【新規性喪失の例外の表示】特許法第30条第1項適用 平成21年12月24日 社団法人計測自動制御学会発行 「第10回SICEシステムインテグレーション部門講演会論文集」「皮膚インピーダンス情報のリアルタイムフィードバックを可能とする電気触覚ディスプレイ講演予稿集」 「第10回計測自動制御学会システムインテグレーション部門講演会資料」
(58)【調査した分野】(Int.Cl.,DB名)
前記刺激パルス制御部は、ユーザが電気刺激を感じ始める電流パルスのパルス幅の閾値と皮膚インピーダンスに関する情報との関係を示す相関データを記憶し、前記周期毎に、前記取得された皮膚インピーダンスに関する情報に基づいて該相関データから該電流パルスのパルス幅の閾値を算出し、且つ、該算出した電流パルスのパルス幅の閾値と刺激開始から当該皮膚インピーダンスに関する情報の取得時までの経過期間から得られる最終的な刺激期間とを比較して次の該周期に前記電極に供給する刺激電流を調整することを特徴とする
請求項2に記載の電気刺激装置。
【発明を実施するための形態】
【0023】
以下に、本発明の一実施形態に係る電気刺激装置及びその電気刺激方法の一例を、図面を参照しながら下記の順で説明する。ただし、本発明はこれに限定されない。
1.電気刺激装置の基本構成
2.刺激量の調整手法
3.各種変形例及び応用例
【0024】
<1.電気刺激装置の基本構成>
[電気刺激装置の構成]
図1に、本発明の一実施形態に係る電気刺激装置のブロック構成図を示す。なお、
図1には、本実施形態の電気刺激装置10の性能を検証するために構築したシステムを示す。
【0025】
本実施形態の検証システムは、主に、電気刺激装置10と、パーソナルコンピュータ100と、シリアルインターフェース101とで構成される。
【0026】
図1に示す検証システムでは、電気刺激装置10の後述するタッチパネルに提示する所定の刺激パターン(例えば所定の文字、図形等の情報パターン)の信号をパーソナルコンピュータ100で生成する。そして、パーソナルコンピュータ100は、生成した所定の刺激パターンの信号を、シリアルインターフェース101を介して高速シリアル通信で電気刺激装置10に送信する。電気刺激装置10は、受信した刺激パターンの情報がタッチパネル上に提示されるように電気刺激を制御する。
【0027】
電気刺激装置10は、刺激パルス制御部11と、電圧/電流変換器12(刺激電流供給部)と、皮膚インピーダンス検出部13と、スイッチ群14(スイッチ)と、タッチパネル15とを備える。
【0028】
刺激パルス制御部11は、マイクロプロセッサ1と、デジタル/アナログ変換器2(以下、D/A変換器2という)と、アナログ/デジタル変換器3(以下、A/D変換器3という)とを有する。
【0029】
マイクロプロセッサ1は、演算処理装置および制御装置として機能し、後述する刺激量の調整時に、電気刺激装置10の各部の動作を制御する。また、マイクロプロセッサ1は、記憶部(不図示)を備える。そして、その記憶部には、刺激量の調整時に用いる例えば刺激パルスのパルス幅の閾値と皮膚インピーダンスとの相関データ等の各種判定データが記憶される。
【0030】
なお、本実施形態では、マイクロプロセッサ1に、動作周波数25MHzのマイクロプロセッサを用いる。ただし、マイクロプロセッサ1としては、高速性を有するものであれば任意のマイクロプロセッサを用いることができる。また、本実施形態の電気刺激装置10を種々の用途への適用を考慮した場合には、例えばマイクロプロセッサ1の入手可能性及び入出力インターフェースの豊富さ等を考慮してマイクロプロセッサ1を選択することが好ましい。
【0031】
D/A変換器2(デジタルアナログ変換器)は、マイクロプロセッサ1からパラレル出力されたデジタル信号(刺激電圧信号)をアナログ信号に変換する。そして、D/A変換器2は、変換したアナログ信号を電圧/電流変換器12に出力する。
【0032】
なお、D/A変換器2には、ビット数が12ビットであり、サンプリングレートが1Mspsであり、且つ、セトリングタイムが1μsであるD/A変換器を用いる。また、D/A変換器2のマイクロプロセッサ1に接続する側(信号入力側)のインターフェースは、パラレルインターフェースとする。
【0033】
A/D変換器3(アナログデジタル変換器)の2つの入力端子は、皮膚インピーダンス検出部13内の後述する分圧回路5を介して抵抗4の両端にそれぞれ接続される。A/D変換器3には、抵抗4の両端の電圧信号が入力され、A/D変換器3は、その入力信号(アナログ信号)をデジタル信号に変換する。そして、A/D変換器3は、変換したデジタル信号をマイクロプロセッサ1にパラレル出力する。
