒステリシス、ドーピング、トラッピング等に関連し得る重大な難問を回避することができる。
【0117】
図10A〜Hは、複合印刷可能半導体素子を有する薄膜トランジスタの配列を形成するための本発明の方法を示す概略図を与えている。
図10Aに示されるように、Kapton、マイラー又はPET等のフレキシブル基板の薄いシートの表面548上にゲート電極547が堆積される。ゲート電極は、フォトリソグラフィ、マイクロ転写印刷、ナノ転写印刷、ソフトリソグラフィ又はこれらの組み合わせを含むがこれらに限定されない当分野において既知である任意の手段によりフレキシブル基板上にパターニングされてもよい。
図10Bに示されるように、方法は、SiO
2誘電体素子560に対して動作可能に接続された単結晶シリコン構造555を備える複数の複合印刷可能半導体素子550を製造するステップを更に備えている。
図10Bに示されるように、複合印刷可能半導体素子550は、中心長手方向軸551に沿って選択された長さ552にわたって延びるリボン形状を有している。複合印刷可能半導体素子550は、選択された厚さ553と、厚さに応じて変わる幅とを有している。
【0118】
図10Cに示されるように、方法は、乾式転写コンタクト印刷又はソリューション印刷により複合印刷可能半導体素子550をゲート電極547上及び基板548上に組み立てるステップを更に備えている。複合印刷可能半導体素子550は、SiO
2誘電体素子560がゲート電極547と接触するように方向付けられる。
図10Dに示されるように、方法は、ポジフォトレジスト561の薄層を基板548のパターニングされた表面上にスピンコーティングするステップを更に備えている。或いは、ローラを使用して基板548のパターン表面に対してポジフォトレジスト561の薄層が塗布されてもよい。ゲート電極547によりマスキングされないフォトレジスト561の領域は、基板548の裏面562を通じて伝えられる電磁放射線ビームに晒される。本発明のこの方法においては、光透過基板548、特に電磁スペクトルの紫外領域及び/又は可視領域を少なくとも部分的に透過する基板548を使用することが好ましい。
図10Eに示されるように、方法は、薄いフォトレジスト層を現像するステップを更に備えている。この図に示されるように、ゲート電極によりマスキングされる影である薄いフォトレジスト層561の領域は現像されない。
図10Fに示されるように、方法は、集積SiO
2誘電体をドライエッチング又はウェットエッチングすることによりソース電極又はドレイン電極のための接点を開放するステップを更に備えている。
図10Fにより示される実施形態において、これは、基板548のパターニングされた表面をCF4プラズマに晒すことにより達成される。
図10Gに示されるように、方法は、シャドウマスク蒸着によりソース電極及びドレイン電極を形成するステップを更に備えている。半導体素子、ソース電極、ドレイン電極のアライメントは、非常に正確である必要はない。これは、半導体チャンネルが次の製造ステップで形成されるからである。
図10Hに示されるように、方法は、例えばアセトン等の溶媒に晒してポジレジストをリフトオフすることにより半導体チャンネルを形成するステップを更に備えている。
【0119】
図11A〜Dは、集積ゲート電極、ゲート誘電体、半導体、ソース電極、ドレイン電極を備える印刷可能なデバイスを製造するための本発明の方法を示す図を与えている。
図11Aに示されるように、SOIウエハの表面の熱酸化により高品質のゲート誘電体が成長される。次に、ゲート電極材料(例えば金属又はドープポリシリコン)が堆積される。その後、例えばリソグラフィプロセスを使用して、上端面の選択された領域がマスキングされる。1つの実施形態では、単一のマスキングステップにおいて、制御された間隔を伴う同一のパターンの配列が形成される。その後、異方性ウェットエッチング及び/又はドライエッチングにより印刷可能半導体素子が製造される。優先的に、3つの異なる選択エッチングプロセスが連続的に実行して、ゲート電極材料、ゲート誘電体、上端シリコン層の露出された領域がエッチング除去される。
【0120】
図11Bに示されるリソグラフィプロセスは、トランジスタのチャンネルを形成するために使用される。このプロセスステップでは、ゲート電極材料の露出された領域がエッチング除去(ドライエッチング又はウェットエッチング)される。
図11Cに示されるように、その後、フォトレジストがそのガラス転移を超えて加熱され、それにより、リフロープロセスが開始される。フォトレジストのリフロー距離は、フォトレジスト層の適切な厚さ、フォトレジスト層のガラス転移温度、又は、リフロープロセスの温度及び持続時間を注意深く選択することよって選択できる。その後、HF溶液を使用して、ゲート誘電体の露出された領域がエッチングされる。
【0121】
次に、
図11Dに示されるメタライゼーションプロセスが実行された後、フォトレジスト上に堆積された金属がリフトオフされて、印刷可能なデバイスの製造が完了する。ソース電極及びドレイン電極はゲートとセルフアライメントされ、また、ソース電極とドレイン電極との間の間隔は、リフロープロセスの温度及び持続時間等の様々なパラメータを調整することによって選択されてもよい。
【0122】
図11Dに示される印刷可能なデバイスは、本発明の乾式転写印刷方法又はソリューション印刷方法によりプラスチック基板等の基板上に転写されて組み立てられてもよい。
図11A〜Dに示されるセルフアライメントプロセスは、MOSFETデバイス等の印刷可能なデバイスの実現に必要な全ての素子を集積するための簡単な方法を与える。本発明のこの製造方法の重大な利点は、デバイスをリフトオフして基板へ転写する前に、プラスチック基板に適合しない温度を必要とする(例えば、約400℃を越える温度を必要とする)全てのプロセスステップがSOI基板上で行なわれるという点である。例えば、素子をプラスチック基板上へ転写する前に、ソース接点領域及びドレイン接点領域のドーピング、シリサイド層の形成、デバイスの高温アニーリング等の更なる処理ステップを行なうことができる。
【実施例2】
【0123】
伸縮可能な印刷可能半導体素子
【0124】
本発明は、伸張、収縮或いは変形の際に良好な性能を与えることができる伸縮可能な印刷可能半導体素子を提供する。また、本発明の伸縮可能な印刷可能半導体素子は、十分にフレキシブルな電子デバイス及び光電子デバイスを提供するために広範なデバイス構造に適合されてもよい。
【0125】
図12は、本発明の伸縮可能な印刷可能半導体素子を示す原子間力顕微鏡写真を与えている。伸縮可能な印刷可能半導体素子700は、支持面710を有するフレキシブル基板705と、湾曲した内面720を有する湾曲半導体構造715とを備えている。この実施形態において、湾曲半導体構造715の湾曲した内面720の少なくとも一部は、フレキシブル基板705の支持面710に対して結合される。湾曲した内面720は、内面720に沿う選択された点で、或いは、内面720に沿う全ての点で、支持面710に対して結合されてもよい。
図12に示される典型的な半導体構造は、約100ミクロンに等しい幅及び約100ナノメートルに等しい厚さを有する単結晶シリコンの湾曲リボンを備えている。
図12に示されるフレキシブル基板は、約1ミリメートルの厚さを有するPDMS基板である。湾曲した内面720は、リボンの長さに沿って延びるほぼ周期的な波によって特徴付けられる輪郭形状を有している。
図12に示されるように、波の振幅は約500ナノメートルであり、ピーク間隔は約20ミクロンである。
図13は、湾曲した内面720を有する湾曲半導体構造715の拡大図を与える原子間力顕微鏡写真を示している。
図14は、本発明の伸縮可能な印刷可能半導体素子の配列の原子間力顕微鏡写真を示している。
図14の原子間力顕微鏡写真の分析によれば、湾曲半導体構造が約0.27%だけ圧縮されているのが分かる。
図15は、本発明の伸縮可能な印刷可能半導体素子の光学顕微鏡写真を示している。
【0126】
湾曲面720の輪郭形状により、湾曲半導体構造715は、実質的な機械的歪みを受けることなく変形軸730に沿って拡張又は収縮することができる。また、この輪郭形状により、半導体構造は、著しい機械的損傷又は歪みによって引き起こされる性能の損失を伴うことなく、変形軸730以外の方向に湾曲し、収縮し或いは変形できてもよい。本発明の半導体構造の湾曲面は、伸縮可能性、柔軟性、及び/又は、屈曲可能性等の良好な機械的特性を与え及び/又は例えば収縮、拡張又は変形時に良好な電界効果移動度を示すような良好な電子性能を与える任意の輪郭形状を有していてもよい。典型的な輪郭形状は、複数の凸領域及び/又は凹領域によって、また、正弦波、ガウス波、Aries関数、方形波、ローレンツ波、周期波、非周期波又はこれらの任意の組み合わせを含む多種多様な波形によって特徴付けられてもよい。本発明において使用できる波形は、2つ又は3つの物理的寸法に関して変化してもよい。
【0127】
図16は、その支持面710上に3次元レリーフパターンを有するフレキシブル基板705に対して結合された湾曲半導体構造715を有する本発明の伸縮可能な印刷可能半導体素子の原子間力顕微鏡写真を示している。3次元レリーフパターンは陥凹領域750及びレリーフ特徴形態760を備えている。
図16に示されるように、湾曲半導体構造715は、陥凹領域750内及びレリーフパターン760上で支持面710に対して結合されている。
【0128】
図17は、本発明の伸縮可能な半導体素子を形成する典型的な方法を示すフローチャートを示している。典型的な方法においては、予め歪みが加えられた拡張状態の弾性基板が与えられる。このような歪みの事前付加は、弾性基板をロールプレスし及び/又は予め湾曲することを含むがこれらに限定されない当分野において既知である任意の手段により達成することができる。本発明のこの方法で使用できる典型的な弾性基板は、約1ミリメートルに等しい厚さを有するPDMS基板である。弾性基板は、単一の軸に沿う拡張によって或いは複数の軸に沿う拡張によって予め歪みが加えられてもよい。
図17に示されるように、印刷可能な半導体構造の内面の少なくとも一部は、予め歪みが加えられた拡張状態の弾性基板の外面に対して結合される。結合は、半導体表面の内面間の共有結合により、ファンデルワールス力により、接着剤を使用することにより、或いは、これらの任意の組み合わせにより達成されてもよい。弾性基板がPDMSである典型的な実施形態において、PDMS基板の支持面は、シリコン半導体構造との共有結合を容易にするために複数の水酸基がその表面から延びるように化学的に改質される。
図17を再び参照すると、予め歪みが加えられた弾性基板と半導体構造との結合後、弾性基板を少なくとも部分的に緩和状態へと弛緩させることができる。この実施形態において、弾性基板の弛緩は、上記印刷可能な半導体構造の内面を湾曲させ、それにより、湾曲した内面を有する半導体素子が形成される。
【0129】
図17に示されるように、製造方法は、場合によって、湾曲した内面720を有する半導体構造715が弾性基板から他の基板、好ましくはフレキシブル基板へと転写される第2の転写ステップを含んでいてもよい。この第2の転写ステップは、湾曲した内面720を有する半導体構造715の露出面を、半導体構造715の露出面に結合する他の基板の受け面と接触させることにより達成されてもよい。他の基板に対する結合は、共有結合、ファンデルワールス力による結合、接着剤の使用を含む当分野における任意の手段によって行なわれてもよい。
【0130】
本発明の伸縮可能な半導体素子は、トランジスタ、ダイオード、レーザ、MEMS、NEMS、LEDS、OLEDS等の多数の機能デバイス及びデバイス部品中に効果的に組み込まれてもよい。本発明の伸縮可能な半導体素子は、従来の硬質な無機半導体を超える特定の利点を有している。第1に、伸縮可能な半導体素子は、フレキシブルであり、したがって、従来の硬質な無機半導体よりも屈曲、湾曲及び/又は変形により引き起こされる構造的損傷を受け難くい。第2に、湾曲半導体構造は、湾曲した内面を与えるために僅かに機械的に歪みが加えられた状態にあるため、本発明の伸縮可能な半導体素子は、従来の歪みが加えられていない無機半導体よりも高い固有の電界効果移動度を示すことができる。最後に、伸縮可能な半導体素子は、デバイス温度循環時に自由に拡張及び収縮することができるため、良好な熱特性を与える可能性が高い。
【実施例3】
【0131】
印刷可能半導体素子の形成方法
【0132】
本発明は、単結晶ウエハ、シリコンオン基板ウエハ、ゲルマニウムウエハ、多結晶シリコンの薄膜、超薄シリコンウエハを含む広範な出発材料から印刷可能半導体素子を形成する方法を提供する。特に、本発明は、選択された方向及び相対位置に多数の印刷可能な半導体を形成する低コストな方法を提供する。
【0133】
図18Aは、Si−Geエピ基板から印刷可能半導体素子を形成するための典型的な方法を示している。この方法において、Siエピ層の選択領域は、金属、SiO
2又はSiNを備える薄膜等のマスク材料を堆積させることによりマスキングされる。このマスキングステップは、製造される印刷可能半導体素子の形状及び物理的寸法(例えば、リボンに関する長さ及び幅)の一部を定める。Si−Geエピ基板の露出されたSi表面は、ドライ化学エッチング方法又はウェット化学エッチング方法により異方性エッチングされる。これにより、例えば50℃でNH
4OH:H
2O
2:H
2O 1:1:4により与えられる選択SiGeウェットエッチングを使用してリフトオフ技術によりSi−Geエピ基板から効果的に解放可能な好ましくは滑らかな側壁を有するシリコンのレリーフ特徴形態が形成される。場合によって、ソース電極、ゲイン電極、ゲート電極、誘電体素子又はこれらの任意の組み合わせは、リフトオフ前に半導体素子中に組み込まれてもよい。この製造方法の利点は、マザー基板を洗浄して再使用できるという点である。
【0134】
図18Bは、バルクシリコン基板、好ましくは単結晶シリコン基板から印刷可能半導体素子を製造するための典型的な方法を示している。この方法においては、まず最初に、例えば石英チューブ加熱炉内において約800℃〜約1200℃の範囲から選択される温度でシリコンウエハがドライ酸化される。次に、シリコンウエハの酸化された表面上にゲート材料の薄層が堆積される。典型的なゲート材料は、金属又はドープ多結晶シリコンを含んでいる。ゲート材料の薄層は、フォトレジストを用いて選択的にパターニングされる。このパターニングステップは、製造される印刷可能半導体素子の形状及び物理的寸法(例えば、リボンに関する長さ及び幅)の一部を定める。ゲート材料の薄層及び誘電体層が異方性バックエッチングされ、それにより、フォトレジスト層と、ゲート材料層と、誘電体層と、シリコン層とを備える好ましくは滑らかな側壁を有するレリーフ特徴形態が形成される。次に、例えば約100℃〜約130℃の範囲から選択される温度までアニールすることによりフォトレジスト層がリフローされる。フォトレジストのレフローにより、フォトレジストの一部がレリーフ特徴形態の側壁へ転写される。
図18Bに示されるように、ウェットエッチング方法又はドライエッチング方法を使用して露出されたSi表面が等方性エッチングされ、それにより、レリーフ特徴形態が解放されて、好ましくは滑らかな表面を有する複合印刷可能半導体素子が形成される。シリコンの等方性エッチングは、HNO
3:NH
4F:H
2O 64:3:33溶液を使用して達成されてもよい。この製造方法の利点は、シリコン基板出発材料の比較的低いコスト、及び、平坦化(ECMP)後にマザー基板を再使用できることである。
【0135】
図18Cは、バルクシリコン基板、好ましくは単結晶シリコン基板から印刷可能半導体素子を製造する他の典型的な方法を示している。この方法では、フォトレジストを用いてバルクシリコン基板の外面が選択的にパターニングされる。このパターニングステップは、製造される印刷可能半導体素子の形状及び物理的寸法(例えば、リボンに関する長さ及び幅)の一部を定める。パターニングされた基板表面は、好ましくは反応性イオンエッチングや誘導結合プラズマエッチング等のドライエッチング方法を使用して異方性エッチングされ、それにより、レリーフ特徴形態、好ましくは滑らかな側壁を有するレリーフ特徴形態が形成される。レリーフ特徴形態の側壁の少なくとも一部は、金属、SiO
2又はSiNの薄層等のマスキング材料を堆積させることによりマスキングされる。1つの実施形態においては、マスキング材料が、サンプル回転を組み合わせたスパッタリング堆積技術又は傾斜気相堆積技術によりレリーフ特徴形態の側壁に対して加えられ、それにより、全ての露出された側壁が堆積される。
図18Cに示されるように、ウェットエッチング方法又はドライエッチング方法を使用して、露出されたSi表面が等方性エッチングされ、それにより、レリーフ特徴形態が解放されて、好ましくは滑らかな表面を有する印刷可能半導体素子が形成される。シリコンの等方性エッチングは、HNO
