【文献】
LG Electronics,Inter-Cell CSI-RS design and Inter-Cell measurement consideration,TSG-RAN WG1 Meeting #60,3GPP,2010年 2月26日,R1-101550
【文献】
Nokia, Nokia Siemens Networks,Further details on intra-cell CSI-RS design,3GPP TSG-RAN WG1 Meeting #60,3GPP,2010年 2月26日,R1-101426
【文献】
Nokia, Nokia Siemens Networks,Intra-cell CSI-RS design aspects,3GPP TSG-RAN WG1 Meeting #59,3GPP,2009年11月13日,R1-094647
【文献】
Alcatel-Lucent, Alcatel-Lucent Shanghai Bell,On CSI RS Design,3GPP TSG-RAN WG1 #59bis,3GPP,2010年 1月22日,R1-100416
【文献】
Ericsson, ST-Ericsson,On CSI RS Design,3GPP TSG-RAN WG1 #59bis,3GPP,2010年 1月22日,R1-100048
【文献】
NTT DOCOMO,CSI-RS Design for LTE-Advanced,3GPP TSG RAN WG1 Meeting #60,3GPP,2010年 2月26日,R1-101214
(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0023】
以下の各実施例は、本発明の構成要素及び特徴を所定の形態として結合したものである。各構成要素又は特徴は、別途の明示的な言及がない限り、選択的なものとして考慮しなければならない。各構成要素又は特徴は、他の構成要素や特徴と結合しない形態として実施することができる。また、一部の構成要素及び/又は特徴を結合して本発明の実施例を構成することもできる。本発明の実施例で説明される動作の順序は変更可能である。ある実施例の一部構成や特徴は、他の実施例に含めることもでき、又は、他の実施例の対応する構成又は特徴に置き換えることもできる。
【0024】
本明細書において、本発明の各実施例は、基地局と端末との間のデータ送受及び受信の関係を中心に説明する。ここで、基地局は、端末と直接通信を行うネットワークの終端ノードとしての意味を有する。本文書で、基地局によって行われると説明された特定動作は、場合によっては、基地局の上位ノードによって行ってもよい。
【0025】
すなわち、基地局を含む複数のネットワークノードからなるネットワークにおいて、端末との通信のために行われる多様な動作は、基地局又は基地局以外の他のネットワークノードによっても行うことができることは自明である。「基地局」は、固定局、ノードB、進化ノードB(eNB)、アクセスポイント(AP)などの用語に代替可能である。「中継器」は、中継ノード(RN)、中継局(RS)などの用語に代替可能である。また、「端末」は、ユーザ装置(UE)、移動機(MS)、移動体加入者局(MSS)、加入者局(SS)、などの用語に代替可能である。
【0026】
以下の説明で用いられる特定用語は、本発明の理解を助けるために提供されたものであり、このような特定用語の使用は、本発明の技術的思想を逸脱しない範囲で他の形態に変更可能である。
【0027】
いくつかの場合、本発明の概念が曖昧になることを避けるために、公知の構造及び装置を省略し、又は各構造及び装置の核心機能を中心にしたブロック図の形式で図示することができる。また、本明細書全体において同一の構成要素については同一の図面符号を使用して説明する。
【0028】
本発明の各実施例は、無線接続システムであるIEEE802システム、第3世代パートナシッププロジェクト(3GPP)システム、3GPP LTE及びLTE−Aシステム及び3GPP2システムのうち少なくとも一つに開示された標準文書によって裏付けることができる。すなわち、本発明の各実施例のうち本発明の技術的思想を明確に表すために説明を省いた段階又は各部分は、上記各文書によって裏付けることができる。また、本文書で開示しているすべての用語は、上記標準文書によって説明することができる。
【0029】
以下の技術は、符号分割多元接続(CDMA)、周波数分割多元接続(FDMA)、時分割多元接続(TDMA)、直交周波数分割多元接続(OFDMA)、単一搬送波周波数分割多元接続(SC―FDMA)などの多様な無線接続システムに使用することができる。CDMAは、はん用地上無線接続(UTRA)又はCDMA2000などの無線技術として具現することができる。TDMAは、世界移動体通信システム(GSM(登録商標))/一般パケット無線サービス(GPRS)/GSM(登録商標)進化のためのデータ強化速度(EDGE)などの無線技術として具現することができる。OFDMAは、IEEE 802.11(Wi−Fi)、IEEE 802.16(WiMAX)、IEEE 802−20、進化UTRA(E−UTRA)などの無線技術として具現することができる。UTRAは、はん用移動体通信システム(UMTS)の一部である。3GPP(第3世代パートナシッププロジェクト)LTEは、E−UTRAを使用する進化UMTS(E−UMTS)の一部であって、ダウンリンクにおいてはOFDMAを採用し、アップリンクにおいてはSC−FDMAを採用する。LTE―Aは、3GPP LTEの進化形である。WiMAXは、IEEE 802.16e規格(WirelessMAN−OFDMA Reference System)及び進化したIEEE 802.16m規格(WirelessMAN−OFDMA Advanced system)によって説明できる。明確性のために、以下では3GPP LTE及びLTE−A標準を中心に説明するが、本発明の技術的思想がこれに制限されるものではない。
【0030】
図1を参照してダウンリンク無線フレームの構造について説明する。
【0031】
セルラOFDM無線パケット通信システムにおいて、アップ/ダウンリンクデータパケット送信は、サブフレーム単位で行われ、一つのサブフレームは、多数のOFDMシンボルを含む一定時間区間として定義される。3GPP LTE標準では、周波数分割2重通信(FDD)に適用可能なタイプ1の無線フレーム構造及び時分割2重通信(TDD)に適用可能なタイプ2の無線フレーム構造をサポートする。
【0032】
図1は、タイプ1の無線フレームの構造を示す図である。ダウンリンク無線フレームは、10個のサブフレームで構成され、一つのサブフレームは、時間領域において2個のスロットで構成される。一つのサブフレームが送信されるために掛かる時間を送信時間間隔(TTI)と言い、例えば、一つのサブフレームの長さは1msであり、一つのスロットの長さは0.5msであってもよい。一つのスロットは、時間領域で複数のOFDMシンボルを含み、周波数領域で多数のリソースブロック(RB)を含む。3GPP LTEシステムでは、ダウンリンクにおいてOFDMAを使用するため、OFDMシンボルが一つのシンボル区間を表す。OFDMシンボルはまた、SC−FDMAシンボル又はシンボル区間と称されることもある。リソースブロック(RB)は、リソース割当単位であり、一つのスロットにおいて複数個の連続的な副搬送波を含むことができる。
【0033】
一つのスロットに含まれるOFDMシンボルの数は、循環プレフィクス(CP)の構成によって変わることができる。CPには、拡張CP(extended CP)と正規CP(normal CP)がある。例えば、OFDMシンボルが正規CPにより構成された場合、一つのスロットに含まれるOFDMシンボルの数は7個であってもよい。OFDMシンボルが拡張CPにより構成された場合、1 OFDMシンボルの長さが伸びるため、一つのスロットに含まれるOFDMシンボルの数は正規CPの場合よりも少ない。拡張CPの場合に、例えば、一つのスロットに含まれるOFDMシンボルの数は6個であってもよい。端末が速い速度で移動する場合のように、チャネル状態が不安定な場合、シンボル間干渉をより減少させるために、拡張CPを用いることができる。
【0034】
正規CPを用いる場合、一つのスロットは7個のOFDMシンボルを含むため、一つのサブフレームは14個のOFDMシンボルを含む。このとき、各サブフレームの最初の2個又は3個のOFDMシンボルは、PDCCHに割り当てられ、残りのOFDMシンボルは、PDSCHに割り当てることができる。
【0035】
無線フレームの構造は例示に過ぎず、無線フレームに含まれるサブフレームの数又はサブフレームに含まれるスロットの数、スロットに含まれるシンボルの数は、多様に変更可能である。
【0036】
図2は、一つのダウンリンクスロットに対するリソースグリッドの一例を示す図である。これは、OFDMシンボルが正規CPによって構成された場合である。