【0034】
なお、A/D変換器3には、ビット数が12ビットであり、サンプリングレートが1.25MspsであるA/D変換器を用いる。このような性能のA/D変換器3を用いることにより、A/D変換器3のサンプリング間隔(1μs以下)を皮膚の電気的時定数より十分小さくすることができ、略同時サンプリングが可能になる。また、A/D変換器3のマイクロプロセッサ1に接続する側(信号入力側)のインターフェースは、パラレルインターフェースとする。
【0035】
従来、マイクロプロセッサには、D/A変換器及びA/D変換器を備えるものも存在するが、本実施形態では、上述のように、パラレルインターフェースを有するD/A変換器2及びA/D変換器3をマイクロプロセッサ1とは別個に設ける。これは、次の理由によるものである。本実施形態の電気刺激装置10では、後述するように、皮膚インピーダンスを計測し、その計測結果をフィードバックして刺激量を調節するが、本実施形態で必要とするこのフィードバック処理の周期は数μs以下である。しかしながら、現状では、マイクロプロセッサに内蔵されたD/A変換器及びA/D変換器によりこのような高速処理を行うことは困難であり、電気刺激装置の用途には適さない。
【0036】
また、従来、高速動作可能なシリアルインターフェースのD/A変換器及びA/D変換器も存在する。しかしながら、上述のような高速のフィードバック処理を実現するためには、マイクロプロセッサ1と、D/A変換器及びA/D変換器との間のデータの通信時間も短縮する必要がある。それゆえ、本実施形態では、シリアルインターフェースのD/A変換器及びA/D変換器よりも通信時間を短縮することが可能なパラレルインタースのD/A変換器2及びA/D変換器3を用いる。
【0037】
電圧/電流変換器12は、D/A変換器2でアナログ信号に変換された電圧信号を電流信号(刺激電流)に変換する。そして、電圧/電流変換器12は、変換した電流信号を、皮膚インピーダンス検出部13及びスイッチ群14を介してタッチパネル15内の選択された所定の電極に供給する。すなわち、本実施形態の電気刺激装置10では、電流制御により電気刺激量を調整する。
【0038】
皮膚インピーダンス検出部13は、抵抗4と、分圧回路5とを有する。抵抗4及び分圧回路5は、タッチパネル15内の電極に接触した皮膚のインピーダンス(皮膚インピーダンスZ)を計測するために設けられたものである。
【0039】
図2に、本実施形態の分圧回路5の内部構成、及び、抵抗4と分圧回路5との接続関係を示す。分圧回路5は、抵抗4の両端(入出力端)の電圧を精度よく測定するための回路であり、4つの分圧抵抗Rb,Rc,Rd,Reで構成される。なお、本実施形態では、例えば350V程度の高電圧を用いるので、
図2に示すような分圧回路5を設ける。
【0040】
抵抗4の一方の端子(入力側端子)は、電圧/電流変換器12の出力端子に接続され、抵抗4の他方の端子(出力側端子)は、スイッチ群14の入力端子に接続される。また、抵抗4の一方の端子には、分圧抵抗Rb及びRcからなる直列抵抗が接続され、抵抗4の他方の端子には、分圧抵抗Rd及びReからなる直列抵抗が接続される。さらに、分圧抵抗Rb及びRcからなる直列抵抗の抵抗4側とは反対側の端子は接地され、分圧抵抗Rbと分圧抵抗Rcとの接続点がA/D変換器3に接続される。そして、分圧抵抗Rd及びReからなる直列抵抗の抵抗4側とは反対側の端子は接地され、分圧抵抗Rdと分圧抵抗Reとの接続点がA/D変換器3に接続される。
【0041】
皮膚インピーダンスZを計測するためには、皮膚に印加される電圧Voと皮膚に流れる電流Iを測定する必要がある。皮膚に印加される電圧Voは、抵抗4(抵抗値Ra)のスイッチ群14側の端子の電圧を検出することにより得られる。一方、皮膚に流れる電流Iは、抵抗4の両端の電位差(Vo−Vi)に基づいて算出(I=(Vo−Vi)/Ra)することができる。
【0042】
なお、抵抗4の両端の電位差(Vo−Vi)は微小であるので、皮膚に流れる電流Iを高精度で測定するため、分圧回路5内の分圧抵抗Rb、Rc、Rd及びReには、誤差0.1%程度の精密抵抗を用いることが好ましい。本実施形態の電気刺激装置10では、分圧抵抗Rb、Rc、Rd及びReにこのような精密抵抗を用い、且つ、12ビットのA/D変換器3を用いることにより、電流計測のダイナミックレンジを9ビット確保することができた。
【0043】