3:NH
4F:H
2O 64:3:33溶液を使用して達成されてもよい。この製造方法の利点は、シリコン基板出発材料の比較的低いコスト、及び、平坦化(ECMP)後にマザー基板を再使用できることである。
【0136】
図18Dは、バルクシリコン基板、好ましくは単結晶シリコン基板から印刷可能半導体素子を製造する更に他の典型的な方法を示している。この方法では、フォトレジストを用いてバルクシリコン基板の外面が選択的にパターニングされる。パターニングされた基板表面が異方性エッチングされ、それにより、レリーフ特徴形態が形成される。次に、例えば石英加熱炉内において約1100℃の温度で且つ窒素中でアニーリングすることによりシリコン基板がアニール処理される。次に、フォトレジストを用いて選択された領域をマスキングすることにより、アニールされたシリコン基板の表面がパターニングされる。このパターニングステップは、製造される印刷可能半導体素子の形状及び物理的寸法(例えば、リボンに関する長さ及び幅)の一部を定める。
図18Dに示されるように、ウェットエッチング方法又はドライエッチング方法を使用して、アニールされたSi基板のパターニングされた表面が異方性エッチングされ、それにより、好ましくは滑らかな表面を有する印刷可能半導体素子が形成される。この製造方法の利点は、シリコン基板出発材料の比較的低いコスト、平坦化(ECMP)後にマザー基板を再使用できること、及び、ソース電極、ドレイン電極、ゲート電極、誘電体デバイス部品をアニーリングステップ後に集積できることである。また、ウェットエッチングは、110シリコンウエハを用いた最初のエッチングステップで使用されてもよい。
【0137】
図18Eは、超薄シリコン基板から印刷可能半導体素子を製造する典型的な方法を示している。この方法では、フォトレジストを用いて超薄シリコン基板の外面が選択的にパターニングされる。このパターニングステップは、製造される印刷可能半導体素子の形状及び物理的寸法(例えば、リボンに関する長さ及び幅)の一部を定める。パターニングされた基板表面は、超薄シリコン基板の厚さにわたって異方性エッチングされ、それにより、印刷可能半導体素子が形成される。この製造方法の一部の用途においては、約10ミクロン〜約500ミクロンの範囲から選択される厚さを有する超薄シリコン基板が好ましい。この製造方法の利点は、超薄シリコン基板出発材料の比較的低いコストである。
【0138】
図18F及び
図18Gは、多結晶シリコンの薄膜から印刷可能半導体素子を形成するための典型的な方法を示している。この方法では、SiN又はSiO
2を備えるコーティング等の犠牲表面層を有するガラス基板又はシリコン基板等の支持基板上に多結晶シリコンの薄層が堆積される。その後、多結晶薄膜がアニールされ、金属、SiO
2又はSiNを備える薄膜等のマスク材料を堆積させることにより、露出された表面の選択領域が選択的にマスキングされる。このマスキングステップは、製造される印刷可能半導体素子の形状及び物理的寸法(例えば、リボンに関する長さ及び幅)の一部を定める。パターニングされた表面は、ドライ化学エッチング方法又はウェット化学エッチング方法により異方性エッチングされ、それにより、犠牲層により指示されるシリコンのレリーフ特徴形態、好ましくは滑らかな側壁を有するレリーフ特徴形態が形成される。犠牲層を等方性エッチングすることによりレリーフ特徴形態が解放され、それにより、印刷可能半導体素子が形成される。製造方法の利点は、支持基板を洗浄して再使用できるという点である。或いは、多結晶シリコンの薄層がSiO
2基板上に直接に堆積されてもよい。
図18Gに示されるように、印刷可能半導体素子を形成するために、同様のアニーリングステップ、パターニングステップ、異方性エッチングステップ、リフトオフステップが使用されてもよい。場合によって、これらの方法のいずれかにおいては、ソース電極、ゲイン電極、ゲート電極、誘電体素子又はこれらの任意の組み合わせは、リフトオフ前に半導体素子中に組み込まれてもよい。
【0139】
図18H(1)及び
図18H(2)は、本発明の印刷可能半導体素子を使用して単結晶半導体膜を形成するための方法を示している。
図18H(1)に示されるように、アモルファス又は多結晶半導体薄膜は、SiO
2等の絶縁材料を備える基板の表面上に形成される。薄いアモルファス又は多結晶半導体薄膜は、気相堆積マタハスパッタリング堆積等の堆積技術を含むがこれらに限定されない当分野において既知である任意の手段により形成されてもよい。また、
図18H(1)を参照すると、単結晶半導体構造を備える印刷可能半導体素子は、薄いアモルファス又は多結晶半導体膜で覆われた基板の表面上に転写される。この方法の一部の用途においては、1つの長い横方向寸法を有する単結晶半導体構造を使用することが好ましい。また、本発明は、アモルファス又は多結晶半導体薄膜の堆積前に単結晶半導体構造を備える印刷可能半導体素子が基板表面上に転写される方法も含んでいる。
【0140】
図18H(2)に示されるように、薄いアモルファス又は多結晶半導体膜は、単結晶半導体構造と接触されつつ、高温、例えば1000℃を超える温度のアニーリングによりアニール処理される。本発明のこの実施形態において、単結晶半導体構造は、アモルファス又は多結晶状態から十分に組織化された単結晶状態への相転移を薄膜の全体にわたって促進するシードとしての機能を果たす。
図18H(2)に示されるように、ウエハの全面にわたって動く高い温度勾配の前に続く。半導体薄膜の効率的な相変換を得るために必要な温度勾配を形成するために異なる高温加熱炉又は集束光学系が使用されてもよい。このプロセスの利点は、単結晶シリコン又はゲルマニウム膜等の単結晶半導体薄膜を形成するコストを大きく低減させることができるという点である。
【0141】
図18Iは、GaAs基板からマイクロワイヤを備える印刷可能半導体素子を製造する典型的な方法を示している。この図に示されるように、GaAs基板の露出面は、フォトレジスト等のマスク材料を用いてパターニングされる。パターニングは、ミクロコンタクト印刷又はナノコンタクト印刷により或いは
図18Eに示される従来のフォトリソグラフィにより達成されてもよい。パターニングされた表面は、ウェットエッチング方法を使用して異方性エッチングされる。図示の実施例の方法においては、H
3PO
4−H
2O
2−H
2O溶液を使用して側壁の凹角形状が得られ、また、形成されたレリーフ特徴形態は、それらがGaAs基板から解放されるまでエッチングされ、それにより、GaAsマイクロワイヤが形成される。図示のように、フォトレジスト層は、アセトンを用いて洗浄し且つO
2反応性イオンエッチングに晒すことにより除去されてもよい。この技術の利点は、平坦化(ECMP)後にGaAs基板を再使用できるという点である。また、この技術は、InP基板からマイクロワイヤを製造するために使用されてもよい。
【0142】
図18Jは、単結晶シリコンリボンを備える印刷可能半導体素子を製造するための代替の方法を示している。この方法における出発材料はSi(110)ウエハである。
図18Jに示されるように、Si(110)ウエハの外面は、処理中にマスクとしての機能を果たすSiO
2の薄膜を用いて選択的にパターニングされる。このマスキングステップは、製造される印刷可能半導体素子の形状及び物理的寸法(例えば、リボンに関する長さ及び幅)の一部を定める。Si(110)ウエハの露出された(すなわち、マスキングされていない)表面は、その後、ドライ又はウェット化学エッチング方法により等方性エッチングされる。この処理ステップは、好ましくは選択された深さを有する一連のトレンチにより分離された滑らかな側壁を有するシリコンのレリーフ特徴形態を形成する。シリコンレリーフ特徴形態は、その後、等方性エッチング及びリフトオフ処理によりSi(110)ウエハから解放され、それにより、印刷可能半導体素子が形成される。場合によって、ソース電極、ゲイン電極、ゲート電極、誘電体素子又はこれらの任意の組み合わせは、リフトオフ前に半導体素子中に組み込まれてもよい。この製造方法の利点は、マザー基板を洗浄して再使用できるという点である。また、
図18Jは、処理方法における様々な点でのSi(110)のSET顕微鏡写真を示している。
【0143】
図18Kは、単結晶シリコンリボンを備える印刷可能半導体素子を製造するための他の方法を示している。この方法における出発材料はSi(111)ウエハである。Si(111)ウエハは、例えば従来のフォトリソグラフィマスキング方法とウェットエッチング方法との組み合わせを使用して選択等方性エッチングされる。この処理ステップはシリコンのレリーフ特徴形態を形成する。
図18Kに示されるように、シリコンレリーフ特徴形態の側壁、表面、又はこれらの両方は、不動態化プロセスを使用してコーティングされる。印刷可能な単結晶シリコンリボンは、等方性エッチング及びリフトオフ処理によりSi(111)ウエハから解放される。また、
図18Jは、リフトオフの直前にこの方法により形成される単結晶シリコンリボンのSET顕微鏡写真を示している。
【実施例4】
【0144】
半導体ナノワイヤ及びマイクロワイヤを形成する方法
【0145】
本発明の目的は、多種多様なデバイス、デバイス部品、デバイスセットで使用できる良好な機械的特性及び電気的特性を有する半導体ナノワイヤ及びマイクロワイヤを形成する方法を提供することである。また、本発明の目的は、選択された単層構造、多層構造、これらの素子を備える機能デバイスを構成するためにナノワイヤ及びマイクロワイヤを組み立てる方法を提供することである。本発明の有用性を評価するため、GaAs及びInPのナノワイヤ及びマイクロワイヤが製造され、それらの導電率及び一連のデバイス構造における機械的な柔軟性に関して評価された。また、大きな基板表面積に対応する明確な位置及び方向で多数のナノワイヤ及びマイクロワイヤを組み立てることができる本方法の能力は、単層構造及び多層構造を備える多数の複雑なナノ/マイクロワイヤアセンブリを製造することにより評価された。GaAs及びInPのナノワイヤ及びマイクロワイヤを形成して組み立てる本方法は、ワイヤ幅、長さ、空間的方向にわたって優れた制御を行なうことが実証された。また、製造されるGaAs及びInPのナノワイヤ及びマイクロワイヤは、マイクロ電子デバイスに集積される際に良好な機械的特性及び電気的特性を示した。
【0146】
図19は、GaAsのナノワイヤ配列を形成するとともに、これを、硬化ポリウレタン(PU)の薄層でコーティングされたポリ(エチレンテレフタレート)(PET)シートを備えるプラスチック基板等の基板に対して転写する典型的な方法のステップを示す概略図を与えている。
図19に示されるように、プロセスは、その表面が(100)方向に沿って向けられた一片のGaAsウエハから始まる(American Xtal Technology,Fremont,CA)。
【数3】
方向に沿って向けられたラインの形態でSiO
2のエッチマスクを規定することにより、体積比率がH
3PO
4(85重量%):H
2O
2(30重量%):H
2O=1:13:12のH
3PO
4及びH
2O
2の水溶液を使用する異方性エッチングのための構造が形成される(
図19のステップi)。このエッチング成分は、この形態で適用されると、高い異方性を示し、これにより、SiO
2マスクストライプ下で厳格に規定される逆メサ形状のGaAsのプロファイルが形成される。十分なエッチング時間にわたって、各逆メサの2つの側壁が交差し、それにより、三角形の断面を有するワイヤが形成される。この三角形の断面は、
図19のパネルA(左側)の上側の挿入画において例示されている。
【0147】
1つの実施形態においては、パターニングされたSiO
2ラインがバルクSiO
2膜によって取り囲まれ、それにより、各GaAsワイヤの両端がマザーウエハに対して接続される。この接続は、ワイヤを閉じ込めるとともに、SiO
2のパターンによって規定されるレイアウト及び空間的方向を保つ。
図20Aは、孤立したSiO
2ラインでパターニングされたGaAsウエハから得られる自立構造のGaAsワイヤの走査型電子顕微鏡写真を示している。GaAsの横方向のアンダーカットが垂直エッチングと共に生じ、それにより、SiO
2ラインがミクロン幅を有している場合であっても結果として得られるGaAsワイヤの幅をナノメートルスケールまで減少させることができることは注目に値する。
【0148】
本方法によって形成されるGaAsワイヤ配列は、配列中の個々のワイヤの方向及び相対位置を保ったままプラスチックシートに対して転写印刷されてもよい。
図19に示される実施形態では、ワイヤを手に入れるために、コンフォーマブルなエラストマー転写素子、例えばポリ(ジメチルシロキサン)又はPDMS、Sylgard 184,A/B=1:10、(Dow Corning)の平坦な断片がGaAsウエハ上に置かれる(
図19のステップiiに示されている)。この実施形態では、ワイヤの端部で下側の基板に対する結晶接続を破壊するために、PDMSシートとSiO
2マスク層との間に比較的強い結合が必要とされる。
【0149】
弱い酸素プラズマを用いてSiO
2マスクを有するGaAsウエハ及びPDMSスタンプを洗浄することにより、縮合反応によるPDMSとSiO
2との間の共有シロキサン(Si−O−Si)結合の形成が促進される(
図19の中央の挿入画を参照)。したがって、本発明は、エラストマー転写素子に対するSiO
2マスクを有する半導体ウエハの効果的で且つ機械的に強い転写を行なうためにエラストマー転写素子、SiO
2マスクを有する半導体ウエハ、或いは、これらの両方が弱い酸素プラズマに晒される方法を含んでいる。界面にわたる結合の密度は、酸素プラズマの強度及び処理時間に大きく依存するPDMS表面上の−O
nSi(OH)
4−nの数に比例する。強いプラズマを用いて長時間処理すると、PDMSから所望のプラスチック基板へワイヤを解放するにはあまりにも強すぎる結合が生じ得る。制御実験によれば、PDMS及びSiO
2でコーティングされたGaAsウエハが、10ミリトールの圧力、10sccmの流量、10Wの電力強度において、O
2から形成されるプラズマにより3秒間及び60秒間それぞれ処理され(Uniaxis 790,Plasma−Therm Reactive Ion Etching System)、それにより最良の結果が得られた。これらの実施形態において、電子ビーム気相堆積されたSiO
2マスク層とGaAsとの間の相互作用は、転写プロセス中の層間剥離を防止するのに十分強い。PDMSスタンプを〜2時間にわたってSiO
2マスクを有するGaAsウエハと接触させたままにした後にGaAs基板から剥離すると、全てのワイヤがリフトオフされる(
図19のステップiiiに示されている)。
【0150】
本方法は、多数のナノワイヤ及び/又はマイクロワイヤの製造及び組み立てを実質的に可能にする。例えば、ワイヤ製造の他の実行(
図19のステップiv)のための平坦な表面を再び形成するべく、転写ステップ(
図19のステップiii)後のGaAsウエハを研磨することができる。ウエハ研磨と前述したワイヤ製造とを組み合わせると、ウエハの1つの断片から莫大な数のGaAsワイヤを形成することができる。例えば、直径が10cmで且つ厚さが450μmの一片のGaAsウエハ(American Xtal Technologyから市販されている)は、異方性エッチング及び研磨の1つのサイクルが2μmの厚さのGaAsを費やす場合に1.76m
2の面積を有するプラスチック基板の全面を密に覆うため、十分なワイヤ(幅が〜400nmで且つ長さが100μmの〜22億本のワイヤ)を形成することができる。これらの状況は、本実施例で説明した結果の典型的なものである。したがって、このようにワイヤ製造ステップ後にワイヤ研磨ステップを行なうことを繰り返し適用することにより、費用効率が高いバルクウエハの使用が可能になる。
【0151】
図19のステップv及びviに示されるように、SiO
2マスク要素を有するGaAsワイヤは、基板、例えばその外面に接着層を有するプラスチック基板に対して効果的に転写させることができる。1つの実施形態において、GaAsが結合されたPDMSスタンプは、1日にわたって周囲環境に晒され、或いは、エタノールを用いて濯がれ、それによりPDMS表面がその自然の疎水状態へ再構成される。PDMS表面のこの疎水特性は、PDMSが通常は親水性である接着剤と強く相互作用することを実質的に防止する。再生されたPDMSスタンプがプラスチック基板(例えば、〜175μmの厚さのPET、マイラー膜、Southwall Technologies,パロアルト、カリフォルニア州)上にスピンコーティングされたPU層(ニュージャージー州のクランベリーにあるNolarlandプロダクツから得られる)等の接着層に対して配置されると、SiO