図2を参照すると、ダウンリンクスロットは、時間領域で複数のOFDMシンボルを含み、周波数領域で多数のリソースブロックを含む。ここで、一つのダウンリンクスロットは、7OFDMシンボルを含み、一つのリソースブロックは、12副搬送波を含むのを例示的に記述するが、これに制限されるものではない。リソースグリッド上の各要素をリソース要素(RE)と言う。例えば、リソース要素a(k、1)は、k番目の副搬送波と1番目OFDMシンボルに位置したリソース要素になる。正規CPの場合に、一つのリソースブロックは、12×7 リソース要素を含む(拡張CPの場合には、12×6 リソース要素を含む)。各副搬送波の間隔は15kHzであるから、一つのリソースブロックは周波数領域で約180kHzを含む。N
DLは、ダウンリンクスロットに含まれるリソースブロックの数である。N
DLの値は、基地局のスケジュールによって設定されるダウンリンク送信帯域幅によって決定することができる。
【0037】
図3は、ダウンリンクサブフレームの構造を示す図である。一つのサブフレーム内で1番目のスロットの先頭部分の最大3個のOFDMシンボルは、制御チャネルが割り当てられる制御領域に該当する。残りのOFDMシンボルは、物理ダウンリンク共有チャネルが割り当てられるデータ領域に該当する。送信の基本単位は一つのサブフレームになる。すなわち、2個のスロットにわたってPDCCH及びPDSCHが割り当てられる。3GPP LTEシステムで用いられるダウンリンク制御チャネルには、例えば、物理制御フォーマット指示子チャネル(PCFICH)、物理ダウンリンク制御チャネル(PDCCH)、物理HARQ指示子チャネル(PHICH)などがある。PCFICHは、サブフレームの1番目のOFDMシンボルによって送信され、サブフレーム内の制御チャネル送信に用いられるOFDMシンボルの個数に対する情報を含む。PHICHは、アップリンク送信の応答としてHARQ肯定応答/否定応答(ACK/NACK)信号を含む。PDCCHを通じて送信される制御情報をダウンリンク制御情報(DCI)と言う。DCIは、アップリンク又はダウンリンクスケジュール情報を含み、又は任意の端末グループに対するアップリンク送信電力制御命令を含むことができる。PDCCHは、ダウンリンク共有チャネル(DL−SCH)のリソース割当及び送信フォーマット、アップリンク共有チャネル(UL−SCH)のリソース割当情報、ページングチャネル(PCH)のページング情報、DL−SCH上のシステム情報、PDSCH上に送信される任意接続応答(Random Access Response)のような上位層制御メッセージのリソース割当、任意の端末グループ内の個別端末に対する送信電力制御命令のセット、送信電力制御情報、IP電話(VoIP)の活性化などを含むことができる。複数のPDCCHが制御領域内で送信することができる。端末は複数のPDCCHを監視することができる。PDCCHは、一つ以上の連続する制御チャネル要素(CCE)の組み合わせで送信される。CCEは、無線チャネルの状態に基づいた符号化速度でPDCCHを提供するために使用される論理割当単位である。CCEは、複数個のリソース要素グループに対応する。PDCCHのフォーマット及び可用のビット数は、CCEの個数とCCEによって提供される符号化速度との間の相関関係によって決定される。基地局は、端末に送信されるDCIによってPDCCHフォーマットを決定し、制御情報に巡回冗長検査ビット(CRC)を付加する。CRCは、PDCCHの所有者又は用途によって、無線ネットワーク臨時識別子(RNTI)という識別子でマスクされる。PDCCHが特定端末のためのものである場合、端末のcell−RNTI(C−RNTI)識別子がCRCにマスクされ得る。又は、PDCCHがページングメッセージのためのものである場合、ページング指示子識別子(P−RNTI)がCRCにマスクされ得る。PDCCHがシステム情報(より具体的に、システム情報ブロック(SIB))のためのものである場合、システム情報識別子及びシステム情報RNTI(SI−RNTI)がCRCにマスクされ得る。端末の任意接続プリアンブルの送信に対する応答である任意接続応答を表すために、任意接続RNTI(RA−RNTI)がCRCにマスクされ得る。
【0038】
図4は、アップリンクサブフレームの構造を示す図である。アップリンクサブフレームは、周波数領域で制御領域とデータ領域とに分割することができる。制御領域には、アップリンク制御情報を含む物理アップリンク制御チャネル(PUCCH)が割り当てられる。データ領域には、ユーザデータを含む物理アップリンク共有チャネル(PUSCH)が割り当てられる。単一搬送波特性を維持するために、一つの端末は、PUCCH及びPUSCHを同時に送信しない。一つの端末に対するPUCCHは、サブフレームにおいてリソースブロック(RB)対に割り当てられる。リソースブロック対に属するリソースブロックは2スロットに対して互いに異なる副搬送波を占める。これを、PUCCHに割り当てられるリソースブロック対がスロット境界で周波数ホップされると言う。
【0039】
複数アンテナ(MIMO)システムのモデル化
【0040】
MIMOシステムは、複数送信アンテナ及び複数受信アンテナを使用してデータの送受信効率を向上させるシステムである。MIMO技術は、全体メッセージを受信するために単一アンテナ経路に依存せず、複数個のアンテナを通じて受信される複数個のデータ断片を組み合わせて全体データを受信することができる。
【0041】
MIMO技術には、空間ダイバシチ方式及び空間多重化方式などがある。空間ダイバシチ方式は、ダイバシチ利得を通じて送信信頼度を高めたり、セル半径を広めたりすることができて、高速で移動する端末に対するデータ送信に適している。空間多重化方式は、互いに異なるデータを同時に送信することによって、システムの帯域幅を増加させずに、データ送信速度を増加させることができる。
【0042】
図5は、複数アンテナを有する無線通信システムの構成図である。
図5(a)に示されたように、送信アンテナの数をN
T個、受信アンテナの数をN
Rと増やすと、送信器又は受信器のいずれかだけで複数のアンテナを用いる場合とは違って、アンテナ数に比例して理論的なチャネル送信容量が増加する。そのため、送信速度を向上させ、周波数効率を画期的に向上させることができる。チャネル送信容量が増加するにつれて、送信速度は理論的に単一アンテナ使用時における最大送信速度(Ro)に速度増加率(Ri)を乗じた分だけ増加できる。
【0044】
例えば、4個の送信アンテナ及び4個の受信アンテナを用いるMIMO通信システムでは、単一アンテナシステムに比べて理論上、4倍の送信速度を取得できる。複数アンテナシステムの理論的容量増加が90年代半ばに証明されて以来、これを実質的なデータ送信速度の向上へと導くための多様な技術が現在まで活発に研究されている。また、いくつかの技術は既に3世代移動体通信及び次世代無線RANなどの様々な無線通信の標準に反映されている。
【0045】
現在までの複数アンテナ関連研究動向を見ると、多様なチャネル環境及び複数接続環境における複数アンテナ通信容量計算などと関連した情報理論面研究、複数アンテナシステムの無線チャネル測定及びモデル導出研究、送信信頼度向上及び送信速度向上のための時空間信号処理技術研究などを含め、多様な観点で活発に研究が進められている。
【0046】
複数アンテナシステムにおける通信方法を、数学的モデル化を用いてより具体的に説明する。上記システムにはN
T個の送信アンテナ及びN
R個の受信アンテナが存在すると仮定する。
【0047】
送信信号について説明すると、N
T個の送信アンテナがある場合、送信可能な最大情報はN
T個である。送信情報は下記のように表現できる。
【0049】
それぞれの送信情報S
1,S
2,...,S
NTは、送信電力が異なってもよい。それぞれの送信電力をP
1,P
2,...,P
NTとすれば、送信電力の調整された送信情報は、下記のように表現できる。
【0051】
また、hat−Sは、送信電力の対角行列Pを用いて、下記のように表現できる。
【0053】
送信電力の調整された情報ベクトルhat−Sに重み行列Wが適用されて、実際に送信されるN
T個の送信信号x
1,x
2・・・x
NTが構成される場合を考慮してみよう。重み行列Wは、送信情報を送信チャネル状況などに応じて各アンテナに適切に分配する役割を果たす。x
1,x
2,...,x
NTは、ベクトルXを用いて下記のように表現できる。
【0055】
ここで、W
ijは、i番目の送信アンテナとj番目の情報との間における重み値を意味する。Wは、プリコーディング行列とも呼ばれる。
【0056】