なお、後述するように、本実施形態のように皮膚インピーダンスZの計測時の刺激電流を一定とする場合には、抵抗4を流れる電流Iを必ずしも計測する必要は無い。それゆえ、この場合には、分圧回路5内の分圧抵抗Rb、Rc、Rd及びReとして、上述のような抵抗誤差の小さな精密抵抗を用いる必要はない。
【0044】
また、本実施形態では、スイッチ群14内の後述する切替スイッチ20の構造上、皮膚のグランド側(下流側)で電流を計測することができないので、皮膚の高電圧側(上流側)に抵抗4及び分圧回路5を設けて電流を計測する。
【0045】
次に、本実施形態のスイッチ群14及びタッチパネル15の構成を、
図3を参照しながらより詳細に説明する。なお、
図3は、スイッチ群14及びタッチパネル15の内部構成を示す図である。
【0046】
スイッチ群14は、複数の切替スイッチ20で構成される。各切替スイッチ20は、第1スイッチ21及び第2スイッチ22を直列接続することにより構成される。なお、本実施形態では、切替スイッチ20の数は、後述するタッチパネル15内の電極30の数と同じとする。
【0047】
複数の切替スイッチ20は、並列接続され、各切替スイッチ20の一方の端子が抵抗4に接続され、他方の端子は接地される。そして、各切替スイッチ20内の第1スイッチ21及び第2スイッチ22の接続点Aがタッチパネル15内の対応する一つの電極30に接続される。
【0048】
各切替スイッチ20内の第1スイッチ21及び第2スイッチ22のオンオフ動作は、マイクロプロセッサ1により制御される。その動作を、
図4A及び4Bを参照しながら簡単に説明する。なお、
図4Aは、電極30に刺激電流を供給したときの第1スイッチ21及び第2スイッチ22のオンオフ状況を示す図であり、
図4Bは、電極30に刺激電流を供給しないときの第1スイッチ21及び第2スイッチ22のオンオフ状況を示す図である。
【0049】
本実施形態の電気刺激装置10では、ユーザに電気刺激を与える際、パーソナルコンピュータ100から入力される所定の刺激パターンの信号に基づいて、タッチパネル15内の複数の電極30の中から一つの電極30を所定の順序で走査及び選択し、選択された電極30に刺激電流を供給する。それゆえ、電極30の選択時には、マイクロプロセッサ1は、
図4Aに示すように、第1スイッチ21がオン状態となり、且つ、第2スイッチ22がオフ状態となるように制御する。
【0050】
一方、電極30の走査時に選択されていない電極30は接地する。それゆえ、電極30の非選択時には、マイクロプロセッサ1は、
図4Bに示すように、第1スイッチ21がオフ状態となり、且つ、第2スイッチ22がオン状態となるように制御する。
【0051】
タッチパネル15は、複数の電極30で構成される。複数の電極30は2次元のアレイ状に配置される。なお、電極30の数及び配置形態は、例えば用途等に応じて適宜設定される。また、各電極30は、導電性材料であれば任意の材料で形成することができ、例えば用途等に応じて適宜選択できる。さらに、
図3に示す例では、ユーザの皮膚と接触する側の電極30の面形状は円形とするが、この面形状も例えば用途等に応じて適宜設定できる。
【0052】
図5に、タッチパネル15内の電極30の走査例を示す。なお、
図5中では、刺激電流を供給する電極30(選択された電極30)をハッチングした丸印で表示し、刺激電流を供給しない電極30(選択されていない電極30)は白抜きの丸印で表示する。
【0053】
図5に示す例では、まず、マイクロプロセッサ1は、電極群内の所定の行を選択する。次いで、マイクロプロセッサ1は、選択された行において、例えば、複数の電極30内の一方の端部の電極30から他方の端部の電極30に向かって(
図5では左から右に向かう方向)電極30を順次選択する。この選択は、
図4A及び4Bで説明したように、切替スイッチ20の動作をマイクロプロセッサ1でオンオフ制御することにより行われる。なお、電極30の走査パターンは、
図5に示す例に限定されず、例えば、用途、パーソナルコンピュータ100から入力される刺激パターン等に応じて適宜設定される。
【0054】
<2.刺激量の調整手法>
[調整手法の概要]
本実施形態の電気刺激装置10では、上述のように、高速処理可能なマイクロプロセッサ1を適用するだけでなく、マイクロプロセッサ1とD/A変換器2及びA/D変換器3との間のデータの通信時間をより短縮するためにパラレルインターフェースのD/A変換器2及びA/D変換器3を用いる。このような構成の電気刺激装置10に対して、