2マスクストライプに付着されたGaAsワイヤだけが接着剤に対して可溶性になる。PU層の厚さは、スピン速度(回転速度)を制御することにより1ミクロンから10ミクロンまで変化することができる。紫外線ランプ(Model B 100 AP,Black−Ray,アップランド、カリフォルニア州)でサンプルを1時間にわたって照射すると、PU層が硬化し、硬化したPUとGaAsワイヤとSiO
2マスクストライプとの間及び硬化したPUと下側のPETシートとの間に強力な結合が形成される(
図19のステップv)。PDMSスタンプの剥離は、リフトオフ前のワイヤの順序及び結晶方向と同様の順序及び結晶方向を維持しつつ、GaAsワイヤ及びSiO
2ストライプを、硬化されたPUのマトリクス中に組み込んだままにする(
図19のステップvi)。PDMSスタンプからのSiO
2の分離は、2つの効果、すなわち、i)PDMS表面の再構成プロセス中に更に弱まるSiO
2とPDMSとの間の界面の薄いシロキサンボンドに関連する適度な接着強さ、及び、ii)アモルファスで、緻密でなく、脆弱となり得る、SiO
2の凝集破壊後にPDMS上に残るSiO
2の超薄層(数ナノメートルの厚さを有する)、によって可能になる。プラスチックシートを緩衝酸化物エッチャントの溶液(BOE、NH
4F(40重量%):HF(49重量%)=10:1)中に15分間にわたって浸漬すると、SiO
2マスクストライプが除去され、それにより、GaAsナノワイヤの清浄な(100)上面が現れて残る(
図19のステップvii)。
【0152】
GaAsワイヤ配列を製造して乾式印刷するこのような簡単な「トップダウン」手法は多くの利点を与える。例えば、ワイヤの幾何学的性質(すなわち、長さ、幅、形状)及びそれらの空間的方向は、所望の電子分野又は光学分野の用途の設計を満たすために最初のリソグラフィステップによって規定することができる。転写印刷技術は、リソグラフィにより形成されたパターンを維持しつつ100%という高い歩留りを形成することができる。プラスチック基板上の転写されたワイヤのうまく方向付けられた結晶面(すなわち、上端(100)面)は、デバイス製造にとって非常に有用な極めて平坦な上端面(オリジナルウエハの平坦度と同様の平坦度を有する)を与える。また、SiO
2マスクストライプは、GaAsワイヤの上端面がPDMS、PU、処理で使用される溶媒等の有機物により汚染されないようにする。GaAsワイヤを硬化したPU中に組み込むと、GaAsワイヤが固定化され、それにより、特にプラスチック基板が曲げられ或いは捻られるときに、GaAsワイヤが横方向又は垂直方向に移動することが防止される。PU及びPETが本発明で使用できる材料の単なる一例であるということに留意することは重要である。したがって、当業者であれば分かるように、本発明の方法においては、他の接着剤、例えばNEA 155(Norland(登録商標))及び他のタイプのプラスチックシート、例えばKapton(登録商標)又はポリイミド膜を使用することができる。
【0153】
従来技術の「ボトムアップ」手法とは異なり、本発明の「トップダウン」プロセスは、数ミクロンから最大で数十センチメートル(すなわち、オリジナルウエハの直径)の均一の長さを有するGaAsナノワイヤを形成することができる。
図20Aは、マザーウエハ上に無作為に組み立てられた幅が〜400nmで且つ長さが2cmの自立構造のGaAsナノワイヤのSEM画像を示している。長いナノワイヤは、乾燥プロセス中に、それらの狭い幅によって与えられる高い自由度を示す湾曲構造を形成した。
図20Aの下側の挿入画に示されるように、円形のナノワイヤは〜20μmほどの小さい曲げ半径を有しており、これは、幅が〜400nmのナノワイヤが〜1.3%の歪みに耐えることができることを示唆している。
図20Aの上側の挿入画は、ナノワイヤのリフトオフ前の断面の走査型電子顕微鏡写真画像を与えており、GaAsの逆メサプロファイルの形成及び異方性エッチングからのアンダーカットを明確に示している。
【0154】
本発明の1つの態様において、GaAsワイヤの幅は、SiO
2マスクラインの幅を選択的に調整することにより、エッチング時間を選択的に調整することにより、或いは、これらの両方を選択的に調整することにより、制御される。本方法を使用すると、数百ミクロン〜数十ナノメートルの幅が達成できる。エッチング時間を制御すると、ミクロン幅を有するSiO
2パターンからナノワイヤを形成するための簡単な方法が得られる。
図20B〜Eは、2μm幅のSiO
2ラインでパターニングされたGaAsウエハをエッチングすることにより得られる個々のワイヤの走査型電子顕微鏡写真画像を示している。ワイヤは、それらの上端面の平均幅(
【数4】
と称する)を正確に測定するために前述した手順を使用してPDMS表面に対して転写された。
図20Fは、エッチング時に本方法により形成されたワイヤの上端面の平均幅
【数5】
の依存性を示すプロットを与えている。このプロットは、本発明のこの実施形態を使用すると最小で50nmまでの幅を有するGaAsワイヤを得ることができることを示している。幅とエッチング時間との間の線形な関係は、H
3PO
4−H
2O
2−H
2O溶液中のGaAsのエッチング動力学に関する先の研究と一致する。すなわち、エッチング速度は、H
2O
2とH
3PO
4との間のモル比(n
H2O2/n
H3PO4)が2.3よりも大きく且つH
2Oのモル分率(r
H2O)が0.9以下の時(本発明者らの実験で使用されたエッチャントのn
H2O2/n
H3PO4及びr
H2Oがそれぞれ7.8及び0.9である時)にエッチング時間に比例した。統計的な結果によれば、ワイヤの幅の分布(ワイヤの長さに沿って平均することにより決定される)は、〜50nmの幅を有するワイヤに関しては<9%であった。これは、〜16.8nmの平均幅を与えると報告された「ボトムアップ」ナノワイヤの1つのタイプにおける>14%変動よりも若干狭い。
【0155】
また、
図20B〜Dに示される走査型電子顕微鏡写真画像は、薄層化プロセス中にワイヤの三角形断面が維持されることも示しており、これは、自立構造GaAsワイヤの場合であってもエッチングの異方性が高いことを示唆している。ワイヤを緻密に観察すると、ワイヤの側壁上には何らかの粗雑な部分が存在する。この粗雑な部分の殆どは、SiO
2マスクストライプを形成するために使用されるリソグラフィ処理により直接にもたらされるものであり、その一部は、マスクラインのずれ及びエッチングそれ自体によって引き起こされる。この粗さは、本発明のこの実施形態を使用して本発明者らが得ることができる最小の連続ワイヤの幅を決定する。
図20Fに示されるように、個々のワイヤに沿う幅変化と平均ワイヤ幅との間の比率
【数6】
もエッチング時間に大きく依存した。比率が100%を下回ったときに連続するGaAsナノワイヤを形成することができる。
図20Fに示される曲線は、本発明のこの実施形態の適用から得られるナノワイヤの幅を〜40nmまで減らすことができることを示している。異なる平均幅を有するナノワイヤは、個々のワイヤに沿う同じ幅変化(すなわち、〜40nm)を実質的に示し、これは、個々のSiO
2マスクラインに沿う幅変化(すなわち、〜36nm)に近かった。この比較により、ワイヤ側壁の粗さがエッチング時間に無関係に主にSiO
2マスクストリップの粗いエッジによって生じることが確かめられる。したがって、マスクストライプの粗さを減少させるリソグラフィ処理を使用すると、ワイヤのエッジの粗さが減少する。この実施例で説明した転写印刷プロセスが、電気的な接続及び最終的な基板(すなわち、
図19のPET)上にデバイスを製造するためにワイヤの本来の超平坦なエッチングされていない上端面を露出させることに留意することは重要である。
【0156】
図21A〜Gは、PDMS基板及びPU/PET基板上に印刷された様々なGaAsワイヤ配列の画像を示している。この場合のワイヤは、〜400nmの幅及び〜100μmの長さを有している。対応するSiO
2マスクラインは、(100)GaAsウエハ上で
【数7】
方向に沿って向けられた100μmの長さ及び2μmの幅を有していた。
図21Aは、SiO
2マスク層を介して平坦なPDMSスタンプに結合されたGaAsワイヤ配列から得られる走査型電子顕微鏡写真画像であり、ワイヤの順序が維持されていることを示している。
図21Aの挿入画は、3つのワイヤの端部を比較的高い倍率で示しており、ワイヤの端部における破損を明確に表わしている。
図21Bに示されるように、PDMSスタンプを硬化したPUから剥離すると、SiO
2マスクストライプを有する滑らかな面(PDMSと同じ程度に滑らか)が現れて残る。
図21Cに示されるように、BOEを用いてSiO
2層をエッチング除去すると、GaAsワイヤの本来の上端面が露出される。
図21Dは、GaAsワイヤが組み込まれたPU/PET基板から収集された光学画像であり、
図19に示される方法を使用してPU/PET基板上に大面積のワイヤ配列を定期的に印刷できることを示している。他のパターン(例えば、長さが異なるワイヤから成るパッチ)を有するGaAsワイヤ配列をPU/PET基板に対して転写することもできる。
【0157】
転写プロセスは、PUの新たな層をスピンコーティングすることにより同じPET基板上にGaAsワイヤ配列の複数の層を印刷するために繰り返される。これらの方法は、ナノワイヤ及び/又はマイクロワイヤを備える多層構造を形成するための重要な経路を与える。
図21E及び
図21Fは、GaAsワイヤ配列の二重層を有する多層構造の一般的な画像を示している。1つの実施形態において、このような多層構造は、第1の層に対して異なる角度(E及びFに関してそれぞれ〜90°及び〜45°)をもって第2の層を回転させることにより得られる。
図21Gは、
図21E及び
図21Fに示されるサンプルに対して印刷プロセスを繰り返すことにより得られるGaAsワイヤ配列の3つの層を有するPU/PET基板の画像を示している。スピン速度(回転速度)を調整することにより制御できるPU層の厚さは、ワイヤ配列間の間隔を制御する。無論、この種の多層能力は任意の形態のエピタキシャル成長を必要とし、また、PUは、異なるレベル(層)で配列を絶縁する。この製造能力は、多数のデバイス製造用途において有用である。
【0158】
本発明のワイヤ製造技術及び印刷技術は、適当な異方性エッチャントを使用して他の半導体材料から成るワイヤ配列をプラスチック基板上に形成するために使用できる。例えば、Br
2の1%(v/v)メタノール溶液中で
【数8】
方向に沿うSiO
2マスクラインを有する(100)InPウエハをエッチングすることにより、断面が三角形のInPワイヤが製造される。
図22A〜Cは、PMDS基板及びPU/PET基板上のInPワイヤ配列の走査型電子顕微鏡写真画像を示している。これらのワイヤは、長さが50μmで且つ幅が2μmのSiO
2ラインでパターニングされたInPウエハから製造された。図示のワイヤは、〜35μm及び〜1.7μmの長さ及び幅をそれぞれ有している。Br
2のメタノール溶液中でのInPのエッチング作用は、ワイヤ端部の形状及び横方向アンダーカットに関して、H
3PO
4−H
2O
2の水溶液中でのGaAsのそれとは大きく異なっている。例えば、エッチングプロセスは、GaAsワイヤの製造において使用されるエッチマスクと同様のエッチマスクを用いた場合であっても、InPワイヤの全ての端部をマザーウエハから切り離した(
図21)。また、InPにおけるアンダーカットの程度はGaAsにおけるそれよりも小さく、これは、エッチング時間を制御することによってではなく狭いSiO
2ストライプを使用することにより幅が小さい(500nm未満)InPワイヤを更に簡単に形成できることを示している。
【0159】
PU/PET基板上にGaAsワイヤ配列(1.1〜5.6×10
17cm
−3のキャリア密度を有するシリコンドープn型GaAsウエハから製造された
図21に示されるGaAsワイヤ配列と同じもの)と共に形成された単純な2端子ダイオードデバイスの機械的な柔軟性は、曲げ半径に応じて電気的特性を測定することにより評価された。
図19の方法にしたがって形成されたGaAsワイヤ配列を用いて構造体が製造された。フォトリソグラフィ及び金属堆積は、これらのワイヤ上に、Ti/Au(5nm/150nm)によって形成され且つ10μmだけ離間された2つのショットキー接点を形成した。
図23Aは、GaAsワイヤ配列を備える典型的な2端子ダイオードデバイスの概略図及び画像を示している。基板を高濃度のHCL溶液中に10分間にわたって浸漬すると、電極の堆積の直前にGaAsワイヤの表面上の自然酸化物層が除去された。
【0160】
図23Bは、異なる曲げ半径で記録された電流−電圧(I−V)曲線を示している。これらの曲線は全て予期されたダイオード特性を示している。これらの曲線間の僅かな違いは、基板の曲げ半径(R)が0.96cmであった場合でもGaAsナノワイヤが殆ど破壊されなかったことを示唆している。この場合のPET表面上の歪みは〜0.92%であった。これは、
図20Aの挿入画に示される自立構造のGaAsナノワイヤ中に存在すると推定される歪みよりも小さい。また、これらの結果から、この「トップダウン」製造方法により形成されるGaAsナノワイヤがフレキシブルであり湾曲可能なプラスチックシートと一体化できることが確認される。本発明者らは、基板を最初に湾曲させた後に基板が弛緩状態となったときに電流が湾曲前に当初のデバイスから記録された電流よりも〜40%小さかったことをデータが示していることに注目している。
図23Cは、異なる曲げ半径で曲げた後の弛緩状態後の2端子ダイオードデバイスに関して測定された電流−電圧(I−V)曲線を示している。比較のため、
図23Cの黒色の曲線は、湾曲前のデバイス構造に対応する電流−電圧曲線を示している。しかしながら、最初の湾曲/非湾曲サイクル後における曲げ半径及び複数の湾曲/非湾曲サイクルに伴うI−V特性の変化が無いことは、電流の1回限りの減少が電極とワイヤとの間の界面で特性の最初の変化によって引き起こされる場合があることを示唆している。
【0161】
従来のフォトリソグラフィ及び異方性化学エッチングとこれらの材料のバルク高品質単結晶ウエハとを組み合わせて使用すると、断面が三角形のInP及びGaAsから成るマイクロワイヤ及びナノワイヤへの魅力的な「トップダウン」ルートが形成される。ワイヤの寸法及びワイヤの組織は、リソグラフィ条件及びエッチング条件の適切な選択、例えばエッチング時間の選択により、選択的に調整可能である。マザー基板上に得られたワイヤ配列は、ワイヤが埋め込まれる接着剤の薄層でコーティングされたプラスチック基板に対して高い忠実度で効果的に転写印刷することができる。マザーウエハは研磨後に再使用することができ、それにより、多数のワイヤを単一のウエハから形成することができる。「トップダウン」ナノワイヤ/ミクロンワイヤのこの「乾式」転写印刷は、ワイヤの順序及び結晶方向の維持並びにワイヤの活性表面の純度に関して「ボトムアップ」ナノワイヤの「湿式」組み立てを超える多くの利点を与える転写プロセスの新たなクラスを表わす。特に100−200nmよりも幅広いワイヤが有用となるマクロエレクトロニクス用途においては、本発明の「トップダウン」製造方法が多くの魅力的な特徴を有している。本明細書で明らかにしたプラスチック基板上のワイヤのシステムは、優れた曲げ性及びこのクラスの用途における大きな使用可能性を示す。
【実施例5】
【0162】
印刷可能半導体素子のためのソリューション印刷方法
【0163】
本発明は、大面積の多くの基板上にわたって印刷可能半導体素子を転写して組み立てることができるソリューション印刷方法を提供する。本発明のこの態様は、多種多様な半導体デバイス及びデバイス部品に適用できる連続的な高速製造方法を提供する。
【0164】
本発明のこの態様の1つの方法では、ハンドル素子を有する印刷可能半導体素子が設けられる。この説明との関連で、用語「ハンドル素子」とは、基板表面への液相供給後に印刷可能半導体素子の位置及び/又は方向を制御操作できる構成要素のことである。1つの実施形態では、磁場、電場又はこれらの両方に応答する材料から成る層をそれぞれが備える1つ以上のハンドル素子を有する半導体素子が設けられる。本発明のこの態様は、静電気力及び/又は静磁気力を使用して基板表面上の印刷可能半導体素子をアライメントし、位置決めし及び/又は方向付ける方法を提供する場合に有益である。或いは、本発明は、レーザ誘起モーメンタム転写プロセスに応答する材料から成る層をそれぞれが備える1つ以上のハンドル素子を有する半導体素子が設けられる方法を提供する。本発明のこの態様は、1つ以上のハンドル素子を有する印刷可能半導体素子を一連のレーザパルスに晒すことにより基板表面上の印刷可能半導体素子をアライメントし、位置決めし及び/又は方向付ける方法(例えばレーザツイーザーズ方法)を提供するために有益である。或いは、本発明は、毛管現象により形成される力に応答する液滴をそれぞれが備える1つ以上のハンドル素子を有する半導体素子が設けられる方法を提供する。本発明は、1つ以上のハンドル素子又は1つ以上の異なるタイプのハンドル素子、例えば異なるタイプの場に応答するハンドル素子を有する印刷可能半導体素子を使用する方法及びデバイスを含んでいる。ハンドル素子は、マイクロ構造、ナノ構造、マイクロワイヤ、ナノワイヤ、マイクロリボン、ナノリボンを含むがこれらに限定されない本発明の多くのタイプの印刷可能半導体素子において設けられてもよい。