一方、送信信号xは、2つの場合(例えば、空間ダイバシチ及び空間多重化)によって互いに異なる方法で考慮され得る。空間多重化の場合、互いに異なる信号が多重化され、該多重化された信号が受信側に送信されて、情報ベクトルの要素が互いに異なる値を有する。一方、空間ダイバシチの場合には、同一の信号が複数個のチャネル経路を通じて反復的に送信されて、情報ベクトルの要素が同一の値を有する。もちろん、空間多重化及び空間ダイバシチ方式の組み合わせも考慮し得る。すなわち、同一の信号が、例えば、3個の送信アンテナを通じて空間ダイバシチ方式によって送信され、残りの信号は、空間多重化して受信側に送信することもできる。
【0057】
N
R個の受信アンテナがある場合、各アンテナの受信信号y
1,y
2,...,y
NRはベクトルで下記のように表現できる。
【0059】
複数アンテナ無線通信システムにおいてチャネルをモデル化する場合、チャネルは送受信アンテナインデクスによって区別できる。送信アンテナjから受信アンテナiを経るチャネルをh
ijと表示するとする。h
ijにおいて、インデクスの順序は受信アンテナインデクスが先で、送信アンテナのインデクスが後であることに留意されたい。
【0060】
図5(b)に、N
T個の送信アンテナから受信アンテナiへのチャネルを示す。このチャネルをまとめてベクトル及び行列形態で表示できる。
図5(b)で、全部でN
T個の送信アンテナから受信アンテナiに到着するチャネルは、下記のように表すことができる。
【0062】
したがって、N
T個の送信アンテナからN
R個の受信アンテナに到着するすべてのチャネルは、下記のように表現できる。
【0064】
実際チャネルにはチャネル行列Hを経た後に、加法性白色ガウス雑音(AWGN)が加えられる。N
R個の受信アンテナのそれぞれに加えられる白色ガウス雑音n
1,n
2,...,n
NRは、下記のように表現できる。
【0066】
上述した数学的モデル化を通じて受信信号は下記のように表現できる。
【0068】
チャネル状態を表すチャネル行列Hの行及び列の数は、送受信アンテナの数によって決定される。チャネル行列Hにおいて、行の数は受信アンテナの数N
Rと同じであり、列の数は送信アンテナの数N
Tと同じである。すなわち、チャネル行列Hは、行列がN
R×N
Tとなる。
【0069】
行列のランクは、互いに独立した行又は列の個数のうち、最小個数と定義される。そのため、行列のランクは、行又は列の個数よりも大きくなることはない。チャネル行列Hのランク(rank(H))は、下記のように制限される。
【0071】
MIMO送信において、「ランク」は、独立に信号を送信できる経路の数を表し、「階層の数」は、各経路を通じて送信される信号ストリームの個数を表す。一般的に送信端は、信号送信に用いられるランク数に対応する個数の階層を送信するため、特別な言及がない限り、ランクは階層の個数と同一の意味を有する。
【0073】
無線通信システムにおいてパケットを送信するとき、送信されるパケットは、無線チャネルを通じて送信されるため、送信過程において信号の歪みが発生することがある。歪んだ信号を受信側で正しく受信するためには、チャネル情報を用いて受信信号において歪みを補正しなければならない。チャネル情報を取得するために、送信側及び受信側双方が知っている信号を送信し、上記信号がチャネルを通じて受信されるときの歪み度合によりチャネル情報を得る方法を主に用いる。上記信号をパイロット信号又は参照信号と言う。
【0074】
複数アンテナを用いてデータを送受信する場合には、正しい信号を受信するために、各送信アンテナと受信アンテナとの間におけるチャネル状況を知る必要がある。したがって、各送信アンテナ別に別個の参照信号が存在すべきである。
【0075】
移動体通信システムにおいて参照信号(RS)は、その目的によって2種類に大別できる。一つは、チャネル情報取得のために使用されるRSであり、他の一つはデータ復調のために使用されるRSである。前者は、端末がダウンリンクチャネル情報を取得するようにするためのRSであるので、広帯域で送信されなければならず、特定サブフレームでダウンリンクデータを受信しない端末でも、該当のRSを受信及び測定できなければならない。このようなRSは、ハンドオーバなどのための測定のためにも使用される。後者は、基地局がダウンリンクを送るとき、該当のリソースに共に送るRSとして、端末は、該当のRSを受信することによって、チャネル推定を行うことができ、したがって、データを復調できるようになる。このようなRSは、データが送信される領域に送信されなければならない。
【0076】
既存の3GPP LTE(例えば、3GPP LTE リリース−8)システムでは、1対地送信(unicast)サービスのために2種類のダウンリンクRSを定義する。そのうち一つは、共通参照信号(CRS)で、他の一つは、専用参照信号(DRS)である。CRSは、チャネル状態に対する情報取得及びハンドオーバなどのための測定のために使用され、セル特定(cell−specific)RSと称することもできる。DRSは、データ復調のために使用され、端末特定(UE−specific)RSと称することもできる。既存の3GPP LTEシステムで、DRSは、単にデータ復調用として使用され、CRSは、チャネル情報取得及びデータ復調の2つの目的で使用することができる。
【0077】
CRSは、セル特定で送信されるRSであり、広帯域に対してサブフレームごとに送信される。CRSは、基地局の送信アンテナ個数によって、最大4個のアンテナポートに対して送信することができる。例えば、基地局の送信アンテナの個数が2個である場合、0番と1番のアンテナポートに対するCRSが送信され、4個である場合、0〜3番のアンテナポートに対するCRSがそれぞれ送信される。
【0078】
図6は、基地局が4個の送信アンテナをサポートするシステムにおいて、一つのリソースブロック(正規CPの場合、時間上で14個のOFDMシンボル×周波数上で12副搬送波)上でのCRS及びDRSのパターンを示す図である。
図6で、‘R0'、‘R1’、‘R2'及び‘R3'と表示されたリソース要素(RE)は、それぞれアンテナポートインデクス0,1,2及び3に対するCRSの位置を表す。一方、
図6で、‘D'と表示されたリソース要素は、LTEシステムで定義されるDRSの位置を表す。
【0079】
LTEシステムの進化発展した形態のLTE−Aシステムでは、ダウンリンクにおいて最大8個の送信アンテナをサポートできる。したがって、最大8個の送信アンテナに対するRSもサポートしなければならない。LTEシステムでのダウンリンクRSは、最大4個のアンテナポートに対してだけ定義されているため、LTE−Aシステムにおいて、基地局が4個以上、最大8個のダウンリンク送信アンテナを有する場合、これらアンテナポートに対するRSが追加的に定義されなければならない。最大8個の送信アンテナポートに対するRSとして、チャネル測定のためのRS及びデータ復調のためのRS双方を考慮しなければならない。
【0080】
LTE−Aシステムを設計する際に重要な考慮事項のうち一つは、後方互換性である。後方互換性とは、既存のLTE端末がLTE−Aシステムでも正しく動作するようにサポートするのを意味する。RS送信の観点では、LTE標準において定義されているCRSが全帯域で毎サブフレームごとに送信される時間周波数領域に、最大8個の送信アンテナポートに対するRSを追加する場合、RSオーバヘッドが過度に大きくなる。そのため、最大8アンテナポートに対するRSを新しく設計するに当たり、RSオーバヘッドを減少させることを考慮しなければならない。
【0081】
LTE−Aシステムで新しく導入されるRSは、2種類に大別できる。そのうち一つは、送信ランク、変調及び符号化方式(MCS)、プリコーディング行列インデクス(PMI)などの選択のためのチャネル測定目的のRSであるチャネル状態情報参照信号(CSI−RS)であり、他の一つは、最大8個の送信アンテナを通じて送信されるデータを復調するための目的のRSである復調参照信号(DM RS)である。
【0082】
チャネル測定目的のCSI−RSは、既存のLTEシステムでのCRSが、チャネル測定、ハンドオーバ測定などの目的と同時に、データ復調のために使用されるのとは違い、主にチャネル測定を目的として設計される特徴がある。もちろん、CSI−RSもハンドオーバなどの測定の目的で使用することも可能である。CSI−RSがチャネル状態に対する情報を得る目的だけで送信されるため、既存のLTEシステムでのCRSとは違い、サブフレームごとに送信しなくてもよい。したがって、CSI−RSのオーバヘッドを減少させるために、CSI−RSは、時間軸上で間欠的に(例えば、周期的に)送信されるように設計することができる。
【0083】
ダウンリンクサブフレーム上でデータが送信される場合、データ送信がスケジュールされた端末に専用でDM RSが送信される。特定端末専用のDM RSは、該当の端末がスケジュールされたリソース領域、すなわち、該当の端末に対するデータが送信される時間周波数領域だけで送信されるように設計することができる。
【0084】