図1に示す検証システムで種々の予備実験を行ったところ、本実施形態の電気刺激装置10では、数μs程度の処理時間でフィードバック処理が可能であることが確認された。なお、ここでは、予備実験の説明は省略する。
【0055】
すなわち、本実施形態の電気刺激装置10では、一つの電極30における1回の刺激期間(数百μs程度)内で、数回〜数十回程度のフィードバック処理を行うことができることが確認された。また、本実施形態の電気刺激装置10に対する予備実験から、本実施形態の電気刺激装置10では、皮膚の接触及び非接触間の判定処理も刺激開始から非常に短い時間(数μs程度)で実現可能であることが分かった。
【0056】
そこで、本実施形態では、一つの電極30における1回の刺激期間内に、皮膚インピーダンスZの計測処理及びその計測結果に基づく刺激量の調整処理のフィードバックループを数回〜数十回程度行う。なお、本実施形態で行うフィードバック処理の周期(数μs程度)は、ユーザが電気刺激を感知する時間より十分短い時間である。それゆえ、本実施形態では、1回の刺激期間において、皮膚インピーダンスZの計測フェーズと、刺激の調整フェーズとを略統一することが可能になる。すなわち、本実施形態では、皮膚インピーダンスZの情報に基づく刺激量のフィードバック制御を、よりリアルタイムで行うことが可能になる。
【0057】
また、本実施形態では、刺激量をフィードバック制御する際、ユーザが電気刺激を感じ始める刺激パルスのパルス幅(閾値ΔTth)と、皮膚インピーダンスZ(皮膚インピーダンスZに関する情報)との間の相関データを用いる。従来、刺激パルスのパルス幅の閾値ΔTthと、皮膚インピーダンスZとの間には強い相関があることが知られている。具体的には、両者の間には、皮膚インピーダンスZが大きくなると、刺激パルスのパルス幅の閾値ΔTthが小さくなるという関係がある。
【0058】
本実施形態では、このような皮膚インピーダンスZと刺激パルスのパルス幅の閾値ΔTthとの相関データ(以下、調整データという)を予め所定値の刺激電流で求めておく。そして、刺激量のフィードバック制御時には、この調整データに基づいて、刺激量を調整する。
【0059】
なお、本実施形態では、後述するように、皮膚インピーダンスZの計測時には刺激電流の値は一定とするので、
図2中の抵抗4のスイッチ群14側端部の電圧Vo(皮膚に印加される電圧)が皮膚インピーダンスZと同等のパラメータとなる。それゆえ、この場合、調整データとして、皮膚インピーダンスZと刺激パルスのパルス幅の閾値ΔTthとの相関データの代わりに、抵抗4のスイッチ群14側端部の電圧Vo(皮膚インピーダンスZに関する情報)と刺激パルスのパルス幅の閾値ΔTthとの相関データを用いてもよい。
【0060】
[刺激量の調整原理]
次に、本実施形態の電気刺激装置10における刺激量の調整手法の原理を、
図6を参照しながらより詳細に説明する。なお、
図6は、所定の電極30において1回の刺激期間(選択期間)に印加される刺激パルス40の波形図であり、横軸は時間であり、縦軸は刺激量(電流値)である。
【0061】
本実施形態では、まず、所定の電流値Io(例えば約5mA程度)の刺激電流を切替スイッチ20により選択された電極30に供給する。次いで、刺激開始から所定の時間(皮膚インピーダンスZの計測周期ΔTs)が経過した後、皮膚インピーダンスZを計測する。なお、皮膚インピーダンスZの計測周期ΔTs(周期)は、電極30における1回の刺激期間ΔTm(または選択期間)より十分短い時間(例えば数μs程度)とし、計測周期ΔTs内の刺激電流の電流値Ioは一定とする。
【0062】
次いで、計測された皮膚インピーダンスZに基づいて、調整データから刺激パルス40のパルス幅の閾値ΔTthを求め、その閾値ΔTthに基づいて刺激パルス40を停止するか否かを判定する。この際、皮膚インピーダンスZの計測時からさらに、計測周期ΔTsだけ刺激電流を通電した際の刺激パルス40のパルス幅(以下、最終パルス幅という)と、調整データから求めたパルス幅の閾値ΔTthとを比較して刺激パルス40を停止するか否かを判定する。
【0063】
この判定動作をより具体的に説明すると、例えばk回目のインピーダンス計測で算出された刺激パルス40のパルス幅の閾値ΔTthが刺激パルス40の最終パルス幅({k+1}ΔTs)より小さい場合(ΔTth<{k+1}ΔTs)には、刺激パルス40を停止すると判定する。
【0064】
この場合、例えばk回目に算出されたパルス幅の閾値ΔTthがkΔTsである場合(ΔTth=kΔTs)には、k回目のインピーダンス計測時点で刺激電流を停止する。