【0165】
本発明のこの態様においては、それぞれが1つ以上のハンドル素子を有する1つ以上の印刷可能半導体素子が溶液中又はキャリア流体中に分散されて基板表面に供給される。印刷可能半導体素子と溶液/キャリア流体との混合物の供給は、基板表面の周囲に無作為に印刷可能半導体素子を分配する。次に、基板表面上に無作為に分配された半導体素子は、印刷可能半導体素子のハンドル素子の存在に起因する力の適用により、基板表面上で選択された位置及び方向へ協調して移動される。本発明のこの態様は、ハンドル素子を有する印刷可能半導体素子を、選択されたデバイス又はデバイス部品構造に対応する整然とした配列或いは位置及び方向へとアライメントするのに役立つ。例えば、磁性材料から成る層を備える1つ以上のハンドル素子を有する印刷可能半導体素子は、適切な強度分布及び方向を有する磁場の印加により基板表面上で選択された位置及び方向へと移動されてもよい。この実施形態において、選択された強度分布及び方向を有する磁場は、1つ以上の強磁性要素又は電磁要素を基板の近傍に位置決めし(例えば、基板表面の後方、基板表面の上側、及び/又は、基板と並んで位置決めする)、それにより、印刷可能半導体素子又は選択されたデバイス又はデバイス部品構造の所望のアセンブリ、パターン又は構造に対応する選択された強度分布及び方向を形成することにより加えられてもよい。本発明のこの態様において、溶媒、キャリア流体又はこれらの両方は、蒸発或いは脱離方法を含む当分野において既知である任意の手段により、ハンドル素子の操作を介した印刷可能半導体素子の選択的な位置決め及び方向付けの前、最中又は後において除去されてもよい。
【0166】
図24は、磁気タグを備えるハンドル素子を有する印刷可能半導体素子をソリューション印刷するための本発明の典型的な方法を示す概略図を与えている。
図24に示されるように、それぞれが薄いニッケル層を備える複数の磁気タグを有する印刷可能半導体素子が設けられる。1つの実施形態において、薄いニッケル層は、ミクロサイズ又はナノサイズの半導体構造の表面上に設けられる。この実施例におけるハンドル素子のためのニッケルの使用は単なる一例であり、これらの方法では、Co,Fe,Gd,Dy,MnAs,MnBi,MnSb,CrO
2,MnOFe
2O
3,NiOFe
2O
3,CuOFe
2O
3,MgOFe
2O
3、遷移金属−准金属合金等のアモルファス強磁性合金を含むがこれらに限定されない任意の結晶又はアモルファス強磁性材料が使用されてもよい。
【0167】
図24の概略図のステップIに示されるように、それぞれがハンドル素子を有する複数の印刷可能半導体素子は、溶液中へ分散されるとともに、基板の表面上へ流し込まれる。このステップは、不規則な分布の位置及び方向で印刷可能半導体素子を基板表面に対して供給する。その後、
図24の概略図のステップIIに示されるように、印刷可能半導体素子に対して、磁場、好ましくは選択された強度分布及び方向を有する磁場が印加される。
図24に示される概略図では、印刷可能な半導体をその上に有する基板表面の反対側に1つ以上の磁石の磁極を位置決めすることにより、選択された強度分布及び方向を有する磁場が印加される。強磁性材料のように、磁場とハンドル素子を備えるニッケル層との相互作用は、基板表面上で印刷可能な半導体を所望の位置及び方向へ移動させる力を形成する。
図24に示される実施形態では、印刷可能半導体素子の長い側面の略平行なアライメントにより特徴付けられる整然とした配列へと印刷可能半導体素子を方向付ける磁場が印加される。
図24の概略図のステップIIIに示されるように、電気的接続を確立する態様で且つ磁場の印加により定められた方向を維持する態様で順序付けられた配列を備える印刷可能半導体素子の端部上に電気接続部を堆積させることができる。
【0168】
図25は、本発明のソリューション印刷方法を使用して、薄いニッケル層を備えるハンドル素子を有する印刷可能半導体素子を備えるマイクロ構造の整然とした配列を形成する状態を実際に示す幾つかの光学画像を与えている。
図25の左側のパネルに示される光学画像は、磁場の印加を伴うことなく基板表面上に印刷可能な半導体が分散された基板表面に対応している。これらの画像に示されるように、印刷可能半導体素子は基板表面上に無作為に分配される。
図25の右側のパネルに示される光学画像は、磁場の印加により基板表面上に印刷可能な半導体が分散された基板表面に対応している。左側のパネルに示される画像とは異なり、磁場が印加される状況に対応する光学画像は、整然とした配列に対応する選択された方向及び位置で印刷可能半導体素子が設けられることを示している。
図25の左側のパネル及び右側のパネルに示される画像を比較すれば分かるように、選択された強度分布及び方向を有する磁場を印加すると、個々の印刷可能半導体素子を選択された位置及び方向へ移動させる力を形成することができる。
【0169】
デバイス製造の当業者であれば分かるように、
図25の右側のパネルにおける印刷可能半導体素子の位置及び方向は、本発明のソリューション印刷方法を使用して得られる方向及び位置の単なる一例である。印刷可能半導体素子上におけるハンドル素子の適切な位置の選択、及び、選択された強度分布及び方向を有する適切な磁場の選択は、半導体素子の位置及び方向のほぼ任意の分布を形成するために使用されてもよい。
【実施例6】
【0170】
フレキシブルプラスチック基板上における高性能単結晶シリコントランジスタの製造
【0171】
本発明の目的は、フレキシブル基板上に組み立てられた印刷可能な高品質半導体素子を備える湾曲可能なマクロ電子デバイス、マイクロ電子デバイス及び/又はナノ電子デバイス及びデバイス部品を提供することである。また、本発明の目的は、湾曲可能な電子デバイス、例えば従来の高温処理方法により製造される薄膜トランジスタの電界効果移動度、on−off比、閾値電圧と同様又はそれらを超える電界効果移動度、on−off比、閾値電圧を示す湾曲可能な薄膜トランジスタを提供することである。最後に、本発明の目的は、低温での大面積のフレキシブル基板上における効率的な高スループット処理、例えばプラスチック基板上での室温処理に適合する湾曲可能な電子デバイスを提供することである。
【0172】
湾曲構造及び平面構造を特徴とする高いデバイス性能を示す有用なマクロ電子デバイス及び/又はマイクロ電子デバイス及びデバイス部品を提供できる本方法、デバイス、構造の能力は、実験的研究によって検証された。これらの測定結果は、単結晶Siリボン、GaAsワイヤ、InPワイヤ及び単一壁カーボンナノチューブを含む一連の高品質半導体をプラスチック基板上に堆積させることにより湾曲可能な薄膜トランジスタを組み立てることができる優れた位置合わせ精度能力を示す乾式転写コンタクト印刷技術を本発明が提供することを明らかにしている。例えば、これらの実験的研究の結果は、乾式転写された印刷可能な単結晶シリコン素子の空間的に明確な配列を備える湾曲可能な薄膜タイプのトランジスタが、例えば0Vに近い閾値電圧及び〜240cm
2/Vsの線形状態で評価される平均デバイス有効移動度等の高いデバイス性能特性を示すことを表わしている。また、これらの研究によれば、本発明の薄膜トランジスタは、前方曲げ及び後方曲げに晒される際に有機半導体、機械的なローバスト性及び柔軟性を伴って形成されるデバイスに相当する曲げ性(すなわち、故障が生じる際の歪み)を示す。
【0173】
大面積のフレキシブル基板上における高性能プリント回路は、センサ、ディスプレイ、医療機器及び他の分野において広範囲の用途を有する新たな形態のエレクトロニクスに相当する。プラスチック基板上に必要なトランジスタを形成することは、これらのマクロ電子システムの達成への挑戦を表わしている。ここ数年にわたって探求されてきた幾つかの手法は、ガラス/石英基板上に従来のシリコン系の薄膜トランジスタ(TFT)を製造するために使用されるタイプのプロセスステップの改良された低温バージョンに基づいている。単結晶シリコン膜を製造するために開発された方向性凝固プロセス(すなわち、cwレーザ、集束ランプ、電子ビーム又はグラファイトストリップヒータを使用したSiO
2上でのSi膜のゾーンメルティング再結晶法)に関連する高い温度により、この手法がプラスチック基板を用いた使用に適さなくなる。レーザに基づく手法は、ある限られた成功度を達成したが、均一性、スループット、低コストプラスチックとの併用がかなりの連続する実験的難問を引き起こす。プラスチック基板上に対する予め形成された回路の直接的なウエハ全体の転写は、幾つかの有用なデバイスをもたらしたが、この手法は、大面積へとスケーリングすることが難しく、低コストで大面積のマクロエレクトロニクスにおいて重要となり得る印刷型製造シーケンスを維持しない。有機半導体材料は、フレキシブルエレクトロニクスへの他の経路を与える。この場合は、勿論、室温堆積により、有機系電子材料をプラスチック基板と一体化させることができる。しかしながら、現在知られている有機半導体材料は、僅かなデバイス移動度しか得られない。例えば、これらの材料の高品質な単結晶でさえ、n型及びp型デバイスにおいてはそれぞれ、1−2cm
2/Vs及び〜10−20cm
2/Vsの範囲の移動度を有している。
【0174】
流体自己組織化等の他の製造技術は、移動度が高い材料を形成するための高温ステップを、プラスチック基板上にデバイスを形成するために必要な低温処理から分離する。しかしながら、これらの方法は、堆積された対象物の組織化又は配置の効果的な制御を可能にしない。
【0175】
図26Aは、本発明の典型的な湾曲できる薄膜トランジスタデバイスを製造するために使用されるステップを示している。最初に、フォトリソグラフィは、シリコンオンインシュレータウエハ(100nmの上端Si層及び145nmの埋設酸化物を有するSoitec unibond SOI)の表面上にフォトレジストのパターンを形成した。このレジストは、SF6プラズマ(Plasmatherm RIE システム、40sccmSF6流量、50ミリトールのチャンバベース圧力、25s間にわたる100W RF電力)を用いてSOIウエハの上端シリコン層をドライエッチングするためのマスクとしての機能を果たした。高濃度のHF溶液は、埋設酸化物をエッチングするとともに、印刷可能な単結晶シリコン半導体素子をそれらの基板から遊離させた(しかし、完全に浮かして除去することができなかった)。ポリ(ジメチルシロキサン)(PDMS)の平坦な断片は、ウエハの上端面とコンフォーマル接触され、その後、リボンの相互に接続された配列を取り戻すために注意深く剥離された。フォトレジストとPDMSとの間の相互作用は、除去のために効率良く2つ一緒に結合するのに十分である。
【0176】
ポリ(エチレンテレフタレート)(PET;厚さ〜180μm)プラスチックシートでコーティングされたインジウム−スズ−酸化物(ITO;厚さ〜100nm)はデバイス基板としての機能を果たした。ITOをアセトン&イソプロパノールで洗浄して脱イオン水で濯いだ後、ITOを窒素蒸気で乾燥させて、ITOの表面を清浄した。短い酸素プラズマ(Plasmatherm RIE システム、20sccmO
2流量、100ミリトールのチャンバベース圧力、10s間にわたる50W RF電力)を用いてITOを処理すると、ITOとスピンキャスティングされたエポキシの誘電体層との間の接着が促進される(66%のSU8−2000シンナーで希釈されたMicrochem SU8−5の30秒間にわたる3000RPM)。この感光エポキシは、〜1分間にわたりホットプレート上において50℃で予め硬化された。その表面上に印刷可能な単結晶シリコン半導体素子を有するPDMSを温かいエポキシ層に接触させてPDMSを剥離すると、印刷可能な単結晶シリコン半導体素子がエポキシに対して転写された。この結果は、シリコンと柔らかいエポキシ層との間の結合力(その一部は、印刷可能な単結晶シリコン半導体素子のエッジの周囲の流れに起因して、機械的なものである)がフォトレジストとPDMSスタンプとの間の結合力よりも強いことを示唆している。エポキシ層は、100℃で5分間にわたり完全に硬化され、10秒間にわたって透明基板の背面からUV光に晒された後、高分子を交差結合するために5分間にわたり115℃でポストベーク処理された。フォトレジストマスク(転写ステップ中に、印刷可能な単結晶シリコン半導体素子の上端面の汚染を都合良く防止する)がアセトンに溶解され、その後、脱イオン水を用いてサンプルが十分に濯がれた。
【0177】
ソース電極及びドレイン電極は、印刷可能な単結晶シリコン半導体素子の上端面上に堆積されたTi(〜70nm;Temescal電子ビーム蒸発器)を用いて形成された。Ti上にパターニングされたフォトレジストマスク(Shipley S1818)を介したエッチング(1:1:10 HF:H
2O
2:Dl 〜2秒間)はこれらの電極の幾何学的形状を規定した。製造の最後のステップは、デバイスの位置にシリコンの島を形成するためのフォトレジストマスクを介したドライエッチング(前述したRIEパラメータを使用するSF
6)に関するものであった。
図26Bは、薄膜トランジスタのボトムゲートデバイス構造の概略図を、デバイス配列の一部の高倍率光学画像及び低倍率光学画像と共に示している。
【0178】
図27Aは、接点の影響を無視する標準的な電界効果トランジスタモデルの適用によって評価される、飽和状態で140cm
2/Vs及び線形状態で260cm
2/Vsの有効デバイス移動度を示す本発明の湾曲可能な薄膜トランジスタの電流電圧特性を示している。しかしながら、これらのデバイスのショットキー接点の高い抵抗(〜90Ωcm)は、デバイス応答に著しい影響を及ぼす。
図27Bは、線形(左軸)スケール及び対数(右軸)スケール上にプロットされた幾つかのデバイスの転写特性を示している。挿入画中のプロットは、閾値電圧が0Vに近い狭い分布を有していることを示している。転写特性における小さい(±10Vサイクルにわたって電流が<4%)ヒステリシスは、シリコン(自然酸化物を有する)とエポキシ誘電体との間の界面における低密度の捕獲電荷を示している。正規化された閾値下の傾きの小さな値(≦13V.nF/dec.cm
2)はこの界面の良好な品質を裏付けており、この品質は、主に、シリコンとその自然酸化物との間の界面によって支配される。
図27Cは、本方法によって製造された幾つかの湾曲可能な薄膜トランジスタの線形有効移動度の分布を示している。ガウスフィットは、30cm2/Vsの標準偏差で240cm
2/Vsの中心値を示している。幾つかの低い値は、デバイスの電極又は他の構成要素における目に見える欠陥に関連している。エポキシ誘電体の均一性は、トランジスタゲート誘電体、256個の(200×200μm)正方形コンデンサを形成するために使用される方法及び同じ基板を形成して使用することにより調査された。
図27Cの挿入画は、測定されたキャパシタンス値を示している。ガウスフィットは、エポキシ層の優れた電気的及び物理的な均一特性を裏付ける2%未満の標準偏差を示している。様々な周波数(1kHz〜1MHz)で行なわれるキャパシタンス測定は、誘電率の僅かな(<3%)周波数依存性を示している。
【0179】
本発明の湾曲可能な薄膜トランジスタの機械的な柔軟性及びローバスト性は、前方曲げ試験及び後方曲げ試験を行なうことにより調査された。
図28Aは、印刷可能な単結晶シリコン半導体素子の顕著な柔軟性を示すソリューションキャスティングされたリボンの高分解能走査型電子顕微鏡写真(左側の挿入画)を示している。
図28の右側の挿入画は、この研究で評価された湾曲可能な薄膜トランジスタを曲げるために使用される実験装置の画像を示している。プラスチックシートが曲げられるときに薄膜トランジスタで生じる歪みを最大にするため、これらの研究では比較的厚い(〜180μm)プラスチック基板が使用された。
図28Bは、引っ張り歪み及び圧縮歪みに晒されたときのエポキシ誘電体のキャパシタンスの僅かな(〜<1%)線形変化を示している(上側の挿入画を参照)。ここでは、屈曲シートの有限要素モデルを使用して曲げ半径及び歪みの値が計算された。屈曲シートの曲げ形状(幾つかの曲げ半径に関して)と有限要素法を用いて得られる形状との比較は、シミュレーションの精度を裏付けた。