図7は、LTE−Aシステムで定義されるDM RSパターンの一例を示す図である。
図7では、ダウンリンクデータが送信される一つのリソースブロック(正規CPの場合、時間上で14個のOFDMシンボル×周波数上で12副搬送波)上でDM RSが送信されるリソース要素の位置を表す。DM RSは、LTE−Aシステムで追加的に定義される4個のアンテナポート(アンテナポートインデクス7,8,9及び10)に対して送信することができる。互いに異なるアンテナポートに対するDM RSは、互いに異なる周波数リソース(副搬送波)及び/又は互いに異なる時間リソース(OFDMシンボル)によって区分できる(すなわち、FDM及び/又はTDM方式で多重化できる)。また、同一の時間−周波数リソース上に位置する互いに異なるアンテナポートに対するDM RSは、互いに直交符号によって区分できる(すなわち、CDM方式で多重化できる)。
図7の例示で、DM RS CDMグループ1と表示された各リソース要素(RE)には、アンテナポート7及び8に対するDM RSを配置することができ、これらは直交符号によって多重化できる。同様に、
図7の例示で、DM RSグループ2と表示された各リソース要素には、アンテナポート9及び10に対するDM RSを配置することができ、これらは直交符号によって多重化できる。
【0085】
図8は、LTE−Aシステムで定義されるCSI−RSパターンの例示を示す図である。
図8では、ダウンリンクデータが送信される一つのリソースブロック(正規CPの場合、時間上で14個のOFDMシンボル×周波数上で12副搬送波)上でCSI−RSが送信されるリソース要素の位置を表す。どのダウンリンクサブフレームにおいても、
図8(a)乃至8(e)のうち一つのCSI−RSパターンを用いることができる。CSI−RSは、LTE−Aシステムで追加的に定義される8個のアンテナポート(アンテナポートインデクス15、16、17、18、19、20、21及び22)に対して送信することができる。互いに異なるアンテナポートに対するCSI−RSは、互いに異なる周波数リソース(副搬送波)及び/又は互いに異なる時間リソース(OFDMシンボル)によって区分できる(すなわち、FDM及び/又はTDM方式で多重化できる)。また、同一の時間周波数リソース上に位置する互いに異なるアンテナポートに対するCSI−RSは、互いに直交符号によって区分することができる(すなわち、CDM方式で多重化できる)。
図8(a)の例示で、CSI−RS CDMグループ1と表示されたリソース要素(RE)には、アンテナポート15及び16に対するCSI−RSを配置することができ、これらは直交符号によって多重化できる。
図8(a)の例示で、CSI−RS CDMグループ2と表示されたリソース要素には、アンテナポート17及び18に対するCSI−RSが位置することができ、これらは直交符号によって多重化できる。
図8(a)の例示で、CSI−RS CDMグループ3と表示されたリソース要素には、アンテナポート19及び20に対するCSI−RSを配置することができ、これらは直交符号によって多重化できる。
図8(a)の例示で、CSI−RS CDMグループ4と表示されたリソース要素には、アンテナポート21及び22に対するCSI−RSを配置することができ、これらは直交符号によって多重化できる。
図8(a)を基準に説明した同一の原理が
図8(b)乃至
図8(e)に適用され得る。
【0086】
図6乃至
図8のRSパターンは、単に例示的なもので、本発明の多様な実施例を適用するときに、特定RSパターンに限定されるものではない。すなわち、
図6乃至
図8と異なるRSパターンが定義及び使用される場合にも、本発明の多様な実施例は同一に適用することができる。
【0088】
3GPP LTE−Aシステムの改善されたシステム性能要求条件によって、CoMP送受信技術(co−MIMO)、共同(collaborative)MIMO又はネットワークMIMOなどと表現されることもある)が提案されている。CoMP技術は、セル境界に位置した端末の性能を増加させ、平均セクタスループットを増加させることができる。
【0089】
一般的に、周波数再使用係数が1である複数セル環境において、セル間干渉(ICI)によってセル境界に位置した端末の性能及び平均セクタスループットが減少することがある。このようなICIを低減するために、既存のLTEシステムでは、端末特定電力制御を通じた部分周波数再使用(FFR)のような単純で受動的な方式を用いて、干渉によって制限を受けた環境において、セル境界に位置した端末が適切なスループット性能を有するようにする方法が適用された。しかし、セル当たり周波数リソース使用を低下することよりは、ICIを低減させ、又はICIを端末が所望の信号として再使用することがより好ましいことがある。上記のような目的を達成するために、CoMP送信方式を適用することができる。
【0090】
ダウンリンクの場合に適用できるCoMP方式は、大きく共同処理(joint processing;JP)方式と、協調スケジュール/ビーム形成(CS/CB)方式とに分類できる。
【0091】
JP方式は、CoMP協調単位のそれぞれのポイント(基地局)においてデータを用いることができる。CoMP協調単位は、協調送信方式に用いられる各基地局の集合を意味する。JP方式は、共同送信(Joint Transmission)方式と動的セル選択方式とに分類できる。
【0092】
共同送信方式は、PDSCHが一度に複数個のポイント(CoMP協調単位の一部又は全部)から送信される方式のことを言う。すなわち、単一端末に送信されるデータは、複数個の送信ポイントから同時に送信することができる。共同送信方式によれば、コヒーレントに、又は、非コヒーレントに受信信号の品質を向上させることができ、また、他の端末に対する干渉を能動的に消去することもできる。
【0093】
動的セル選択方式は、PDSCHが一度に(CoMP協調単位の)一つのポイントから送信される方式のことを言う。すなわち、特定時点で単一端末に送信されるデータは一つのポイントから送信され、その時点に協調単位内の他のポイントは該当の端末に対してデータを送信しない。該当の端末にデータを送信するポイントは動的に選択され得る。
【0094】
一方、CS/CB方式によれば、CoMP協調単位が単一端末に対するデータ送信のビーム形成を協調的に行うことができる。ここで、データはサービス提供セルだけで送信されるが、ユーザスケジュール/ビーム形成は該当のCoMP協調単位の各セルの協調によって決定することができる。
【0095】
一方、アップリンクの場合に、多地点協調受信は、地理的に離れた複数個のポイントの協調によって送信された信号を受信することを意味する。アップリンクの場合に適用できるCoMP方式は、共同受信(Joint Reception;JR)と、協調スケジュール/ビーム形成(CS/CB)とに分類できる。
【0096】
JR方式は、PUSCHを通じて送信された信号が複数個の受信ポイントで受信されることを意味し、CS/CB方式は、PUSCHが一つのポイントだけで受信されるが、ユーザスケジュール/ビーム形成はCoMP協調単位の各セルの協調によって決定されることを意味する。
【0098】
前述したように、ダウンリンクで最大8個の送信アンテナをサポートするLTE−Aシステムにおいて、基地局はすべてのアンテナポートに対するCSI−RSを送信しなければならない。最大8個の送信アンテナポートに対するCSI−RSをサブフレームごとに送信するのは、オーバヘッドが大きすぎるという短所があるため、そのオーバヘッドを減少させるために、CSI−RSを、毎サブフレームごとに送信せず、時間軸で間欠的に送信しなければならない。これによって、CSI−RSは、1サブフレームの整数倍の周期をもって周期的に送信されたり、特定送信パターンで送信され得る。
【0099】
この時、CSI−RSが送信される周期やパターンは、基地局が設定することができる。CSI−RSを測定するために、端末は、必ず自身が属したセルのそれぞれのCSI−RSアンテナポートに対するCSI−RS設定を知っていなければならない。CSI−RS設定には、CSI−RSが送信されるダウンリンクサブフレームインデクス、送信サブフレーム内でCSI−RSリソース要素(RE)の時間周波数位置(例えば、
図8(a)乃至
図8(e)のようなCSI−RSパターン)、そして、CSI−RSシーケンス(CSI−RS用途で使用されるシーケンスとして、スロット番号、セルID、CP長などに基づいて、所定の規則によって擬似ランダムに生成される)などを含むことができる。すなわち、所定の(given)基地局で複数個のCSI−RS設定を使用することができ、基地局は、複数個のCSI−RS設定のうちセル内の端末に対して使用されるCSI−RS設定を知らせることができる。
【0100】
また、それぞれのアンテナポートに対するCSI−RSは区別する必要があるため、それぞれのアンテナポートに対するCSI−RSが送信されるリソースは互いに直交しなければならない。