【0065】
また、例えばk回目に算出されたパルス幅の閾値ΔTthがkΔTsより大きく且つ{k+1}ΔTsより小さい場合(kΔTs<ΔTth<{k+1}ΔTs)には、次の計測周期ΔTsに供給する刺激電流の電流値を低減し、次の計測周期ΔTs(通電期間)が経過した後、刺激電流を停止する。この際、刺激パルス40で与えるトータルの刺激量(電流量)と、電流値Ioの刺激電流を閾値ΔTth間、通電した際のトータルの刺激量とが略同じになるように、最後の通電期間(ΔTs)の刺激電流の電流値を調整する。
【0066】
例えば、最後(k回目)のインピーダンス計測で算出された刺激パルス40のパルス幅の閾値ΔTthが(k+0.3)ΔTsである場合、最後の通電期間における刺激電流の値を0.3×Ioに設定する。なお、皮膚インピーダンスZの計測周期ΔTsはシステムのハードウェアの制約等により決まるパラメータであるので、計測された皮膚インピーダンスZに基づいて算出される刺激パルス40のパルス幅の閾値ΔTthは、必ずしも計測周期ΔTsの整数倍にはならない。
【0067】
一方、例えばk回目に算出されたパルス幅の閾値ΔTthが刺激パルス40の最終パルス幅以上である場合(ΔTth≧{k+1}ΔTs)には、次の計測周期ΔTs(通電期間)も電流値Ioの刺激電流を電極30に供給する。
【0068】
本実施形態では、上述した皮膚インピーダンスZの計測及び刺激パルス40の停止の有無の判定を計測周期ΔTs毎に繰り返して行う。それゆえ、本実施形態では、電極30に印加する刺激パルス40は、
図6に示すように、皮膚インピーダンスZの計測周期ΔTsに対応するパルス幅のサブパルス41を所定回数連続して印加し、最後の通電期間(ΔTs)だけは刺激電流が低減された調整用サブパルス42を印加したパルスとなる。すなわち、本実施形態では、計測された皮膚インピーダンスZに基づいて、所定の電極30に印加する刺激パルス40のパルス幅ΔTmを制御するとともに、そのパルス波形も制御する。
【0069】
なお、サブパルス41の刺激電流の電流値Io(強度)は、例えば、ユーザが求める刺激強度(皮膚インピーダンス)、サブパルス41のパルス幅(ΔTs)等に応じて適宜設定される。また、皮膚インピーダンスZの計測周期ΔTs(サブパルス41のパルス幅)は、例えばユーザが求める刺激強度、電極30の1回の選択期間等に応じて適宜設定される。
【0070】
[刺激量の調整動作]
次に、本実施形態の電気刺激装置10における刺激量調整時の具体的な処理手順を、
図7を参照しながら説明する。なお、
図7は、本実施形態における刺激量調整時の具体的な処理手順を示すフローチャートである。
【0071】
まず、マイクロプロセッサ1は、スイッチ群14を制御して所定の電極30を選択する。次いで、マイクロプロセッサ1は、D/A変換器2、電圧/電流変換器12、抵抗4及びスイッチ群14を介して、選択した電極30に所定の電流値Ioの刺激電流を供給する(ステップS1)。この際、マイクロプロセッサ1は、通電開始からの経過時間をカウントする。
【0072】
次いで、マイクロプロセッサ1は、通電開始から、または、前回の皮膚インピーダンスZの計測(後述するステップS3)後からの経過時間が、予め設定された皮膚インピーダンスZの計測周期ΔTsを経過したか否かを判定する(ステップS2)。
【0073】
ステップS2において、経過時間が計測周期ΔTsに達していなければ、ステップS2はNO判定となる。この場合には、経過時間が計測周期ΔTsに達するまで、電流値Ioの刺激電流を供給した状態でステップS2の処理を繰り返す。
【0074】
一方、ステップS2において、経過時間が計測周期ΔTsに達した場合、ステップS2はYES判定となる。この場合には、マイクロプロセッサ1は、抵抗4の両端の電圧を分圧回路5及びA/D変換器3を介して検出し、その検出結果に基づいて皮膚インピーダンスZを算出する(ステップS3)。なお、本実施形態のように、皮膚インピーダンスZの計測時における刺激電流の値を一定とする場合には、抵抗4のスイッチ群14側の端子における電圧Voのみを検出してもよい。また、ステップS2がYES判定となった場合には、マイクロプロセッサ1は、経過時間のカウントをリセットし、経過時間をカウントし直す。
【0075】