図28の下側の挿入画は、ゲートバイアス電圧及びドレインバイアス電圧の両方が4Vの場合において測定されたデバイスの飽和電流の変化を示している。湾曲可能な薄膜トランジスタが動作できる引っ張り歪みの最大値は、(〜0.9%の引っ張り歪み値を損なう)ITOゲート電極の故障によって制限されると思われる。湾曲可能な薄膜トランジスタは、1.4%の高さの圧縮歪みにおいても、良好に動作する。このレベルの曲げ性は、ペンタセンに基づく有機トランジスタに関して最近報告された曲げ性に相当する。この湾曲可能な薄膜トランジスタの故障は、SOIウエハの最上層からエッチングされたミクロンサイズの単結晶シリコン物が高い引っ張り歪み(>6%)に対してかなり持ちこたえることができることをTakahiroらが最近明らかにしたように[T.Namazu,Y.Isono,T.Tanaka J.MEMS 9,450(2000)]、非常に高い歪みにおいてのみ生じやすい。
【0180】
本発明者らのデバイスの歪みに伴う出力電流の僅かな変化の原因は、歪みに伴う移動度の周知の変動が寄与しているものの完全には知られておらず、これらの変化を十分に明らかにしない。この実施例で本発明者らが説明するタイプのデバイスによれば、バルクSiウエハが曲げられるときに容易に達しない歪み値で機械的に歪められたシリコンの電荷輸送を調査する新たな機会を得ることができる。
【0181】
要するに、この実施例は、本発明により提供されるシリコンのための簡単且つ効率的なパラレル印刷プロセスによりプラスチック基板上に形成される湾曲可能な単結晶シリコントランジスタの高いデバイス性能及び有益な機械的特性を明らかにしている。本発明者らの知る限りでは、これらのデバイスの性能は、同様の度合いの機械的曲げ性を示す最良のデバイス(シリコン系等)の性能を超える。印刷可能なシリコン半導体素子の形状、物理的寸法、組成(例えばドーピングされ或いはドーピングされない)にわたるトップダウン制御及び印刷技術は、他の手法と比べて大きな利点を与える。また、結果として得られるデバイスの機械的な柔軟性は優れている。更に、これらの同じ一般的な手法は、他の無機半導体(例えばGaAs、GaN等)に対して適用できるとともに、幅広いフレキシブルなマイクロ電子デバイス及びマクロ電子デバイス並びにデバイス部品、例えば太陽電池、ダイオード、発光ダイオード、相補型論理回路、情報記憶デバイス、バイポーラ接合トランジスタ、FETトランジスタ等を製造するために使用できる。したがって、本発明の方法及びデバイスは、フレキシブルな電子製品を形成するための膨大な範囲の製造用途において有益である。
【実施例7】
【0182】
印刷可能ヘテロ半導体素子及び印刷可能ヘテロ半導体素子を備えるデバイス
【0183】
本発明は、マルチ材料素子を備えるヘテロ印刷可能半導体素子、関連するデバイス、デバイス部品を提供する。この実施例の印刷可能ヘテロ半導体素子は、選択された空間的分布を成すドーパントを有する半導体層を備えるとともに、一連のマクロ電子デバイス、マイクロ電子デバイス及び/又はナノ電子デバイスにおける機能を強化する。
【0184】
有用な電子的特性を示すヘテロ印刷可能半導体素子を製造できる本方法の能力は実験的研究により検証された。また、印刷可能な素子を機能デバイスへ組み立てるための本方法の適用可能性は、接点のための集積ドープ領域を有する印刷可能な単結晶シリコン半導体素子を備えるフレキシブルな薄膜トランジスタの製造により実証された。
【0185】
マクロエレクトロニクスとして知られる大面積の機械的にフレキシブルな電子システムは、家庭用電化製品、センサ、医療機器、他の分野における一連の用途において魅力的である。これらのシステムのための半導体として、様々な有機材料、無機材料、有機/無機ハイブリッド材料が検討されてきた。単結晶シリコンマイクロ/ナノ素子(集合的に印刷可能シリコン半導体素子と称されるワイヤ、リボン、板状体等)を形成するためのこの「トップダウン」技術手法の使用は、フレキシブル基板上に高性能薄膜トランジスタを製造するのに役立つことが実証された代替の手法である。また、この製造手法は、GaAs、InP、GaN、カーボンナノチューブ等の他の重要な半導体材料に適用できることも実証された。
【0186】
本手法の重要な特徴は、その高品質使用、その後のデバイス組立ステップとは別個に成長されて処理される半導体材料のウエハベースソースである。別個の半導体処理ステップ及び組立ステップは、プラスチック基板等の最もフレキシブルな基板に適合する比較的低温(例えば、室温±30℃)でのデバイス組み立てを可能にする。本発明は、高品質な半導体が成長されるだけでなく、フレキシブル基板上での印刷可能半導体素子の組み立てを含むその後の製造ステップから独立した製造ステップにおいて他の方法で高品質な半導体が処理される方法を含んでいる。1つの実施形態において、本発明は、高温処理の最中にドーパントが半導体中へ導入され、その後、結果として得られるドープ半導体材料が、様々な有用な電子デバイスへ組み立てることができる印刷可能ヘテロ半導体素子を形成するために使用される方法を含んでいる。半導体をドーピングする場合において役立つ処理ステップは、高温処理と、ドーパントがそれらの1次元、2次元又は3次元空間分布にわたって制御される(すなわち、注入領域及び注入深さにわたって制御される)方法で導入される処理とを含んでいる。1つの方法において、半導体は、低温基板とは独立に行なわれるステップにおいてウエハ製造レベルで行なわれるスピンオンドーピング処理により選択的にコンタクトドーピングされる。コンタクトドーピングは、半導体材料中におけるドーパントの空間的分布にわたって正確な制御を行ない、したがって、その後のパターニングステップ及びエッチングステップにより、集積ドープ領域を有する高品質な印刷可能ヘテロ半導体素子を製造することができる。ソリューション印刷方法及び乾式転写コンタクト印刷方法は、これらの印刷可能ヘテロ半導体素子を、達成できる優れたデバイス性能及び優れた曲げ性を示す薄膜トランジスタ等のデバイスへと組み立てるのに理想的に適している。
【0187】
図29Aは、PET基板上に印刷可能ヘテロ半導体素子を備えるトランジスタを形成するための製造プロセスの概略図を示している。この実施形態において、印刷可能ヘテロ半導体素子は、ドープソース(S)接点及びドープトレイン(D)接点を有する結晶シリコンを備えている。
図29Aに示される手法は、シリコンオンインシュレータウエハ(SOI;100nmの上端Si層及び200nmの埋設酸化物を伴うSoitec unibond )の上端シリコン層の選択された領域をドーピングするためにソリューション処理可能なスピンオンドーパント(SOD)を使用する。したがって、スピンオンドーパント(SOD)がリンドーパントを与え、また、スピンオンガラス(SOG)は、ドーパントがシリコン中へ拡散する場所を制御するためのマスクとしての機能を果たす。このドープSOIは、印刷可能ヘテロ半導体素子のソースを与える。
【0188】
印刷可能ヘテロ半導体素子を形成するため、本発明者らは、最初に、スピンオンガラス(SOG)溶液(Filmtronic)をSOIウエハ上へスピンキャスティングするとともに、それを4分間にわたって700℃の急速熱アニーリング(RTA)に晒して、均一な膜(300nm厚)を形成する。リソグラフィによりパターニングされたフォトレジスト層(Shipley 1805)を介したエッチング(50秒間にわたって6:1の緩衝酸化物エッチャント(BOE)を用いて行なう)は、SOGのソースウインドウ及びドレインウインドウを開放した。レジストを剥離した後、本発明者らは、SOD(Filmtronic)を含むリンをスピンキャスティングにより均一に堆積させた。5秒間にわたる950℃でのRTAにより、SODからのリンが、リソグラフィにより形成された開口を通じてSOG内及び下側のシリコン中へ拡散した。SOGは他の領域内での拡散を阻止した。ウエハは、室温まで急速に冷却されるとともに、SOG及びSODの両方を除去するために90秒間BOE中に浸漬され、その後、ドーピングプロセスを完了するためにDI水を用いて十分に洗浄された。
【0189】
印刷可能ヘテロ半導体素子は、本方法を使用してエポキシ(SU8;600nm、ゲート誘電体)及びインジウムスズ酸化物(ITO;100nm、ゲート電極)でコーティングされたPETのプラスチック基板上に組み立てられた。エポキシは、誘電体を形成するだけではなく、印刷可能ヘテロ半導体素子の転写印刷を容易にする。Tiのソース電極及びドレイン電極(100nm)は、アライメントされたフォトリソグラフィステップ及びその後のエッチバックによりドープ接点領域上に形成された。
図29Bは、本技術を使用して製造されたヘテロ印刷可能半導体素子を有する幾つかのデバイスの光学画像を示している。
【0190】
本発明者らは、標準的な転写ラインモデル(TLM)を使用してドーピングレベル及び接触抵抗を評価した。特に、本発明者らは、均一にドーピングされた結晶シリコンを備え且つプラスチック基板上に印刷された印刷可能へテロ半導体素子上にある距離間隔(L)が5〜100ミクロンで且つ幅(W)が200ミクロンのTi接触パッド間の抵抗を測定した。
図30Aの挿入画は、接触抵抗を特徴付けるために使用される接触パッド及び印刷可能ヘテロ半導体素子の配置の画像を示している。直線電流(l)対電圧曲線(V)(図示せず)は、接触がオーム接触であり且つドーピングレベルが高いことを示している。抵抗のLへの依存度は、R
total=2R
C+(R
S/W)Lによって表わすことができる。ここで、R
total(=V/I)は2つの接触パッド間の抵抗であり、R
Cは接触抵抗であり、R
Sはシート抵抗である。
図30Aは、Lに応じた正規化抵抗R
totalWのプロットを示している。R
totalWの線形適合は、R
S=228±5Ω/sq及びR
CW〜1.7±0.05Ω・cmを与える。正規化接触抵抗R
CWは、同様の方法で処理された無ドープ印刷可能単結晶シリコン半導体素子において観察されるものよりも低い程度の大きさよりも大きい。低効率は約2.3×10−3Ω・cmであり、これは、簡単のためドーピングが100nmのドープ印刷可能シリコン半導体素子にわたって均一であると仮定した場合には10
19/cm
3のドーピングレベルに対応する。
図30Bは、パターニングされたSOGの拡散バリア(
図29Aの概略図参照)としての使用がドーパンドをシリコン中の所望の領域に局部集中させたことを表わす飛行時間型二次イオン質量分析(TOF−SIMS)測定を示している。
図30Bに示される画像において、明るい赤色は、高いリン濃度を示している。
【0191】
図31A〜Dは、エポキシ/ITO/PET基板上の印刷可能コンタクトドープシリコン半導体素子を備えるトランジスタに対応する測定を示している。
図31Aは、本発明のデバイス(L=7μm、W=200μm)の電流−電圧特性をプロットしている。有効デバイス移動度(μ
eff)は、標準的な電界効果トランジスタモデルの適用によって決定されるように、線形状態において〜240cm
2/Vs及び飽和状態において〜230cm
2/Vsである。
図31Bは、チャンネル長が2μm〜97μmで且つチャンネル幅が200μmの本発明のデバイスの転写特性を示している。全てのケースにおけるON/OFF電流比は〜10
14である。閾値電圧は、単調にL=97μmから2μmに向かって、〜2Vから〜0Vへと変化する。
図31Cは、異なるゲート電圧におけるLに応じた、Wが乗じられた、小さなドレイン電圧でのON状態で測定されたデバイスの抵抗(R
ON)を示している。各ゲート電圧でのR
ONW対Lの線形適合は、固有のデバイス移動度及び接触抵抗の両方に関する情報を与える。この単純なモデルにおいて、R
ONは、チャンネル抵抗(Lに比例する)と、ソース電極及びドレイン電極に関連する合算接触抵抗との連続加算から成る。
図31Cは、線形適合の切片から決定されるR
Cが、評価された全てのチャンネル長におけるチャンネル抵抗と比べて無視できるほど小さいことを示している。
図31Cにおける挿入画は、ゲート電圧に伴う、
図31Cの線形適合の傾きの逆数から決定されるシートコンダクタンスの変動を示している。これらのデータに対する線形適合は、
図31Cの挿入画に示されるように、〜270cm
2/Vsの固有のデバイス移動度及び〜2Vの固有の閾値電圧を与える。
【0192】
図31Dは、線形状態で測定された転写特性から直接に評価された(すなわち、接触効果が差し引かれない)無ドープ印刷可能単結晶シリコン半導体素子及びコンタクトドープ印刷可能単結晶シリコン半導体素子を有するトランジスタの有効移動度μ
effを比較している。無ドープデバイスの場合、μ
effは、100ミクロンから5ミクロンへのチャンネル長Lの減少に伴って200cm
2/Vsから50cm
2/Vsへと急速に減少する。接触は、〜50ミクロンを下回るチャンネル長においてデバイス動作を支配し始める。コンタクトドープの場合、移動度は、約270cm
2/Vsであり、この範囲にわたってチャンネル長と共に<20%変動する。これは、
図31Cの挿入画から決定される固有のデバイス移動度と一致する。これらのデータは、これらのデバイスが接触抵抗の無視できる影響を示す更なる証拠を与える。本発明者らは、異なる移動度に加えて、ドープ接点を有するデバイスが、それらの特性においてより安定し且つより均一であるとともに、無ドープ接点を有するデバイスよりも処理状態に対する感度が低いことに注目している。
【0193】
機械的な柔軟性は、このタイプのデバイスの重要な特性である。本発明者らは、コンタクトドープμs−Siトランジスタに関して、デバイスを圧縮状態及び伸張状態に置く曲げ方向で、系統的な曲げ試験を行なった。また、本発明者らは幾つかの疲労試験も行なった。実験装置の詳細が実施例6に与えられている。
図32Aは、曲げられていない状態の値(μ
0eff)により正規化された有効デバイス移動度の変化を歪み(曲げ半径)の関数として示している。マイナス及びプラスの歪みはそれぞれ、伸張及び圧縮に対応している。この範囲の歪み(200ミクロン厚の基板における〜1cmまでの曲げ半径に対応している)において、本発明者らは、μ
eff/μ
0eff、閾値電圧、on/off比の僅かな変化(殆どの場合、<20%)のみを観察した。このレベルの機械的柔軟性は、プラスチック基板上の有機トランジスタ及びa−Siトランジスタに関して報告された機械的柔軟性に匹敵する。
図32Bは、デバイスにおける圧縮歪みを0%と0.98%との間で変化させる数百の曲げサイクル(9.2mmの半径まで)後における正規化された有効移動度μ
eff/μ
0effを示している。デバイスの特性の僅かな変化が観察された。すなわち、350サイクル後に、μ
eff/μ
0eff、閾値電圧、on/off比が20%未満だけ変化している。これらの結果は、印刷可能なヘテロ半導体素子を備えるこのトランジスタの良好な疲労安定性を示している。
【0194】
この実施例は、プラスチック基板上のトランジスタにおけるコンタクトドープ印刷可能単結晶シリコン半導体素子のためのスピンオンドーパントプロセスの有用性を実証している。スケーリング解析は、このプロセスが接触制限されないデバイスをもたらし、それにより、プラスチック基板上に高周波シリコンデバイスを製造するための本方法の適用性が実証されることを示している。この特徴をデバイスの非常に良好な機械的柔軟性及び疲労安定性と組み合わせることにより、このコンタクトドープ印刷可能ヘテロ半導体手法は、様々なフレキシブルマクロ電子システム、マイクロ電子システム及び/又はナノ電子システムへの貴重なルートとなる。
【0195】
また、本発明は、印刷可能半導体素子を一連のデバイス及びデバイス構造へと集積するためのヘテロ集積方法を提供する。本発明のこの態様は、異なるクラスの材料が同じプラットフォーム上に組み立てられて相互に接続される、幅広い範囲のデバイスを形成するための製造経路を提供する。本発明のヘテロ集積方法は、ソリューション印刷及び/又は乾式転写コンタクト印刷を使用して、2つ以上の異なる材料をそれらの電気的、光学的及び/又は機械的な相互接続性確立する態様で組み合わせる。本発明の印刷可能半導体素子は、異なる半導体材料又は誘電体、導体、セラミックス、ガラス、高分子材料を含む他の種類の材料と一体化されてもよい。
【0196】
この概念の1つの実施形態において、ヘテロ集積は、例えばシステムをチップ型デバイスに対して組み立てるため、異なる組成を有する半導体チップに対して印刷可能半導体素子を転写して相互に接続することを含んでいる。他の実施形態においては、複数の自立構造のデバイス及び/又はデバイス部品が、異なる種類の半導体ウエハ(例えばシリコンウエハ及びGaNウエハ)上に製造され、その後、受けウエハ等の同じ受け基板上に一括して集積される。更なる他の実施形態において、ヘテロ集積は、印刷可能な素子を特定の方向で組み立て且つ印刷可能な素子を集積回路を構成する他の部品と効果的に相互接続することにより1つ以上の印刷可能半導体素子を予備成形された複合集積回路中へ導入することを含んでいる。本発明のヘテロ集積方法は、ウエハボンディング方法、接着剤及び中間接着層の使用、アニーリングステップ(高温アニール及び低温アニール)、酸化物外側コーティングを剥離する処理、半導体ドーピング技術、フォトリソグラフィ、連続的な薄膜層転写による付加的な多層処理を含むがこれらに限定されない、当分野において既知であるマクロスケール及び/又はナノスケールの印刷可能半導体素子を組み立てて相互に接続するための多くの他の技術を使用してもよい。