図8に関連して説明したように、それぞれのアンテナポートに対するCSI−RSは、直交する周波数リソース、直交する時間リソース及び/又は直交する符号リソースを用いて、FDM、TDM及び/又はCDM方式によって多重化できる。
【0101】
CSI−RSに関する情報(CSI−RS設定)を基地局がセル内の各端末に知らせるとき、まず、各アンテナポートに対するCSI−RSがマップされる時間周波数に対する情報を知らせなければならない。具体的に、時間に対する情報には、CSI−RSが送信されるサブフレーム番号、CSI−RSが送信される周期、CSI−RSが送信されるサブフレームオフセット、特定アンテナのCSI−RSリソース要素(RE)が送信されるOFDMシンボル番号などを含むことができる。周波数に対する情報には、特定アンテナのCSI−RSリソース要素(RE)が送信される周波数間隔、周波数軸でのREのオフセット又はシフト値などを含むことができる。
【0102】
図9は、CSI−RSが周期的に送信される方式の一例を説明するための図である。CSI−RSは、1サブフレームの整数倍の周期(例えば、5サブフレーム周期、10サブフレーム周期、20サブフレーム周期、40サブフレーム周期又は80サブフレーム周期)を以って周期的に送信することができる。
【0103】
図9では、一つの無線フレームが10個のサブフレーム(サブフレーム番号0乃至9)で構成されることを示す。
図9では、例えば、基地局のCSI−RSの送信周期が10ms(すなわち、10サブフレーム)であり、CSI−RS送信オフセットは3である場合を示す。複数のセルのCSI−RSが時間上で均一に分布できるように、上記オフセット値は、基地局ごとにそれぞれ異なる値を有することができる。10msの周期でCSI−RSが送信される場合、オフセット値は、0〜9のうち一つを有することができる。これと同様に、例えば、5msの周期でCSI−RSが送信される場合、オフセット値は0〜4のうち一つの値を有することができ、20msの周期でCSI−RSが送信される場合、オフセット値は0〜19のうち一つの値を有することができ、40msの周期でCSI−RSが送信される場合、オフセット値は0〜39のうち一つの値を有することができ、80msの周期でCSI−RSが送信される場合、オフセット値は0〜79のうち一つの値を有することができる。このオフセット値は、所定の周期でCSI−RSを送信する基地局が、CSI−RS送信を始めるサブフレームの値を表す。基地局が、CSI−RSの送信周期とオフセット値を知らせると、端末は、その値を用いて該当のサブフレーム位置で基地局のCSI−RSを受信することができる。端末は、受信したCSI−RSを通じてチャネルを測定し、その結果としてCQI、PMI及び/又はランク指示子(RI)のような情報を基地局に報告できる。本明細書において、CQI、PMI及びRIを区別して説明する場合を除いては、これらを総称してCQI(又はCSI)と称することがある。また、CSI−RSに関連した上記各情報はセル特定情報として、セル内の各端末に共通に適用できる。また、CSI−RS送信周期及びオフセットは、CSI−RS設定別に別々に指定できる。例えば、後述のように、0の送信電力で送信されるCSI−RSを表すCSI−RS設定、及び0でない送信電力で送信されるCSI−RSを表すCSI−RS設定に対して、別々にCSI−RS送信周期及びオフセットを設定できる。
【0104】
図10は、CSI−RSが非周期的に送信される方式の一例を説明するための図である。
図10では、一つの無線フレームが10個のサブフレーム(サブフレーム番号0乃至9)で構成されることを示す。
図10でのように、CSI−RSが送信されるサブフレームは、特定パターンによって表すことができる。例えば、CSI−RS送信パターンを、10サブフレーム単位で構成することができ、それぞれのサブフレームにおいて、CSI−RS送信有無を1ビット指示子で指定できる。
図10の例示では、10個のサブフレーム(サブフレームインデクス0乃至9)内のサブフレームインデクス3及び4で送信されるCSI−RSパターンを示している。このような指示子は、上位層信号通知を通じて端末に提供することができる。
【0105】
CSI−RS送信に対する設定は、前述したように多様に構成することができ、端末が正しくCSI−RSを受信して、チャネル測定を行うようにするためには、基地局が、CSI−RS設定を端末に知らせる必要がある。CSI−RS設定を端末に知らせる本発明の実施例について以降説明する。
【0107】
基地局が端末にCSI−RS設定を知らせる方式として、次の2種類の方式を考慮できる。
【0108】
第1の方式は、動的同報(Broadcast)チャネル(DBCH)信号通知を用いてCSI−RS設定に関する情報を基地局が各端末に同報する方式である。
【0109】
既存のLTEシステムで、システム情報に対する内容を基地局が各端末に知らせるとき、通常、同報チャネル(BCH)を通じて該当の情報を送信できる。端末に知らせるシステム情報に対する内容が多くて、BCHのみでは送信できない場合には、基地局は、一般ダウンリンクデータのような方式でシステム情報を送信するものの、該当のデータのPDCCH CRCを、特定端末識別子(例えば、C−RNTI)でないシステム情報識別子(SI−RNTI)を用いてマスクしてシステム情報を送信できる。この場合に、実際システム情報は、一般の1対地送信データのようにPDSCH領域上で送信される。これによって、セル内のすべての端末は、SI−RNTIを用いてPDCCHを復号した後、該当のPDCCHが指すPDSCHを復号してシステム情報を取得できる。このような方式の同報方式を一般的な同報方式である物理同報チャネル(PBCH)と区別して、動的BCH(DBCH)と称することができる。
【0110】
一方、既存のLTEシステムで同報されるシステム情報は2種類に大別できる。そのうち一つは、PBCHを通じて送信される主情報ブロック(MIB)であり、他の一つはPDSCH領域上で一般の1対地送信データと多重化されて送信されるシステム情報ブロック(SIB)である。既存のLTEシステムにおいては、SIBタイプ1乃至SIBタイプ8(SIB1乃至SIB8)として送信される情報を定義しているため、既存のSIBタイプに定義されていない新しいシステム情報であるCSI−RS設定に対する情報のために、新しいSIBタイプを定義することができる。例えば、SIB9又はSIB10を定義し、これを通じてCSI−RS設定に対する情報を、基地局がDBCH方式でセル内の端末に知らせることができる。
【0111】
第2の方式は、無線リソース制御(RRC)信号通知を用いてCSI−RS設定に関する情報を基地局がそれぞれの端末に知らせる方式である。すなわち、専用RRC信号通知を用いてCSI−RS設定に対する情報をセル内のそれぞれの端末に提供することができる。例えば、端末が初期アクセス又はハンドオーバを通じて基地局と接続を確立する過程で、基地局が該当の端末にRRC信号通知を通じてCSI−RS設定を知らせるようにすることができる。又は、基地局が端末にCSI−RS測定に基づいたチャネル状態フィードバックを要求するRRC信号通知メッセージを送信するときに、該当のRRC信号通知メッセージを通じてCSI−RS設定を該当の端末に知らせるようにすることもできる。
【0112】
前述したように、基地局が、CSI−RS設定及び端末のチャネル状態情報フィードバックに用いられるCSI−RS設定を、端末に知らせる2つの方式は、本発明の多様な実施例に適用することができる。
【0114】
本発明では、任意の基地局で多数のCSI−RS設定を用いることができ、基地局が、それぞれのCSI−RS設定によるCSI−RSを、予め決定されたサブフレーム上で端末に送信する方法を提案する。本発明で提案する方法において、基地局は端末に多数のCSI−RS設定を知らせ、そのうち、チャネル品質情報(CQI)又はチャネル状態情報(CSI)フィードバックのためのチャネル状態測定に用いられるCSI−RSがどれかを端末に知らせることができる。
【0115】
このように、基地局が、端末で使用されるCSI−RS設定及びチャネル測定に用いられるCSI−RSを指示することに対する本発明の具体的な実施例について以降説明する。
【0116】
図11は、2つのCSI−RS設定が使用される例を説明するための図である。
図11では、一つの無線フレームが10個のサブフレーム(サブフレーム番号0乃至9)で構成されることを示す。
図11で、第1のCSI−RS設定、すなわち、CSI−RS1はCSI−RSの送信周期が10msであり、CSI−RS送信オフセットが3である。
図11で、第2のCSI−RS設定、すなわち、CSI−RS2は、CSI−RSの送信周期が10msであり、CSI−RS送信オフセットが4である。基地局は、端末に2つのCSI−RS設定に対する情報を知らせ、そのうち、どのCSI−RS設定をCQI(又はCSI)フィードバックのために使用するかを知らせることができる。