次いで、マイクロプロセッサ1は、ステップS3で計測(算出)された皮膚インピーダンスZに基づいて、現在選択されている電極30に皮膚が接触している否かを判定する(ステップS4)。これは、例えば、マイクロプロセッサ1に予め設定(記憶)された皮膚の接触及び非接触を判定するための皮膚インピーダンスZの所定の閾値と、ステップS3で計測された皮膚インピーダンスZとを比較して行われる。そして、マイクロプロセッサ1は、計測された皮膚インピーダンスZが所定の閾値より大きい場合には、皮膚が非接触であると判定する。
【0076】
ステップS4において、マイクロプロセッサ1が、皮膚が非接触であると判定した場合、ステップS4はNO判定となる。この場合には、刺激電流の供給を停止し(ステップS9)、電流刺激の制御を終了する。
【0077】
一方、ステップS4において、マイクロプロセッサ1が、皮膚が接触していると判定した場合、ステップS4はYES判定となる。この場合、マイクロプロセッサ1は、計測された皮膚インピーダンスZに基づいて、マイクロプロセッサ1内に記憶された調整データから刺激パルスのパルス幅の閾値ΔTthを求める。さらに、マイクロプロセッサ1は、刺激パルス40の最終パルス幅({k+1}ΔTs:k=1,2,…)を算出する。そして、マイクロプロセッサ1は、刺激パルスのパルス幅の閾値ΔTthが、刺激パルス40の最終パルス幅({k+1}ΔTs)より小さいか否かを判定する(ステップS5)。
【0078】
ステップS5において、パルス幅の閾値ΔTthが刺激パルス40の最終パルス幅以上である場合(ΔTth≧{k+1}ΔTs)、ステップS5はNO判定となる。この場合、刺激電流の値を電流値Ioに維持したまま、ステップS2に戻って、ステップS2以降の処理を繰り返す。
【0079】
一方、ステップS5において、パルス幅の閾値ΔTthが刺激パルス40の最終パルス幅未満である場合(ΔTth<{k+1}ΔTs)、ステップS5はYES判定となる。この場合、マイクロプロセッサ1は、パルス幅の閾値ΔTthが刺激パルス40の現時点のパルス幅(kΔTs)に等しいか否かを判定する(ステップS6)。
【0080】
ステップS6において、パルス幅の閾値ΔTthが刺激パルス40の現時点のパルス幅に等しい場合(ΔTth=kΔTs)、ステップS6はYES判定となる。この場合には、刺激電流の供給を停止し(ステップS9)、電流刺激の制御を終了する。
【0081】
一方、ステップS6において、パルス幅の閾値ΔTthが刺激パルス40の現時点のパルス幅に等しくない場合(kΔTs<ΔTth<{k+1}ΔTs)、ステップS6はNO判定となる。この場合、次回のインピーダンス計測まで電流値Ioの刺激電流を流し続けると刺激過多となる。それゆえ、ステップS6でNO判定となった場合には、マイクロプロセッサ1は、例えば、上述した刺激量の調整原理に従って刺激電流の電流値を低減(調整)する(ステップS7)。
【0082】
次いで、マイクロプロセッサ1は、皮膚インピーダンスZの計測(ステップS3)後からの経過時間が、予め設定された皮膚インピーダンスZの計測周期ΔTs(サブパルス41のパルス幅)を経過したか否かを判定する(ステップS8)。ステップS8において、経過時間が計測周期ΔTsに達していなければ、ステップS8はNO判定となり、この場合には、経過時間が計測周期ΔTsに達するまで、調整後の刺激電流を供給した状態でステップS8の処理を繰り返す。
【0083】
一方、ステップS8において、経過時間が計測周期ΔTsに達した場合、ステップS8はYES判定となる。この場合には、マイクロプロセッサ1は、刺激電流の供給を停止し(ステップS9)、選択された電極30での刺激量の制御処理を終了する。
【0084】
本実施形態では、選択された電極30に対して、上述のようにして刺激量を調整する。実際に、本発明者は、複数の被験者に対して、上記電気刺激手法により、電気刺激の検証実験を行った。なお、この実験では、皮膚インピーダンスZの計測周期ΔTs(サブパルス41のパルス幅)及び刺激電流の電流値Ioをそれぞれ1.45μs及び5mAとした。その結果、全ての被験者から、安定した刺激が得られるという報告が得られた。
【0085】
すなわち、本実施形態の電気刺激装置10及びそれによる電気刺激方法では、最適な電気刺激(生起感覚)をより一層安定してユーザに提供することができることが分かった。また、本実施形態では、上述のように、皮膚インピーダンスZの情報に基づく刺激量のフィードバック制御をよりリアルタイムで行うことができるので、刺激中の急激な皮膚インピーダンスの変化にも対応することができる。それゆえ、本実施形態では、電気刺激の安定化及び安全性をより向上させることができる。
【0086】
<3.各種変形例及び応用例>