【0197】
図33は、本発明のヘテロ集積方法を使用して製造されたシリコンウエハ(1 0 0)上に直接に結合された窒化ガリウムマイクロ構造を備える複合半導体構造のSEM画像を示している。
図33に示される複合半導体構造を製造するため、GaNを備える印刷可能半導体素子は、誘導結合プラズマエッチングを使用してGaNオンシリコン(111)ウエハからマイクロマシン加工されるとともに、熱い(100℃)KOH水溶液中での異方性ウェットエッチングによりシリコンから解放された。印刷可能なGaN素子は、マザーチップから取り除かれるとともに、PDMSスタンプを使用して乾式転写コンタクト印刷により受けシリコンチップ上に印刷された。印刷可能なGaN素子とシリコンチップとの間の結合は、引き付けあう分子間力によって行なわれ、したがって接着層を必要としない。
図33に示されるSEM画像は、本発明の印刷可能半導体素子及び転写印刷組立方法が異なる半導体材料をヘテロ集積できることを示している。
【実施例8】
【0198】
印刷可能半導体素子を有する高性能太陽電池の製造
【0199】
本発明の目的は、フレキシブルプラスチック基板を含む様々な組成を有する大面積の基板上に太陽電池、太陽電池配列、太陽電池を有する集積電子デバイスを形成するための方法を提供することである。また、本発明の目的は、従来の高温処理方法によって製造される太陽電池に匹敵するフォトダイオード応答を示す太陽電池のP−N接合を行なうことができるヘテロ印刷可能半導体素子を提供することである。
【0200】
太陽電池における高品質のP−N層界面とのP−N接合部を備えるヘテロ印刷可能半導体素子を形成できる本発明の印刷可能半導体素子の能力は、実験的な研究によって検証された。太陽電池は、P−N接合を形成するための2つの異なる製造経路を使用して製造され、また、これらの経路によって形成されるデバイスのフォトダイオード応答が評価された。この実施例で与えられる実験結果は、本発明の印刷可能なヘテロ半導体素子及び関連する組立方法が太陽電池における高品質なP−N接合を与えるのに有益であることを実証している。
【0201】
図34Aは、印刷可能なP−N接合を備える太陽電池を形成するための製造経路における処理ステップを概略的に示すプロセスフローチャートを示している。
図34Aに示されるように、単結晶シリコンウエハ等の高品質な半導体材料は、Pドープ半導体領域に直接に隣接して位置されるNドープ半導体領域を形成する態様で設けられて処理される。良好な効率を示す太陽電池を製造するためには、P領域及びN領域が物理的に接触され且それらの間に無ドープ半導体が存在しない急な界面を有していることが好ましい。処理された半導体材料は、その後、印刷可能なP−N接合の物理的寸法を規定するためにパターニングされてエッチングされる。リフトオフ技術によるその後の処理は、Nドープ半導体層に直接に隣接するPドープ層を有する印刷可能なP−N接合を備えるモノリシック構造を形成する。印刷可能なP−N接合は、その後、本発明の乾式転写コンタクト印刷方法又はソリューション印刷方法を使用して基板上に組み立てられる。
図34Aに示されるように、Pドープ半導体層及びNドープ半導体層上の接点(すなわち電極)は、印刷可能なP−N接合のリフトオフ処理前におけるモノリシック構造上への堆積によって、或いは、基板上での組み立て後における印刷可能P−N接合上への堆積によって形成される。1つの実施形態において、接点は、1つ以上の金属の気相堆積を使用して形成される。
【0202】
図34Bは、
図34Aに示される製造経路によって形成された太陽電池デバイス構造の概略図を示している。ボロンドーパントを有する5ミクロン厚のPドープ半導体層が、リンドーパントを有する2つのNドープ半導体層と直接に接触した状態で設けられる。接点は、Nドープ層上及びP−N接合を形成するPドープ半導体層と接触する2つ高濃度Pドープ層上に直接に設けられる。リンドープ接点領域及びボロンドープ接点領域の導入はシステムの接触抵抗に打ち勝つ。
図34Cは、
図34Bに示される構造を有する太陽電池デバイスの照明時に観察されるフォトダイオード応答を示す電流−バイアスのプロットを示している。
図34Cに示されるように、電流は、太陽電池が照明されて太陽電池にプラスのバイアスが与えられるときに生成される。
【0203】
図35Aは、独立に印刷可能なP及びNドープ半導体層を備える太陽電池を形成するための代替の製造経路における処理ステップを概略的に示すプロセスフローチャートを与えている。
図35Aに示されるように、単結晶シリコンウエハ等の高品質半導体材料は、別個のNドープ及びPドープ半導体領域を形成する態様で設けられて処理される。処理された半導体材料は、その後、別個のPドープ及びNドープ層の物理的寸法を規定するためにパターニングされてエッチングされる。リフトオフ技術によるその後の処理は、別個に印刷可能なPドープ半導体層及び/又は別個に印刷可能なンドープ半導体層を形成する。その後、第1のドープ半導体素子(Pドープ又はNドープ)を、第1のドープ素子と接触するように異なる組成を有する第2のドープ半導体素子上に印刷することにより、P−N接合が組み立てられる。1つの実施形態において、P−N接合は、両方のP及びNドープ半導体層を印刷することにより、例えば第1のドープ半導体層を基板上に印刷した後に第2のドープ半導体層を第1のドープ半導体層上に印刷することにより組み立てられる。或いは、PN接合は、第2のドープ半導体層を備える基板上に第1のドープ半導体層を印刷することにより組み立てられてもよい。これらの素子間に良好な界面を与えるP及びNドープ層の任意の方向は、本発明において使用でき、第1のドープ半導体素子が第2のドープ半導体素子の上端に接触される方向を含むがこれに限定されない。
【0204】
Nドープ印刷可能半導体素子とPドープ印刷可能半導体素子との接合は、当分野において周知であるウエハボンディング技術(“Materials Science and
Engineering R”(Jan Haisma and G.A.C.M.Spierings,37 1〜60頁(2002))を参照)により達成されてもよい。場合によって、P−Nドープ層間に高品質な界面を有するP−N接合を形成することを妨げる可能性がある外側酸化物層等のP及びNドープ半導体層上の任意の他の絶縁層を剥離するため、P及びNドープ半導体層は、印刷前、印刷中、印刷後に処理される。場合によって、幾つかの実施形態では、接合されるドープ半導体表面上に存在する任意の水が除去される。第1及び第2のドープ半導体素子の組み立ては、本発明のソリューション印刷方法又は乾式転写コンタクト印刷方法を使用して行なわれてもよい。場合によって、本発明のこの態様の製造経路は、P−N接合をアニーリングしてPドープ半導体層とNドープ半導体層との間に良好な界面を形成するステップを更に備えていてもよい。アニーリングは、P−N接合部を支持する基板を著しく損傷させない十分低い温度、例えばプラスチック基板上に組み立てられるP−N接合のための約200℃よりも低い温度で行なわれることが好ましい。或いは、P−N接合は、基板とは別個の処理ステップでアニールされてもよい。この実施形態において、アニールされたP−N接合は、冷却できるとともに、その後、ソリューション印刷方法又は乾式転写コンタクト印刷方法により基板上に組み立てることができる。
図35Aに示されるように、P及びNドープ半導体層上の接点(すなわち電極)は、リフトオフ処理前における個々のドープ半導体層上への堆積によって、或いは、基板上での組み立て後における印刷可能P−N接合上への堆積によって形成されてもよい。1つの実施形態において、接点は、1つ以上の金属の気相堆積を使用して形成される。
【0205】
図35Bは、シリコンウエハのPドープ半導体層の上端にNドープ半導体層を印刷することにより形成される太陽電池デバイスの概略図を示している。Nドープ半導体層とPドープ半導体層との間に高品質の界面を有するP−N接合を形成するために、複合構造が約1000℃の温度までアニールされた。電気接点は、アルミニウム層の気相堆積により各ドープ半導体層の上端に直接に設けられた。
図35Cは、
図35Bに概略的に示される太陽電池の平面図のSEM画像を示している。このSEM画像は、Pドープ半導体層の上端に位置決めされたNドープ半導体層を示しているとともに、各ドープ半導体層の上端のアルミニウム接点も示している。
図35Dは、
図35Cに示される太陽電池のフォトダイオード応答を明らかにする電流−バイアスのプロットを示している。
図35Dに示されるように、電流は、太陽電池が照明され且つ太陽電池にプラスのバイアスが与えられるときに生成される。
図35Eは、異なる光強度に関して
図35Cに示される太陽電池の照明時に観察される時間に応じた光電流のプロットを示している。
【0206】
本発明の太陽電池において有用な印刷可能ドープ半導体素子及び印刷可能P−N接合等の印刷可能なヘテロ半導体素子の物理的な寸法は、多くの変数によって決まる。第1に、厚さは、単位面積当たりに入射する光子のかなりの部分がP−N接合によって吸収されるように十分な大きさでなければならない。したがって、P及びNドープ層の厚さは、少なくとも部分的には、下側の半導体材料の光学的特性、例えば当該半導体材料の光吸収係数によって決まる。幾つかの有用な用途において、印刷可能なシリコン素子の厚さは約20ミクロン〜約100ミクロンの範囲にあり、また、ガリウムヒ素素子の厚さは約1ミクロン〜約100ミクロンの範囲にある。第2に、幾つかのデバイス用途において、印刷可能な素子の厚さは、特定のデバイス用途においてそれらが有用な度合いの柔軟性を示すように十分に小さくなければならない。薄い(<100ミクロン)素子を使用すると、単結晶半導体等の脆弱な材料においてさえも柔軟性が得られるとともに、少ない原料を使用することにより製造コストが下げられる。第3に、印刷可能な素子の表面積は、多大な数の入射光子を捕捉するために大きくなければならない。
【0207】
ドーパントは、スピンオンドーパンド(実施例8参照)を使用する方法を含む、明確な空間的分布の高品質なドープ半導体材料を与えることができる任意のプロセスによって半導体材料中に導入することができる。ドーパントを半導体材料中に導入する典型的な方法は、1次元、2次元、3次元でのドーパンドの空間的配分(すなわち、ドーパントが注入される半導体層の注入深さ及び面積)の制御を行なう。
図34A及び
図35Aに示される製造経路の大きな利点は、クリーンな室内条件下で且つ高温でドーパントの注入及び活性化を個別に行なうことができるという点である。しかしながら、印刷可能なドープ半導体素子及び/又はP−N接合のその後の製造及び組み立ては、低温で且つクリーンではない室内条件で行なわれてもよく、それにより、高いスループットで様々な基板材料上に太陽電池を製造することができる。
【実施例9】
【0208】
伸縮可能な回路及び電子デバイスの製造
【0209】
本発明は、伸縮時、屈曲時又は変形時に良子な性能を得ることができる伸縮可能な電気回路、デバイス、デバイス配列を提供する。実施例2で説明した伸縮可能な半導体素子と同様に、本発明は、湾曲した内面、例えば波構造を示す湾曲した内面等を持つデバイス、デバイス配列又は回路と接触する支持面を有するフレキシブル基板を備える伸縮可能な回路及び電子デバイスを提供する。この構造的な配置において、デバイス、デバイス配列又は回路構造の湾曲した内面の少なくとも一部は、フレキシブル基板の支持面に対して結合される。しかしながら、実施例2における伸縮可能な半導体とは異なり、本発明のこの態様のデバイス、デバイス配列又は回路は、半導体、誘電体、電極、ドープ半導体及び導体等の複数の集積デバイス部品を備える複合素子である。典型的な実施形態において、約10ミクロン未満の正味の厚さを有するフレキシブルな回路、デバイス、デバイス配列は、その少なくとも一部が周期波湾曲構造を成す複数の集積デバイス部品を備えている。
【0210】
本発明の有用な実施形態では、複数の相互に接続された部品を備える自立構造の電気回路又はデバイスが提供される。電気回路又はデバイスの内面は、予め歪みが加えられた拡張状態の弾性基板と接触され且つ少なくとも部分的に結合される。歪みの事前印加は、弾性基板のロールプレス及び/又は事前湾曲を含むがこれらに限定されない当分野において既知である任意の手段によって達成され、また、弾性基板は、単一の軸に沿って拡張することにより或いは複数の軸に沿って拡張することにより予め歪みが加えられてもよい。結合は、電気回路又はデバイスの内面の少なくとも一部と予め歪みが加えられた弾性基板との間の共有結合又はファンデルワールス力により、或いは、接着剤又は中間接着層を使用することにより直接的に達成されてもよい。予め歪みが加えられた弾性基板及び電気回路又はデバイスを結合した後、弾性基板を少なくとも部分的に緩和状態へと弛緩することができ、それにより、印刷可能な半導体構造の内面が曲げられる。電気回路又はデバイスの内面の湾曲により、幾つかの有用な実施形態では周期的な或いは非周期的な波形状を成す湾曲した内面が形成される。本発明は、電気デバイス又は回路を備える全ての構成要素が周期的な或いは非周期的な波形状で存在する実施形態を含んでいる。
【0211】
伸縮可能な電気回路、デバイス、デバイス配列は、その周期的な或いは非周期的な波形状により、回路又はデバイスの個々の部品に大きな歪みを生じさせることなく伸張形状又は湾曲形状に追従することができる、本発明のこの態様は、湾曲状態、伸張状態又は変形状態にあるときに、伸縮可能な電気回路、デバイス、デバイス配列の有益な電気的作用を与える。本方法によって形成される周期的な或いは非周期的な波形状は、(i)回路又はデバイスを備える集積部品の集合体の正味の厚さ、及び、(ii)集積デバイス部品を構成する材料のヤング率及び曲げ剛性等の機械的な特性に伴って変化してもよい。
【0212】
図36Aは、伸縮可能な薄膜トランジスタの配列を形成する典型的な方法を示すプロセスフローチャートを示している。
図36Aに示されるように、自立構造の印刷可能な薄膜トランジスタの配列は、本発明の技術を使用して設けられる。薄膜トランジスタの配列は、トランジスタの内面を露出させる態様で乾式転写コンタクト印刷方法によりPDMS基板に対して転写される。露出された内面は、次に、拡張状態で存在する室温硬化された予め歪みが加えられたPDMS層と接触される。予め歪みが加えられたPDMS層のその後の完全硬化により、予め歪みが加えられたPDMS層に対してトランジスタの内面が結合される。予め歪みが加えられたPDMS層は、冷却することができ、また、少なくとも一部が弛緩状態をとることができる。PDMS層の弛緩は、配列中のトランジスタに対して周期波構造をもたらし、それにより、トランジスタを伸縮させることができるようになる。
図36Aの挿入画は、本方法によって形成される伸縮可能な薄膜トランジスタの配列の原子間力の顕微鏡写真を示している。原子間力顕微鏡写真は、伸張状態又は変形状態で良好な電気的性能を与える周期波構造を示している。
【0213】
図36Bは、弛緩形態及び伸張形態における伸縮可能な薄膜トランジスタの配列の光学顕微鏡写真を示している。約20%の正味の歪みを形成する態様で配列を伸張させても、薄膜トランジスタが破壊され或いは損傷されることはなかった。弛緩形態から歪み形態への移行は、可逆的プロセスとなるように観察された。また、
図36Bは、弛緩形態及び伸張形態の両方において伸縮可能な薄膜トランジスタが良好な性能を呈することを示している、ゲート電極に印加された幾つかの電位におけるドレイン電流−ドレイン電圧のプロットを示している。
【実施例10】
【0214】
印刷可能なマイクロ構造シリコン(μs−Si)の大面積選択転写:フレキシブル基板上に支持された高性能薄膜トランジスタへの印刷に基づくアプローチ
【0215】
本発明の方法、デバイス及びデバイス部品は、高性能集積マイクロ電子デバイス及びデバイス配列を形成するための印刷に基づく新たな製造プラットフォームを提供する。従来の処理方法を上回るマクロ電子技術及びマイクロ電子技術へのこのアプローチの利点は、様々な基板材料、物理的寸法、表面形態との適合性である。また、この印刷に基づくアプローチは、既存の高スループットの印刷機器及び技術と適合する、大面積の基板上に集積マイクロ電子デバイス及びデバイス配列を形成するための低コストな効率の高い製造経路を可能にする。
【0216】