【0117】
端末機は、特定CSI−RS設定に対するCQIフィードバックが基地局から要求されると、該当のCSI−RS設定に属するCSI−RSだけを用いてチャネル状態の測定を行うことができる。具体的に、チャネル状態は、CSI−RS受信品質及び雑音/干渉の量並びに相関係数の関数によって決定され、CSI−RS受信品質の測定は、該当のCSI−RS設定に属するCSI−RSのみを用いて行われ、雑音/干渉の量及び相関係数(例えば、干渉の方向を表す干渉共分散行列など)を測定するためには、該当のCSI−RS送信サブフレームにおいて、又は指定されたサブフレームにおいて測定を行うことができる。例えば、
図11の実施例で、端末が、基地局から第1のCSI−RS設定(CSI−RS1)に対するフィードバックの要求を受けた場合に、端末は、一つの無線フレームの4番目のサブフレーム(サブフレームインデクス3)によって送信されるCSI−RSを用いて受信品質の測定を行い、雑音/干渉の量及び相関係数の測定のためには、別途に奇数番目のサブフレームを使用するように指定することができる。又は、CSI−RS受信品質の測定並びに雑音/干渉の量及び相関係数の測定を特定単一サブフレーム(例えば、サブフレームインデクス3)に限定して測定するように指定することもできる。
【0118】
例えば、CSI−RSを用いて測定された受信信号の品質は、信号対干渉及び雑音比(SINR)として簡略にS/(I+N)(ここで、Sは受信信号の強度、Iは干渉の量、Nはノイズの量)と表現することができる。Sは、該当の端末に送信される信号及びCSI−RSを含むサブフレームで、CSI−RSを通じて測定できる。I及びNは、周辺セルからの干渉の量、周辺セルからの信号の方向などによって変化するため、Sを測定するサブフレーム又は別途に指定されるサブフレームで送信されるCRSなどを通じて測定できる。
【0119】
ここで、雑音/干渉の量と相関係数の測定は、該当のサブフレーム内のCRS又はCSI−RSが送信されるリソース要素(RE)によって行ってもよいし、雑音/干渉の測定を容易にするために設定された無効リソース要素(Null RE)を通じて行ってもよい。CRS又はCSI−RS REにおいて雑音/干渉を測定するために、端末は、まず、CRS又はCSI−RSを復旧した後、その結果を受信信号から減算して雑音及び干渉信号だけを残し、これから雑音/干渉の統計値を得ることができる。無効REは、該当の基地局がいかなる信号も送信せずに空にしておいた(すなわち、送信電力が0である)REを意味し、該当の基地局を除外した他の基地局からの信号測定を容易にする。雑音/干渉の量と相関係数の測定のために、CRS RE、CSI−RS RE及び無効REをすべて使用することもできるが、基地局は、そのうち、どのREを使用して雑音/干渉を測定するかに対して端末に指定することもできる。これは、端末が測定を行うRE位置に送信される隣接セルの信号がデータ信号なのか制御信号なのか、等によって、該当の端末が測定するREを適切に指定することが必要なためであり、該当のRE位置で送信される隣接セルの信号がどれかは、セル間の同期が合うか否か、そしてCRS設定及びCSI−RS設定などによって変わるため、基地局でこれを把握して、端末に測定を行うREを指定することができる。すなわち、基地局は、CRS RE、CSI−RS RE及び無効REのうち全部又は一部を使用して、雑音/干渉を測定するように、端末に指定することができる。
【0120】
例えば、基地局は、複数個のCSI−RS設定を使用でき、基地局は、端末に一つ以上のCSI−RS設定を知らせ、そのうちCQIフィードバックに用いられるCSI−RS設定及び無効RE位置について知らせることができる。端末機がCQIフィードバックに用いるCSI−RS設定は、0の送信電力で送信される無効REと区別する観点で表現すれば、0でない送信電力で送信されるCSI−RS設定ということができる。例えば、基地局は、端末がチャネル測定を行う一つのCSI−RS設定を知らせ、端末は、上記一つのCSI−RS設定でCSI−RSが0でない送信電力で送信されるものと仮定することができる。これに追加的に、基地局は、0の送信電力で送信されるCSI−RS設定について(すなわち、無効RE位置について)知らせ、端末は、該当のCSI−RS設定のリソース要素(RE)位置について0の送信電力であることを仮定することができる。言い換えれば、基地局は、0でない送信電力の一つのCSI−RS設定を端末に知らせ、0の送信電力のCSI−RS設定が存在する場合には該当の無効RE位置を端末に知らせることができる。
【0121】
上記のようなCSI−RS設定の指示方法に対する変形例として、基地局は、端末に多数のCSI−RS設定を知らせ、そのうちCQIフィードバックに用いられる全部又は一部のCSI−RS設定に対して知らせることができる。これによって、多数のCSI−RS設定に対するCQIフィードバックの要求を受けた端末は、それぞれのCSI−RS設定に該当するCSI−RSを用いてCQIを測定し、測定された多数のCQI情報を共に基地局に送信できる。
【0122】
又は、端末が多数のCSI−RS設定のそれぞれに対するCQIを基地局に送信できるように、基地局は、端末のCQI送信に必要なアップリンクリソースをそれぞれのCSI−RS設定別に予め指定することができ、このようなアップリンクリソース指定に対する情報は、RRC信号通知を通じて予め端末に提供することができる。
【0123】
又は、基地局は、端末が多数のCSI−RS設定のそれぞれに対するCQIを基地局に送信するように動的に起動(trigger)することができる。CQI送信の動的な起動は、PDCCHを通じて行うことができる。どのCSI−RS設定に対するCQI測定を行うかをPDCCHを通じて端末に知らせることができる。このようなPDCCHを受信する端末は、該当のPDCCHで指定されたCSI−RS設定に対するCQI測定結果を基地局にフィードバックできる。
【0124】
本文書で、全体において多数のCSI−RS設定のそれぞれに該当するCSI−RSの送信時点は、互いに異なるサブフレームによって送信されるように指定することもできるし、同一のサブフレームによって送信されるように指定することもできる。同一のサブフレームにおいて互いに異なるCSI−RS設定によるCSI−RSの送信が指定される場合、これらを互いに区別することが必要である。互いに異なるCSI−RS設定によるCSI−RS設定を区別するために、CSI−RS送信の時間リソース、周波数リソース及び符号リソースのうち一つ以上を異にして適用することができる。例えば、該当のサブフレームにおいてCSI−RSの送信RE位置がCSI−RS設定別に異なるように(例えば、一つのCSI−RS設定によるCSI−RSは、
図8(a)のRE位置で送信され、他のCSI−RS設定によるCSI−RSは、同一のサブフレームによって
図8(b)のRE位置で送信されるように)指定できる(時間及び周波数リソースを用いた区分)。又は、互いに異なるCSI−RS設定によるCSI−RSが同一のRE位置で送信される場合に、互いに異なるCSI−RS設定で、互いに異なるCSI−RSスクランブル符号を使用することによって、互いに区分されるようにすることもできる(符号リソースを用いた区分)。
【0126】
多数のCSI−RS設定を定義して、端末がこれに対するCQIをフィードバックするようにする本発明の提案事項は、異種ネットワーク(heterogeneous network)無線通信システム、分散アンテナシステム(DAS)、CoMPシステムなどに適用されて、チャネル測定性能を高めることができる。本発明の適用例はこれに制限されるものではなく、多様な複数アンテナシステムにおいて、本発明で提案する原理によってチャネル測定のための多数のCSI−RS設定が定義及び利用され得ることは自明である。
【0127】
まず、異種ネットワーク無線通信システムに対する本発明の適用例を説明する。異種ネットワークシステムは、例えば、マクロセル及びマイクロセルが共存するネットワークであってもよい。異種ネットワークという用語は、同じ無線接続技術(RAT)を使用するにもかかわらず、マクロセルとマイクロセルとが共存するネットワークを意味することができる。マクロセルは、広いサービス範囲及び高い送信電力を有し、無線通信システムの一般的な基地局を意味する。マイクロセルは、例えば、フェムトセル又はホームeNBのようにマクロセルの小型版であって、マクロセルの機能をほとんど実行することができ、かつ独立に動作する基地局を意味する。異種ネットワーク内の端末は、マクロセルから直接サービス提供されたり(すなわち、マクロ端末)、又はマイクロセルからサービス提供されることもできる(すなわち、マイクロ端末)。マイクロセルは、許可された特定端末だけをサービス提供する閉域接続(CSG)方式、又はすべての端末をサービス提供する開放型接続(OSG)方式に区分することができる。異種ネットワークでは、マイクロセルに隣接した端末(例えば、マイクロセルに隣接して位置するが、該当のマイクロセルによってサービス提供されない端末)がマクロセルから受信するダウンリンク信号が、マイクロセルからの信号によって強い干渉を受ける場合などが発生し得る。したがって、異種ネットワークでは、セル間干渉調整(ICIC)が重要である。