[変形例1]
上記実施形態の電気刺激装置10では、刺激パルスのパルス幅の閾値ΔTth(電気刺激を感じ始めるパルス幅)と、皮膚インピーダンスZとの相関を示す調整データを一つ用意する例を説明したが、本発明はこれに限定されない。
【0087】
刺激パルスのパルス幅の閾値ΔTthと、皮膚インピーダンスZとの相関を示す調整データを異なる刺激強度毎に複数用意し、その中からユーザが好みの刺激強度に対応する調整データを適宜選択できるようにしてもよい。すなわち、上記実施形態の電気刺激装置10に、さらに、刺激強度の変更機能(以下、ボリューム調整機能という)を設けてもよい。
【0088】
このような刺激強度のボリューム調整機能を上記実施形態の電気刺激装置10に設けるためには、例えば、マイクロプロセッサ1に、予め、複数の刺激強度に対応する調整データを記憶すればよい。
【0089】
図8に、複数の刺激強度にそれぞれ対応する複数の調整データ(調整曲線群)の一例を示す。なお、
図8は、刺激パルスのパルス幅の閾値ΔTthと、皮膚インピーダンスZとの相関を示す特性であり、横軸は皮膚インピーダンスであり、縦軸は刺激パルスのパルス幅の閾値である。ただし、この例では、全ての調整データ(調整曲線)において、刺激電流の値は一定とする。すなわち、
図8に示す調整曲線群は、刺激パルスのパルス幅で刺激強度を制御する際に用いる刺激強度の調整曲線群である。
【0090】
従来、ユーザが、刺激強度が同一であると感じる(主観的な刺激強度が一定となる)時の刺激パルスのパルス幅の閾値ΔTthと、皮膚インピーダンスZとの関係は、一つの曲線(以下、この曲線を等ラウドネス曲線という)で表されることが知られている。それゆえ、
図8中の各等ラウドネス曲線61において、同じ曲線上に存在する刺激パルスのパルス幅の閾値ΔTthと、皮膚インピーダンスZとの組み合わせでは同じ刺激強度が得られる。また、
図8上において、等ラウドネス曲線61が等ラウドネス曲線群60内の上方に位置するほど、刺激強度が強くなる。
【0091】
なお、等ラウドネス曲線61は、通常、ユーザ毎に異なるので、
図8に示す曲線に限定されない。例えば、ユーザによっては、等ラウドネス曲線が直線状の特性を備える場合もある。
【0092】
この例では、具体的には、次のようにして刺激量の調整が行われる。まず、
図8に示すような様々な刺激強度に対応する複数の等ラウドネス曲線61からなる等ラウドネス曲線群60の調整データを予め測定する。そして、得られた等ラウドネス曲線群60の調整データをマイクロプロセッサ1内に記憶する。
【0093】
ただし、等ラウドネス曲線群60は、ユーザ毎に測定した調整データを用いてもよいし、複数の被験者に対して予め行った測定に基づいて得られる平均的な調整データであってもよい。また、上記実施形態のように皮膚インピーダンスZの計測時の刺激電流が一定の場合には、調整データとして、皮膚インピーダンスZと刺激パルスのパルス幅の閾値ΔTthとの相関データの代わりに、抵抗4のスイッチ群14側端部の電圧Voと刺激パルスのパルス幅の閾値ΔTthとの相関データを用いてもよい。
【0094】
次いで、ユーザが、マイクロプロセッサ1内に記憶された等ラウドネス曲線群60から、好みの刺激強度に対応する等ラウドネス曲線61(刺激強度)を選択する。なお、このユーザの選択操作は、
図1には示さないが、例えば電気刺激装置10に設けられた操作部(ボタン、スイッチ等:選択部)により行うことができる。また、タッチパネル15に力センサを設け、ユーザの押圧力をその力センサ(選択部)で検知し、検知した押圧力に応じて自動的に、等ラウドネス曲線61を切り換える構成にしてもよい。
【0095】
そして、皮膚が電極30に接触している場合には、マイクロプロセッサ1は、皮膚インピーダンスの計測周期ΔTs毎に、皮膚インピーダンスZの計測結果に基づいて、選択した等ラウドネス曲線61(刺激強度)から刺激パルスのパルス幅の閾値ΔTthを算出する。その後は、上記実施形態と同様にして刺激量を調整する。この例では、このようにして、最適な電気刺激をユーザに安定して与えることができる。
【0096】
この例では、上記実施形態の電気刺激装置10にさらに刺激強度のボリューム調整機能を設けた構成であるので、ユーザの好みに応じた刺激調整が可能になる。それゆえ、この例では、上記実施形態と同様の効果が得られるだけでなく、さらに操作性の優れた電気刺激装置10を提供することができる。
【0097】
[変形例2]