現代社会の構造を形作る高度な情報テクノロジーは、マクロ電子デバイス、すなわち、増大し続ける高い集積密度を伴うマクロ電子デバイスの使用に大きく依存している。1950年代後半の初期の回路(IC)、すなわち、4個未満のトランジスタを組み込む回路から、現在の最新技術のICは、基本的に等しいサイズのパッケージ内に何百万個ものトランジスタを集積している。しかしながら、新たなデバイスフォームファクタ、すなわち、高いデバイス性能レベル維持しつつコストを低減しようとする試みにおいて役立つ製造方法を使用して半導体デバイスの能力が大面積の及び/又はフレキシブルな材料サポートを含む構造中に組み込まれるデバイスフォームファクタの開発に関心が高まってきている。このようなデバイス技術は、アクティブマトリクスピクセルディスプレイドライバ及びRF識別タグの部品としての幅広い用途を見出すことができる。最近の報告は、このような回路、特に半導体ナノワイヤ(NW)又はネットワーク化されたナノチューブに基づく回路のモデルを構成するためのソリューション処理方法の使用について述べている。このようにして形成された機能デバイスは将来有望であるが、これらの機能デバイスは、一般に、従来の高温半導体処理手法と比べてかなり低いレベルのデバイス性能によって特徴付けられる。例えば、〜2cm
2/Vsから〜40cm
2/Vsまでの範囲の電界効果移動度が、ソリューション処理方法を使用して形成される薄膜トランジスタ(TFT)に関して報告されている。
【0217】
1つの態様において、本発明は、超高性能TFTにおいて使用するためのシリコンオンインシュレータウエハから得られるマイクロ構造単結晶シリコン(μs−Si)リボンを使用する「トップダウン」製造方法を提供する。この製造技術は、様々な有用な半導体材料に関して適合するとともに、GaN、InP,GaAsを含む他の工業的に有用な半導体材料にうまく適合された。
【0218】
この実施例において、本発明者らは、大きな基板面積にわたるシリコンリボンの選択的な転写及び正確な位置合わせ精度を可能にする製造方法、及び、硬質な(すなわちガラス)基板及びフレキシブルなプラスチック基板の両方に対して適用可能な多目的な印刷手順を含む、この技術の実施において有用な多くの重要な処理ステップを明らかにする。本発明者らは、具体的にここでは、SOIウエハからμs−Siを選択的に除去した後、これらをパターニング形態でプラスチック基板上に転写するために使用できる2つの方法を報告する。便宜上、方法I(
図37A)及び方法II(
図37B)と称されるプロセスは、μs−Siの印刷に基づくパターン転写に影響を及ぼすために異なるメカニズムの接着結合を使用する。方法Iは、成形されたSylgard 3600ポリ(ジメチルシロキサン)(PDMS)スタンプ(Dow Corning Corp.によって提供される新しい実験的な高弾性率PDMS製品)とμs−Si対象物との間で物理的結合を利用する。方法IIは、最近開発されたマスターレスソフトリソグラフィ技術を使用してμs−SiをPDMSコーティングされた基板に対して化学的に結合する。
【0219】
図37Aは、プラスチック基板上へμs−Si素子をパターニングするための本発明の処理方法(方法I)を示す概略図を与えている。この実施例において、プラスチック基板は、ポリ(エチレンテレフタレート)(PET)シートを構成していた。ピーナッツ形状のフォトレジストパターンは、標準的なフォトリソグラフィ技術を使用してSOI基板の上端で現像される。レジストの剥離をその後に伴うプラズマエッチングは、埋設酸化物層の上端に支持されるμs−Si「ピーナッツ」をもたらす。その後、μs−Siのダンベル端部に存在する残留酸化物層によってのみ保持されるアンダーカットされたピーナッツを与えるために、サンプルがHFを使用して不完全にエッチングされる。その後、SOIウエハは、所望のパターン転写の潜像に対応する特徴をもって成形される硬質な3600PDMSスタンプで積層される。スタンプの立ち上がった特徴形態は、PDMSに対する強い自動接着に起因してμs−SiがSOI表面から選択的に除去される領域に対応している。SOIウエハから剥離された後におけるスタンプは、その後、UVランプを使用して部分的に硬化されたポリウレタン(PU)でコーティングされたポリ(エチレンテレフタレート)(PET)と接触された状態で配置される。PU接着レベル堆積させて大面積の(600cm
2)プラスチック基板にわたって均一なコーティング厚さを確保するために、バーコーティング技術が使用される。スタンプ上のμs−Siは、その後、プラスチックシートのPUコーティングされた側と接触され、その後、サンドイッチのPET側から第2のUV/オゾン露光が行なわれ、それにより、PUを十分硬化させて、μs−Siに対するその結合を高める。プラスチック基板からスタンプを剥離することにより、マイクロ構造シリコンがPDMSから切り離され、したがって、PUコーティングされた基板に対する転写が完了する。
【0220】
図37Bは、プラスチック基板上へμs−Si素子をパターニングするための本発明の代替の処理方法(方法II)を示す概略図を与えている。この実施例において、プラスチック基板はポリ(エチレンテレフタレート)(PET)シートから成る。この最近報告されたデカルトランスファリソグラフィ(DTL)技術は、空間的に変化された接着強度を与えるために光化学的に処理される平坦な変形されたPDMSスラブを使用してパターン転写を行なう。UV/オゾン(UVO)処理は、マイクロリアクターフォトマスクを使用する従来のSylgard 184 PDMSのスラブの表面にわたってパターン化され、それにより、高い空間分解能をもってUVO変化がパターン化される。露光後、光化学的に改質されたPDMSコーティングされたPETは、SOIウエハに存在するピーナッツと接触されるとともに、70℃まで30分間にわたって加熱される。SOIウエハ上のピーナッツ形状の形成は、方法I(
図37参照)の同じ手順に従った。この場合、HFエッチングステップ後、表面上に対するSiO
2(5nm)の薄膜の気相堆積を伴った。この層は、PDMSに対する強力な化学結合を容易にする。加熱後、PDMSがSOIから剥離され、それにより、PDMSのUVO改質された領域に対するμs−Siのパターン転写が得られる。
【0221】
図38Aは、本発明の方法において使用される所謂ピーナッツ形状のμs−Si対象物の構成を示している。
図38Aの挿入された光学画像は、犠牲SiO
2部分を残したままチャンネルの下側の埋設酸化物が除去される最適化されたHFエッチング状態を示している。ピーナッツ形状は、その端部が構造の本体よりも僅かに幅広いため、特に有益である。HF溶液において下側の酸化物層をエッチングする際、タイミングは、SiO
2の犠牲部分が一方の端部に残存している(
図38Aの挿入画に見られるダンベル領域)間に中心の下側の酸化物層が完全に除去されるように最適化することができる。この残存するSiO
2層は、μs−Siをその当初の位置に保持する。この酸化物ブリッジ層が無いと、フォトリソグラフィによりSOIウエハ上に形成されるμs−Siの順位が損なわれ易い。
図38Bは、Si対象物がHF溶液内でオーバーエッチングされるときのこの順位の損失の一例を示している。
図38Bに示されるように、Si対象物は、サンプルがHF溶液中でオーバーエッチングされたときにHF溶液中で浮き始める。方法I又は方法IIによりμs−SiがSOIウエハから除去されると、犠牲領域のエッジで破壊(割れ)が生じる。
【0222】
図38C、38D、38E、38Fは、方法Iを使用して行なわれるμs−Si転写の各ステップの進行を示す一連の顕微鏡写真を示している。
図38Cは、最適化されたアンダーカットHFエッチング後におけるSOIウエハ上のμs−Siを示している。
図38Dは、PDMSスタンプがμs−Siの一部を除去した後におけるSOIウエハを示している。
図38Dに示されるように、PDMSスタンプはμs−Siの一部を除去し、それにより、隣接領域をSOI上で無傷のままにする。SOIウエハ上の使用されていないマイクロ構造シリコン対象物は、それらの当初の位置に保持されるため、スタンプによって拾い上げることができるとともに、その後の印刷ステップ(後述する)において転写することができる。
図38Eは、PDMSスタンプ上に転写されたμs−Si構造を示している。μs−Siリボンの各端部の中心の不存在は、SOIからPDMSスタンプへのマイクロ構造シリコンの転写中に生じる破壊のパターンを浮き彫りにする。
図38Fは、μs−Siの第2の転写(この場合は、PDMSスタンプからPUコーティングされたプラスチック基板への転写)における代表的な結果を示している。この場合、μs−Siはプラスチック上のPU支持体に対して接着する。
【0223】
小さなPDMSスタンプから大きなプラスチック表面に対して複数の転写が可能である。
図39A及び
図39Bは、3600PDMSスタンプによるPU/PETシート上へのμs−Siの選択的な転写の光学画像を示している。
図39Aに示されるように、大面積(15×15cm)が転写する。この場合、μs−Siは、8×8cmスタンプを使用して複数の転写によりプラスチック基板上にまばらに転写された。画像中の各ピクセルは、
図38Fに示されるものと同じ形態を成しており、
図38C〜38Eに関して説明した同じプロトコルに従う。
図39Bの挿入画は更に複雑な成形形態を示している。この場合、ピーナッツμs−Si対象物から成る「DARPAmacroE」文字は、
図38C〜38Eに強調表示された文字よりもサイズが小さい。転写の高いパターン忠実度は、
図39Bに示される文字「A」(挿入画像の円)を規定する対象物の品質によって示される。これらのデータは、スタンプによって直接に接触された領域だけが最終的にプラスチック基板に転写することを明らかにしている。本発明者らは、2つの理由によりこの転写が従来のSylgard 184 PDMSを使用すると難しいことに注目している。第1に、Sylgard 184は、特徴形態間の離間距離が特徴形態の高さの20倍を越える時にたるむ。本明細書に示される実施例は、このようなデザインルールを取り入れており、したがって、低弾性率高分子を使用する高い忠実度の転写を排除する。第2に、本発明者らは、Sylgard 184が時として全てのμs−SiピーナッツをSOIウエハから拾い上げることができる十分な接着力を有しておらず、この高分子から形成されるスタンプを使用する幾つかの用途においては欠陥が観察されることも見出した。Dow Corningからの3600PDMSは、1:200のアスペクト比においても目立つほどたるまず、また、恐らく、より重要なことには、μs−Si対象物に対するその接着力は、184PDMSのそれよりも強い。
【0224】
方法IIを使用して行なわれるμs−Si転写の一例が
図39C及び
図29Dに示されている。
図39Cは、μs−Siが化学的に結合された後に転写されたSylgard 184コーティングされたPET基板の領域の光学顕微鏡写真である。この方法で転写されたμs−Siの高倍率画像が
図39Dに示されている。なお、このデモンストレーションで使用されるピーナッツの寸法は比較的小さく、リボン幅は25μmである。本発明者らは、興味深いことに、これらの更に小さな特徴形態がSOIウエハから除去されるときに異なる破壊点を有していることを見出した。また、
図39Dの引き伸ばし写真においては、PDMS表面ももはや平坦ではないことに注目する。この理由は、PDMSの領域が実際にSOIに対して相互に転写され、それにより、パターン化されたUVO処理により活性化された接触領域中のバルク、すなわち、PDMSがたるんでピーナッツ間のウエハ表面と接触した領域中のバルクから剥ぎ取られるという事実によるものである。
【0225】
図40Aは、方法Iを使用する転写に基づいてピーナッツ形状のμs−Siを使用して製造されたデバイスの典型的なデバイス形状を示している。これらのデバイスを構成するため、インジウム−スズ−酸化物(ITO)コーティングされたPETシートが基板として使用される。ITOはゲート電極としての機能を果たした。また、希釈SU−8 5(測定されたキャパシタンス=5.77nF/cm
2)がゲート誘電体として使用される。
図40Bは、様々なゲート電圧(Vg=−2.5V〜20V)におけるμs−Si TFTのI−V曲線を示している。
図40Bに示されるように、これらのプラスチック支持されたピーナッツ状のμs−Siは、蓄積モードnチャンネルトランジスタ動作を示している。
図40Cの挿入画に示されるように、デバイスのチャンネル長は100μmであり、デバイスの幅は400μmである。
図40Cは、一定のソース−ドレイン電圧(Vsd=1V)で測定された転写特性を示しており、有効移動度が173cm
2/Vsであったことを示している。
図40Cの挿入画は、本発明の実際のデバイスの光学顕微鏡写真を示している。転写特性は、閾値電圧(Vth)が−2.5Vであり、有効移動度が173cm
2/Vsであったことを示した。これらの値は、このタイプの100nm厚のボトムゲート構造において予期された性能特性と一致する。
【0226】
この実施例で説明した選択転写方法は、マイクロ構造シリコンをSOIウエハからフレキシブルなマクロ電子システムへと転写するための効率的なルートを提供する。これらの技術を使用すると、従来のソリューションキャスティング方法とは異なり、マイクロ構造シリコン対象物を、正確な位置合わせ精度をもってSOIマザーウエハから転写させることができるとともに、無駄を最小限に抑える方法で利用することができる。この研究で調べられた新たな3600PDMSの機械的特性は、特にその寸法安定性及び高い表面接着特性において、市販のSylgad 184 PDMSと比べて多くの重要な利点を有していることを示している。また、印刷技術も、高性能μs−Si薄膜トランジスタを組み込むマクロ電子システムの構造に適合することが分かった。
【0227】
実験
方法I
市販のSOIウエハ(SOITEC,p型、上端Si厚=100nm、抵抗率=13.5−22.5ohm−cm、145nm埋設酸化物層)を使用してμs−Si対象物の製造を行なった。SOIウエハを所望のピーナッツ形状の幾何学的形態(中央領域長さ:200μm、幅:25μm、ピーナッツの直径:50μm)へパターニングするためにフォトリソグラフィ(Shipley 1805レジスト)が使用された。その後、露出されたシリコンを除去するためにドライエッチング(Plasmatherm RIEシステム、SF6流、40accm、50ミリトール、RF電力=100W、45秒)が使用された。その後、HF(49%)溶液中で80秒間にわたって下側のSiO
2がエッチングされた。方法Iの3600PDMSスタンプにおいて、特殊PDMS(Dow corning、3600、弾性率=8MPa)とSylgard 184(Dow corning、弾性率=1.8MPa)とが1:1の比率で混合されるとともに標準的なソフトリソグラフィパターニング方法を使用して硬化された。PU薄膜接着層(Norland光接着剤、No.73)を硬化するためにUV源(オゾン活性水銀ランプ、173μW/cm
2)が使用された。これらの後者の膜は、バーコーティング処理(Meyer bar,RD specialties)を使用してPET基板(180μm厚、マイラー膜、Southwall technologies)上にコーティングされた。
【0228】
方法II
方法IIにおいて、使用されるピーナッツ形状のサイズは、方法Iで使用されたサイズよりも小さかった(中央領域長さ:10μm、幅:2μm、端部の直径:5μm)。これらの構造を形成するため、RIEエッチング時間が25秒まで減少された点(側壁エッチングを最小限に抑えるため)を除き、同様の製造プロトコルが使用され、また、高濃度(49%)HF溶液中で30秒間にわたって埋設酸化物層がエッチングされた。後者のエッチングステップ後、サンプルは、水槽中で濯がれ、オーブン内において70℃で5分間乾燥された。その後、サンプルの上端に50ÅSiO
2層が気相堆積された(Temescal FC−1800 Electron Beam Evaporator)。PDMSの薄い層をPET基板上に結合するため、PUの層は、最初に1000rpmで30秒間にわたってPET上にスピンキャスティングされ、その後、4分間にわたってUVO(173 □W/cm
2)に晒された。その後、PDMSの膜は、1000rpmで30秒間にわたってPU上にスピンキャスティングされ、65℃で3時間にわたって熱的に硬化された。
【0229】
選択領域ソフトリソグラフィパターニング処理は、コーティングされたPET基板のパターニングされていないPDMS側をUVOフォトマスクのパターニングされた側と接触させた状態で配置することを含んでいる。このマイクロリアクターマスクの製造は、Childsらによって説明された手順に従った。パターンは、2つの互いに連結する矩形配列(1.2×0.6mm)から成っていた。その後、PDMSには、水銀球(UVOCS