【0128】
異種ネットワーク環境において、異種セル間のICICを効率的に行うために、多数のCSI−RS設定を定義し、これによってチャネル品質の測定を行うことができる。例えば、マイクロセルが使用できる時間領域が制限されている場合に(例えば、マイクロセルが偶数番目のサブフレームだけを使用して信号を送信するように制限されている場合に)、そして、マクロセルは、マイクロセルに与える干渉を減らすために、偶数番目のサブフレームと奇数番目のサブフレームにおいて送信電力及びビーム方向を異にして設定する場合を仮定することができる。この場合、マクロセルからサービスを受けるマクロ端末が、偶数番目のサブフレームで経験するチャネル品質は、該当のマクロ端末が奇数番目のサブフレームで経験するチャネル品質と異なることがある。このようなマクロ端末に対してサブフレームごとに互いに異なるチャネル環境を考慮しない場合、マクロ端末が測定及び報告するチャネル品質は、実際チャネル環境と異なることがあり、これは、全体的なネットワーク性能の低下につながる。これを解決するために、前述した本発明の多様な実施例によって、チャネル環境の異なる多数個の時間領域にそれぞれ異なるCSI−RS設定を適用することができ、端末は、多数のCSI−RS設定によって送信されるCSI−RSを用いて、CSI−RS設定別にCQIを測定及び報告することができる。
【0129】
次に、分散アンテナシステム(DAS)に対する本発明の適用例を説明する。DASにおいて基地局は、互いに非常に離れた別個の位置に設置された多数のアンテナを有することができる。例えば、8個のアンテナを備えた基地局の場合、そのうち4個のアンテナは、基地局に近い位置に設置され、残りのアンテナのうち2個は、基地局から遠く離れた位置に光中継器を通じて接続及び設置し、残りの2個のアンテナは、基地局から他の方向に遠く離れた位置に光中継器を通じて接続及び設置することができる。この場合、8個のアンテナは設置位置によって、2個、4個、2個ずつのアンテナが合計3個のアンテナグループを構成することができる。このような分散アンテナシステムでは、物理的なアンテナの位置によって互いに異なるチャネル環境を構築することができる。互いに異なるチャネル環境に対する考慮なしに、同じ方式でCQIを測定する場合に、実際チャネル環境を正しく測定できないという問題が発生し得る。これを解決するために、前述した本発明の多様な実施例によって、基地局はチャネル環境が異なる多数個のアンテナグループ別にそれぞれ異なるCSI−RS設定を割り当てることができ、基地局は、端末機に専用RRC信号通知を使用して一つ以上のCSI−RS設定を個別的に知らせ、一つ以上のCSI−RS設定のうち端末のCQIフィードバックに用いられるCSI−RS設定及び無効RE位置について知らせることができる。又は、基地局は、端末機に専用RRC信号通知を使用して端末のCQIフィードバックに用いられる一つ以上のCSI−RS設定及び無効RE位置を個別的に知らせることができる。端末は、CQIフィードバックに用いられるCSI−RS設定によって送信されるCSI−RSを用いて、CSI−RS設定別に(すなわち、アンテナグループ別に)CQIを測定及び報告することができる。このために、それぞれのCSI−RS設定に対してアンテナの個数を独立に設定することができる。
【0130】
次に、多地点協調(CoMP)システムに対する本発明の適用例を説明する。CoMPシステムは、性能向上のために複数のセル間の協調を通じて信号を送信するシステムである。CoMP送信/受信方式は、特定端末と基地局((アクセス)ポイント又はセルを含む概念)との間の通信を円滑にするために、2個以上の基地局((アクセス)ポイント又はセル)が互いに協調して端末と通信する方式を意味する。CoMPシステムに対する説明において、基地局という用語は、セル、アクセスポイント又は単純にポイントと同じ意味で使用される。また、CoMP方式は、CoMPを行うそれぞれの基地局からのデータ送信の有無によって、CoMP−共同処理(Joint Processing,JP)方式及びCoMP−協調スケジュール/ビーム形成(Cooperative Scheduling/Beamforming,CS)方式に大きく分けられる。CoMP−JP方式は、CoMPを行うそれぞれの基地局から端末へのデータが任意の時点で同時に送信され、端末は、複数個の基地局のそれぞれからの信号を結合して受信性能を向上させることができる。一方、CoMP−CS方式の場合、一つの端末へのデータは、任意の時点で一つの基地局から送信され、他の基地局の干渉が最小化されるように端末スケジュール又はビーム形成を行うことができる。
【0131】
CoMP方式が円滑に動作するために、端末は、自身のサービス提供セルのCSI−RSだけでなく協調単位に含まれる隣接セルのCSI−RSも測定して、これらに対するチャネル情報を基地局にフィードバックしなければならない。したがって、基地局は、自身のCSI−RS送信設定及び隣接セルのCSI−RS設定を端末に知らせる必要がある。このために、前述した本発明の多様な実施例によって、基地局は、自身が多数のCSI−RS設定を持っているかのように端末に知らせ、そのうち、どのCSI−RS設定に対するチャネル情報フィードバックを行うかを知らせることができる。
【0132】
例えば、A個の送信アンテナを備えたサービス提供セルと、B個の送信アンテナを備えた隣接セルとが協調通信をする状況を仮定できる。この場合、例えば、次の3種類のCSI−RS設定を定義することができる。
【0133】
CSI−RS設定1:サービス提供セルのCSI−RS設定(A個のアンテナ用CSI−RS)
CSI−RS設定2:隣接セルのCSI−RS設定(B個のアンテナ用CSI−RS)
CSI−RS設定3:仮想単一セルのCSI−RS設定(A+B個のアンテナ用CSI−RS)
【0134】
基地局が知らせたCSI−RS設定によって端末がフィードバックするチャネル情報の内容は、下記の表1のように定義できる。
【0136】
上記のように、複数個のCSI−RS設定が定義される場合に、端末は、それぞれのCSI−RS設定によるCSI−RS送信が実質的にどのセル(サービス提供セル又は隣接セル)から送信されるのかは知る必要がない。すなわち、端末は、定まった基地局が知らせたCSI−RS設定によって送信されるCSI−RSを測定し、それによるCSIフィードバックを行えばよい。したがって、CoMPシステムでの適用例に基づいて説明する複数個のCSI−RS設定の定義及びこれによる端末のCSIフィードバック方法は、一つの基地局が複数個のCSI−RS設定を定義し、端末に、どのCSI−RS設定に対するCSIフィードバックを行うかを指示し、端末が、指示されたCSI−RSに基づいてチャネル情報測定及び報告する動作に同一に適用することができる。
【0137】
上記表1のように、複数個のCSI−RS設定が定義される場合に、サービス提供基地局は、基本的にケース1で動作し、CoMPのための情報が必要な場合にはCoMP候補端末にケース2、ケース3又はケース4で設定して、CoMPに必要なCSIを得ることができる。このとき、CoMPに必要なCSIは、隣接セルとCoMP候補端末との間のチャネル情報、サービス提供セルとCoMP候補端末との間のチャネル情報、CoMP動作を仮定したCoMP用CSI、A+B個のアンテナを有する仮想単一セル用CSIなどを含むことができる。各ケースによる動作は次の通りである。
【0138】
ケース1では、端末は、サービス提供セルのCSI−RS(すなわち、CSI−RS設定1によって送信されるCSI−RS)を測定して、基地局にサービス提供セルに対するCSIをフィードバックできる。このCSIは、一般的な非CoMP環境において、端末からサービス提供セルがフィードバックを受けるCSIと同一である。
【0139】
ケース2では、端末は、隣接セルのCSI−RS(すなわち、CSI−RS設定2によって送信されるCSI−RS)を測定して、基地局に隣接セルに対するCSIをフィードバックできる。端末は、測定対象であるチャネルをサービス提供セルのチャネルと見なして(すなわち、隣接セルのチャネルなのかは知る必要なしに)CSIを生成できる。すなわち、端末の立場で、ケース2は、ケース1と測定対象になるチャネルが異なるだけで、それぞれのケースでCSIは同じ方式で生成することができる。
【0140】