上記実施形態では、刺激パルス40中の最後の通電期間(調整用サブパルス42の印加期間)以外の時間では、通電する刺激電流は一定としたが、本発明はこれに限定されない。皮膚インピーダンスZの計測毎に、その計測結果に基づいて、刺激電流の大きさを適宜変化させてもよい。
図9に、その一例(変形例2)を示す。
図9は、変形例2の刺激量の調整手法における刺激パルス50の波形図であり、横軸は時間であり、縦軸は刺激量(電流値)である。
【0098】
上述のように、本実施形態の電気刺激装置10では、数μs程度のフィードバック処理が可能であるので、
図9に示すように、皮膚インピーダンスZの計測周期ΔTs毎に、その計測結果に基づいて、刺激電流の大きさを変化させても、十分制御可能である。
【0099】
ただし、刺激電流の変化に伴い皮膚インピーダンスZも変化するので、この手法では、例えば、皮膚インピーダンスZと、刺激パルス50で得られるトータルの刺激量(電流量)との関係が最適になるように電流制御する必要がある。それゆえ、この手法は、上記実施形態で説明した調整手法に比べて若干複雑になる。
【0100】
[その他各種変形例]
上記実施形態では、刺激調整時のフィードバック制御を高速化するため、マイクロプロセッサ1とは別個に、マイクロプロセッサ1とのインターフェースがパラレルであるD/A変換器2及びA/D変換器3を設ける例を説明したが、本発明はこれに限定されない。上述した刺激調整時のフィードバック制御を数μsで実現できる構成であれば任意の構成を用いることができる。例えば、シリアルインターフェースのD/A変換器及びA/D変換器であっても、上述のような高速制御が可能となる性能を有するものであれば本発明に適用可能である。
【0101】
上記実施形態では、電気刺激装置10が複数の電極30を備える例を説明したが、本発明はこれに限定されない。電極30を一つしか備えない電気刺激装置10に対しても、本発明は適用可能であり、同様の効果が得られる。ただし、電極30を一つしか備えない電気刺激装置10では、電極30の切替操作は行わないので、スイッチ群14を設けなくてもよい。
【0102】
上記実施形態では、スイッチ群14内の切替スイッチ20と、タッチパネル15内の電極30とを1対1に対応させる構成例を説明したが、本発明はこれに限定されない。例えば用途等に応じて、所定数の電極30毎に一つの切替スイッチ20を設ける構成にしてもよい。
【0103】
また、上記実施形態及び各種変形例では、マイクロプロセッサ1で計測(取得)する皮膚インピーダンスZに関する情報が、皮膚インピーダンスZそのもの、または、電極30に印加する電圧Voである例を説明したが、本発明はこれに限定されない。皮膚インピーダンスZに関連するパラメータであれば、任意のパラメータを皮膚インピーダンスZに関する情報として用いることができる。
【0104】
[各種応用例]
上記実施形態では、電気刺激装置10を単体で構成する例を説明したが、本発明はこれに限定されず、種々の電子機器等にモジュールとして組み込むことができる。例えば、本発明の電気刺激装置は、タッチパネル機能を備えるパーソナルコンピュータ、モバイル機器、タッチパネル機能を備えるカーナビ、視覚障害用の情報提示機器等の電子機器に適用可能である。また、本発明の電気刺激装置は、電子機器以外にも、例えば、自動車のハンドル等の人間の皮膚が接触するような機器部品にも組み込むことができる。
【0105】
上述のような用途の機器に本発明の電気刺激装置を組み込む場合には、電気刺激による触覚提示専用のマイクロプロセッサ1を機器本体のメイン制御部とは別個に設けてもよいし、機器本体のメイン制御部内に触覚提示専用のマイクロプロセッサ1を組み込む構成してもよい。ただし、現状では、上述したような機器のメイン制御部は、数μs程度でフィードバック処理を行うことを目的としていないので十分な処理速度が得られない。それゆえ、本発明の電気刺激装置を上述した機器に組み込む場合には、電気刺激による触覚提示専用のマイクロプロセッサ1をメイン制御部とは別個に組み込むことが好ましい。
【0106】
また、上述のような用途の機器本体において情報表示用のディスプレイが設けられている場合には、その機器本体に設けられたディスプレイに電極を設置して電気刺激による触覚提示機能を設ける。なお、タッチパネル機能を備える電子機器等では、その表示パネル(ディスプレイ)に電極が設けられているので、その電極を電気刺激用の電極として兼用すればよい。
【0107】
本発明の電気刺激装置を上述のような用途に適用した場合、ディスプレイによる情報提示機能をより多様化させることができる。