T10×10/OES)から〜3cmの距離を隔ててUVOフォトマスクを通じて3分間にわたって光が照射された。露光後、PDMSスタンプがUVOフォトマスクから剥離され、露光されたPDMS面がピーナッツを支持するSOIウエハと接触された状態に配置された。70℃で30分間にわたって加熱した後、ピンセットを使用してPDMSをゆっくりと剥離し、それにより、照射領域と位置合わせされたμs−Siの部分を剥離した。
【0230】
デバイス製造
コーティングされたPETサンプルのITO側上において66%(v)SU−8 2000シンナーを有するSU−8 5が3000rpmで30秒間にわたって回転された。その後、SU−8エポキシがホットプレート上で〜1分間にわたって60℃で予備硬化された。その後、その表面上にμs−Siを有するPDMSスタンプ(方法I)が、エポキシ層と30秒間にわたって接触され、μs−Siを元のエポキシへ転写するために剥離された。その後、SU−8誘電体は、115℃で2分間にわたって完全に硬化されて、10秒間にわたってUVに晒され、115℃で2分間にわたってポストベークされた。その後、チタン接点(40nm)用の金属が電子ビーム気相堆積によって加えられた。この場合、1%HF溶液を使用したエッチングと併せて、標準的なフォトリソグラフィ法によりソース−ドレイン領域がパターニングされた。
【実施例11】
【0231】
プラスチック基板上に印刷されたGaAsワイヤ配列を用いて形成される湾曲可能なGaAs金属−半導体電界効果トランジスタ
【0232】
本発明の製造方法は、有用な機能デバイス及びデバイス部品へと組み立てて集積することができる材料に関して万能である。特に、本方法は、非シリコン材料を含む様々な高品質半導体材料を使用した半導体ベースのマイクロ電子デバイス及びマクロ電子デバイスの製造に適用できる。本方法の能力を実証するため、GaAsマイクロワイヤを有する湾曲可能な金属−半導体電界効果トランジスタ(MESFET)が、本方法によって製造されるとともに、それらの電気的特性及び機械的特性に関して評価された。
【0233】
高品質な単結晶半導体ナノ−マイクロ構造を用いて大面積の機械的にフレキシブルなプラスチック基板上に形成された電界効果トランジスタは、ディスプレイ、センサ、医療機器、他のシステムにおける様々な用途において非常に興味深い。機械的にフレキシブルな金属−酸化物−半導体電界効果トランジスタ(MOSFET)のための高品質半導体材料(例えばナノワイヤ、マイクロリボン、板状体等)をプラスチック基板上に転写するために多くの手法が示されてきた。本発明の方法は、集積オームソース/ドレイン接点を有するGaAsマイクロワイヤ(本発明者らがマイクロ構造GaAs又はμs−GaAsと称する種類の材料)を使用して湾曲可能な金属−半導体電界効果トランジスタ(MESFET)をプラスチック基板上に製造するのに役立つ。これらの方法において、高品質バルクGaAsウエハは、マイクロ/ナノワイヤを形成する「トップダウン」製造手順のための出発材料を与える。また、エラストマースタンプを使用する転写印刷技術は、これらのワイヤの整然とした配列をプラスチック基板に組み込む。このように形成されたMESFETの電気的測定値及び機械的測定値は、良好な性能及び優れた曲げ性が本方法を使用して得られることを示している。
【0234】
図41は、エピタキシャルnタイプチャンネル層を有する単結晶GaAsワイヤの配列及びAuGe/NiAuの集積オーム接点を使用するMESFETをフレキシブルプラスチック基板(ポリ(エチレンテレフタレート)(PET))上に製造するための主要なステップの概略図を示している。エピタキシャルSi−ドープn型GaAs層(4.0×10
17/cm
3の濃度、IQE社、ベスレヘム、ペンシルベニア州)を有する(100)半絶縁FaAs(Si−GaAs)ウエハは、マイクロワイヤを形成するための原材料を与える。フォトリソグラフィ及び電子ビーム(及び/又は熱)気相堆積によるメタライゼーションは、オーム接点用の従来の多層積層体すなわちAuGe(120nm)/Ni(20nm)/Au(120nm)を備える狭い金属ストライプの配列(幅が2μm、間隔が13μm)を形成する。N
2が流れる石英チューブ内において高温(すなわち、450℃で1分間)でウエハをアニールすると、nGaAsに対するオーム接点が形成される。
【0235】
GaAsの
【数9】
結晶方向に沿って金属ストライプを規定することにより、トップダウン製造方法を使用してマイクロワイヤ(集積オーム接点を有する)を形成することができる。
図41の処理ステップiに示されるように、金属ストライプ(3μm幅)の上端にフォトレジストのパターンが形成され、これらのライン間の開口が、隣接する金属ストライプ間に位置する。これらの開口により、エッチャント(H
3PO
4(85重量%):H
2O
2(30重量%:H
2O=1:13:12の体積比)は、GaAsを異方性エッチングするためにGaAs表面へ拡散することができる。フォトレジストは、オームストライプとGaAsとの間の界面を露光から保護する。異方性エッチングは、逆メサを形成するとともに、GaAsの表面に沿ってアンダーカットし、それにより、断面が三角形で且つ幅が狭いGaAsワイヤがマザー基板から解放されて形成される。アンダーカットは、レジストの形状及びエッチング時間を制御することにより、ミクロン及び/又はナノメートルの長さスケールまで小さい幅を持つGaAsをもたらす。各ワイヤは、結果として得られるMESFETのチャンネル長を規定する間隔で離間される2つのオームストライプを有している。
図41の処理ステップiiに示されるように、ポリ(ジメチルシロキサン)(PDMS)の平坦なエラストマースタンプをフォトレジストでコーティングされたGaAsワイヤに対して接触させると、PDMSの疎水性の表面とフォトレジストとの間にファンデルワールス結合が形成される。
図41の処理ステップiiiに示されるように、この相互作用により、スタンプがマザーウエハから剥離される際に、全てのGaAsワイヤをウエハからPDMSの表面へと除去することができる。この転写プロセスは、リソグラフィにより規定されたワイヤの空間的構成(すなわち、アライメントされた配列)を維持する。GaAsワイヤを有するPDMSスタンプは、その後、光硬化可能な高分子の一種である液体ポリウレタン(PU、NEA 121、Norland Products社、クランベリー、ニュージャージー州)の薄い層でコーティングされたPETシートに対して積層される。
【0236】
図41の処理ステップivに示されるように、PUを硬化させ、PDMSスタンプを剥離して、O2反応性イオンエッチング(RIE、Uniaxis 790,Plasma−Therm 反応性イオンエッチングシステム)によりフォトレジストを除去すると、露出されたオームストライプがPU/PET基板の表面上に埋め込まれて成る順序付けられたGaAsワイヤが残る。転写印刷プロセスにおいて、フォトレジストは、接着層としての機能を果たすだけでなく、GaAsワイヤ及びオーム接点の表面が汚染されないようにする保護膜としての機能も果たす。
図41の処理ステップvに示されるように、PU/PET基板に対する更なるリソグラフィ処理により、ソース、ドレイン、ゲート電極(Ti(150nm)/Au(150nm))を形成するためにオームストライプ同士を接続する電極(250nmAu)が形成される。結果として得られるMESFETの配列は、PU/PETシート(〜200μmの厚さ)及びGaAsワイヤ(幅及び厚さが5μm未満)の曲げ性に起因して機械的にフレキシブルである。
【0237】
図42Aは、プラスチック基板(PU/PET)上におけるGaAsワイヤに基づくMESFETの幾何学的構成の断面図を示す概略図を与えている。ソース/ドレイン電極は、n−GaAs層に対するオーム接点を形成している。ゲート電極は、この層に対するショットキー接点を形成している。硬化されたPUとGaASワイヤの側壁との間の強力な相互作用は、ワイヤをPU/PET基板に対して結合する。この幾何学的構成においては、前述した処理手法を用いると、活性n−GaAs層(すなわちトランジスタチャンネル)は、フォトレジスト以外の任意の高分子材料とは全く接触しない。Ti/Auゲート電極はn−GaAs表面とのショットキー接点を形成しており、バリアによって、従来のMESFETの場合のように、相対的にマイナスの電圧(すなわち<0.5V)を印加して、ソース電極とドレイン電極との間で電流の流れを変調させることができる。
図42Bは、プラスチック上における2つのGaAsワイヤに基づくMESFETの代表的な画像を示しており、各MESFETは、
図41のプロセスフローチャートにしたがって製造された10本のGaAsワイヤの配列を使用する。ワイヤは、うまくアライメントされた方向と、〜1.8μmの均一な幅とを有している。幅が150μmで且つ長さが250μmのAuパッドは、個々のMESFET毎にソース電極及びドレイン電極を形成するために10本のGaASワイヤ上のオームストライプを接続する。幅が15μmで且つソース電極とドレイン電極との間にある50μmの隙間中に堆積されたTi/Auストライプはゲート電極を形成する。これらのストライプは、検査用の大きな金属パッドに接続する。ワイヤ上の金属とプラスチック上の金属との間のコントラストの違いは、恐らく、フォトレジストのRIEエッチング中に形成されたPU上の表面粗さに起因している。
図42Cは、数百個のトランジスタを有する2cm×2cmPETシートの画像であって、当該シートの柔軟性を明らかにしている画像を示している。複数の印刷ステップ及び/又はワイヤ製造工程は、プラスチック基板上に大面積にわたってパターニングされた多数のワイヤを形成するために使用されてもよい。GaAsワイヤの幅、ソース/ドレイン電極の幅、チャンネル及びゲートの長さ等の様々なパラメータは、一連の所望の出力特性を有するMESFETを生み出すために簡単に調整される。
【0238】
トランジスタのDC性能は、それらの電気的特性及び機械的特性を評価するために特徴付けられた。
図43A、43B、43Cは、
図42Bに示されたものと同様な、50μmのチャンネル長、15μmのゲート長を有するGaAs MESFETからの結果を示している。
図43Aは、0.5Vのステップを伴う0.5〜−2.0Vのゲート電圧における電流−電圧(ドレイン電極とソース電極との間)曲線を示している。I
DS−V
DS特性は、n型GaAs層及び標準的な技術を用いて形成された従来のウエハベースのMESFETに相当している。すなわち、I
DSは高いV
DSの領域で飽和しており、また、I
DSはゲート電圧の減少に伴って減少している。線形領域において、V
GS=0Vでのチャンネル抵抗はR
channel=6.4kΩである。
図43Bは、異なるV
DSで測定された本発明のGaAs MEDFETの転写特性(すなわち、I
DS対V
GS)を示している。全ての曲線は、同じゲート電圧すなわち−2.65Vで最小値を有している。高いプラスゲート電圧でのI
DSの降下は、この形態ではショットキー接点を通じて進展するゲートからソースへの漏れ電流に起因している。
図43Cは、MESFETにおいて予期される線形関係を明確に示す(I
DS)
1/2−V
GSとしてプロットされたV
DS=4Vにおける転写曲線を示している。I
DS=0.19mA及びV
DS=4Vにおけるピンチオフ電圧及びトランスコンダクタンスはそれぞれ、Vp=2.65V及びgm0=168μSである。これらの特性は、PET基板上に製造されたトランジスタが従来の手法によりウエハ上に製造された一般的なGaAsMESFETの作用に似ていることを示している。
【0239】
機械的な柔軟性は、考慮される多くの対象用途におけるプラスチック基板上のデバイスの重要なパラメータを表わしている。本発明者らは、支持しているPETシートを曲げることによりトランジスタを検査した。
図44A及び
図44Bは、(A)曲げる前;(B)8.4mmの曲げ半径まで曲げた後におけるフレキシブルPET基板上におけるGaAsワイヤに基づくMESFETのゲート変調された電流−電圧特性を示している。これらの図は、基板が8.4mmの半径すなわち200μm厚の基板における1.2%の表面歪み(この場合には伸長)に対応する半径まで曲げられる前及び後におけるトランジスタの性能を比較している。結果は、トランジスタが故障することなく高い歪みに耐えることができることを示している。実際に、この場合、V
GS=0Vでの飽和電流が〜20%だけ増大する。
図44Cは、湾曲基板をその平坦な曲げられていない状態まで弛緩させた後におけるGaAsワイヤに基づくMESFETのゲート変調された電流−電圧特性を示している。
図44Cと
図44Aとを比較すると、歪みを解放した後、すなわち、基板が再び平坦になった後、トランジスタがその当初の状態の性能を回復しているのが分かる。
図44Dは、湾曲(異なる表面歪みを用いる)/非湾曲に関する3サイクルにおけるV
DS=4V及びV
GS=0VでのI
DSの変化を示しており、これらのMESFETが、それらの性能を大きく変化させることなく(<20%)、デバイスにおける引っ張り歪みを0%と1.2%との間で変化させる複数の曲げサイクルを凌いでいることを表わしている。歪みに伴って観察される系統的な変化は、機械的な歪みがGaAsワイヤのエネルギレベル分布及びGaAsワイヤの結晶格子の変位を引き起こすという事実に関連付けられてもよい。
【0240】
この実施例は、(i)GaAsウエハ上での高温アニーリングによるオーム接点の形成、(ii)異方性化学エッチングによるこれらの集積オーム接点を有するGaAsマイクロワイヤの生成、(iii)エラストマースタンプを用いたプラスチック基板に対するこれらのワイヤの乾式転写印刷、(iv)プラスチック基板上にフレキシブルなGaAsMESFETを形成するための、これらのワイヤの低温処理によるプラスチック上での高品質MESFETの製造、を伴う手法について説明している。GaAsの固有の特性(例えば高い移動度)、すなわち、短いゲート長及び真っ直ぐな経路を有するMESFETを形成してこれらのデバイスを複合回路へと集積(場合によっては、同様の手法を使用するが他の半導体を用いて形成された他のトランジスタと共に)できることは、高度な通信、空間、他のシステムのための高周波応答を達成するための使用を示している。これらのデバイスのこれらの利点及び非常に良好な機械的柔軟性は、GaAsワイヤMESFETをフレキシブルなマクロ電子システムにおいて興味深くする。
【0241】
要約すると、集積オーム接点を有するGaAsのマイクロ/ナノワイヤは、金属気相堆積及びパターニング、高温アニーリング、異方性化学エッチングによりバルクウエハから形成された。これらのワイヤは、プラスチックやペーパー等の様々な珍しいデバイス基板上に直接に形成できる高性能デバイスのための固有のタイプの材料を与える。特に、プラスチック基板上に低温でこれらのワイヤの組織化された配列を転写印刷すると、高品質で湾曲可能な金属−半導体電界効果トランジスタ(MESFET)が得られる。ポリ(エチレンテレフタレート)上のデバイスの電気的及び機械的な特性は、達成できるレベル性能を示す。これらの結果は、家電システム及び軍事電子システムにおける新たな用途のための高速フレキシブル基板へのこのアプローチの展望を示している。
【実施例12】
【0242】
印刷可能半導体素子を使用するデバイス構造
【0243】
図45は、プラスチック基板上のP型ボトムゲート薄膜トランジスタにおける本発明の典型的なデバイス構造を示す概略図を与えている。
図45に示されるように、P型ボトムゲート薄膜トランジスタは、ドープ接点領域を有するシリコン印刷可能半導体素子と、インジウムスズ酸化物ボトムゲート電極と、エポキシ誘電体層と、ソース電極及びドレイン電極とを備えている。プラスチック基板はポリ(エチレンテレフタレート)(PET)シートである。また、
図45には、一連のゲート電圧におけるこれらのデバイスの一般的な電流−電圧特性が示されている。
【0244】
図46は、プラスチック基板上の相補型論理ゲートにおける本発明の典型的なデバイス構造を示す概略図を与えている。
図46に示されるように、相補型論理ゲートは、P型薄膜トランジスタ及びN型薄膜トランジスタを備えており、各薄膜トランジスタは、印刷可能半導体素子を有するとともに、ポリ(エチレンテレフタレート)(PET)シート上に設けられている。
【0245】
図47は、プラスチック基板上のトップゲート薄膜トランジスタにおける本発明の典型的なデバイス構造を示す概略図を与えている。
図45に示されるように、トップゲート薄膜トランジスタは、ドープ接点領域を有するシリコン印刷可能半導体素子と、SiO
2誘電体層と、ゲート電極、ソース電極、ドレイン電極とを備えている。プラスチック基板は、薄膜トランジスタ及びその構成要素の転写及び組み立てを容易にするために薄いエポキシ層を有するポリ(エチレンテレフタレート)(PET)シートである。また、
図47には、一連のゲート電圧におけるこれらのデバイスの一般的な電流−電圧特性が示されている。