ケース3では、端末は、サービス提供セルのCSI−RS(すなわち、CSI−RS設定1によって送信されるCSI−RS)及び隣接セルのCSI−RS(すなわち、CSI−RS設定2によって送信されるCSI−RS)をすべて測定する。これによって、端末は、サービス提供セルに対するCSI及び隣接セルに対するCSIをそれぞれ生成できる。CSIを生成するに当たり、端末は、どのセルに対するチャネルなのかは知る必要がなく、すべてサービス提供セルからのチャネルと見なしてチャネル測定を行えばよい。端末は、それぞれのCSI−RS設定によって生成されたCSIを共同で,又は別個にアップリンクを通じて基地局に伝達できる。
【0141】
又は、ケース3の場合に、端末は、特定CoMP動作を仮定してCoMP用CSIを生成及び伝達できる。例えば、端末は、CoMP−JPを仮定して、共同送信(joint trasmission)が具現されたときに得ることのできるランク及びCQIを計算し、共同送信用符号表によってPMIを選択した後、基地局にRI、PMI及びCQIをフィードバックできる。
【0142】
ケース4では、端末は、A+B個のアンテナを使用する仮想単一セルに対するCSI−RS(CSI−RS設定3によって送信されるCSI−RS)を測定できる。このとき、端末は、CSI−RSのうち一部をサービス提供セルから受信し、CSI−RSのうち残りの一部を隣接セルから受信する。ケース4が正しく動作するために、各基地局(サービス提供セル及び隣接セル)は、A+B個のアンテナ用単一セルCSI−RSのRE位置に合わせてCSI−RSを送信しなければならない。例えば、A+B個のアンテナ用単一セルCSI−RSが、RE1番からA+B番までに割り当てられると、サービス提供セルはRE1番からA番を、そして、隣接セルは、RE A+1番からA+B番を用いてCSI−RSを送信しなければならない。それぞれのセルが、CSI−RS送信のために使用しているREが上記のような条件を満たす場合は問題なしに動作するが、そうでない場合、追加的なCSI−RS送信が必要なことがある。
【0143】
一般的に、アンテナ個数によるCSI−RS REマップは、
図12のように木構造を有する。
図12において、8Tx CSI−RSは、8送信アンテナの場合にCSI−RSがマップされるREグループを表し、4Tx CSI−RSは、4送信アンテナの場合にCSI−RSがマップされるREグループを表し、2Tx CSI−RSは、2送信アンテナの場合にCSI−RSがマップされるREグループを表す。
図12において示すように、一つの8Tx CSI−RS用REグループは、2つの4Tx CSI−RS用REグループの和集合であり、4Tx CSI−RS用REグループは、2つの2Tx CSI−RS用REグループの和集合である。ただし、2個のCSI−RS用REグループであっても4Tx CSI−RS REグループのRE#4〜RE#7及び4Tx CSI−RS REグループのRE#8〜RE#11は木構造を外れるので、一つの8Tx CSI−RS用REグループにおいては用いることができない。例えば、4個の送信アンテナを使用するサービス提供セルが、CSI−RS送信のために4番から7番のREを使用し、4個の送信アンテナを使用する隣接セルが、CSI−RS送信のために8番から11番のREを使用する場合、ケース4で設定されたCoMP候補端末のために、サービス提供セル、隣接セル、又は両セル共に追加的なCSI−RSを送信して、一つの8Tx CSI−RSのREグループにマップされ得るようにしなければならない。すなわち、サービス提供セルが新しい4Tx CSI−RSをREグループのRE#12〜#15の位置で送信したり、隣接セルが新しい4Tx CSI−RSをREグループのRE#0〜#3の位置で送信したり、又は両セル共に新しい4Tx CSI−RSを送信したりして(例えば、サービス提供セルは4Tx CSI−RSをREグループのRE#16〜#19の位置で追加的に送信し、隣接セルは4Tx CSI−RSをREグループのRE#20〜#23の位置で追加的に送信して)、端末が受信するCSI−RSを8Tx CSI−RSとして仮定することができる。
【0144】
上記のように、追加的なセルがCSI−RSを送信する場合、制御信号のオーバヘッドが増加することになるが、追加されたCSI−RSをCoMP候補端末の特性に合わせて送信することによって、全体的なネットワーク性能を向上させることができる。言い換えれば、既存のCSI−RSは、セル内のすべての端末が受信できるように普遍的に設計されるが、上記のように、CoMP動作のために追加的に送信されるCSI−RSは、CoMP候補端末だけのために使用されるため、この用途に最適化されたCSI−RS設計及び送信が可能である。例えば、一般的にCoMP端末が、セル境界に位置することを考慮して、追加されたCSI−RSがセル境界方向にビーム形成されるようにするCSI−RSにプリコーディングを適用することができる。又は、端末が隣接セル及びサービス提供セルのCSI−RSから測定したチャネルの空間特性が、A+B個の送信アンテナに対する仮想単一セルPMI符号表の空間特性と類似になるように、CSI−RSにプリコーディングを適用することができる。CSI−RSにプリコーディングを適用して送信する場合、基地局は、該当のCoMP端末に実際データを送信するとき、CSIから計算されたプリコーダの他にCSI−RSに適用されたプリコーダを追加的に適用して送信しなければならない。すなわち、送信されるデータをxと表現し、端末が報告したCSIから取得したプリコーディング行列をWと表現し、CSI−RS送信に適用されたプリコーディング行列をW0と表現する場合に、基地局から送信する信号は、W0×W×xであり、これを通じて端末が受信する信号はy=H×W0×W×x+Nである。ここでNは雑音を表す。
【0145】
ケース4では、端末は、測定されたチャネルをA+B個の送信アンテナを備えたサービス提供セルとのチャネルに仮定した後、これに適合したCSIを生成し、フィードバックできる。例えば、A=B=4である場合、端末は、8Tx単一セル環境で定義されたRI、PMI及びCQIを生成し、サービス提供基地局にこの各値をフィードバックできる。
【0146】
ケース5では、端末は、A個の送信アンテナを備えたサービス提供セルからのCSI−RS(CSI−RS設定1によって送信されるCSI−RS)を測定し、これと同時に、サービス提供セル及び隣接セルからA+B個の送信アンテナを通じて送信されるCSI−RS(CSI−RS設定3によって送信されるCSI−RS)を測定できる。これによって、端末は、A個の送信アンテナを備えたサービス提供セルからのCSI−RS(CSI−RS設定1によって送信されるCSI−RS)を用いてチャネル測定された結果を非CoMP用CSIとして生成して、フィードバックできる。また、CSI−RS設定3によって送信されるCSI−RSに対して、端末は、ケース4のように、A+B個の送信アンテナを備えたサービス提供セルとのチャネルと仮定した後、これに適合したCSIを生成し、フィードバックできる。
【0147】
前述した本発明の各適用例は例示的なものに過ぎず、これに制限されるものではない。すなわち、基地局が、2以上のCSI−RS設定を指定して、端末に知らせ、端末は、2以上のCSI−RS設定のうち一部又は全部に対するCSIフィードバックの指定を受けることができ、これによって、端末は、フィードバックするように指定されたCSI−RS設定に対して、チャネル状態を測定した結果を共に又は別にアップリンクを通じて基地局に伝達する本発明の原理は、複数アンテナ送信をサポートする多様なシステムにおいて適用することができる。ここで、互いに異なるCSI−RS設定に対するCSI−RS送信は、同じセルの同じアンテナグループにおいてアンテナビーム方向を異にして送信されたり、又は同一のセルの地理的に離れた他のアンテナグループを通じて送信されたり、又は他のセルのアンテナを通じて送信されるものであってもよい。
【0148】
図13は、本発明の一実施例によるCSI−RS設定情報を送信する方法を示すシーケンス図である。
図13では、基地局と端末を例示するが、同一の方法を基地局と中継器との間に、又は中継器と端末との間に適用することができる。
【0149】
基地局(eNB)は、一つ以上のCSI−RS設定を使用することができる。CSI−RS設定は、CSI−RS送信に対する時間、周波数及び/又は符号リソースに対する設定を含むことができる。例えば、CSI−RS設定によって、
図8(a)乃至8(e)のうち一つのパターン(すなわち、時間周波数位置)によってCSI−RSを送信することができる。また、CSI−RS設定は、CSI−RSが送信されるアンテナポートの個数(1、2、4又は8個のアンテナポート)によってCSI−RSがマップされるリソース要素位置に対する情報を含むことができる。
【0150】
基地局が使用する一つ以上のCSI−RS設定のうち一つのCSI−RS設定は、端末がチャネル測定のために使用するCSI−RSが送信される(すなわち、0でない送信電力のCSI−RSが送信される)リソース要素位置を表すことができる。また、基地局が使用する一つ以上のCSI−RS設定には、0の送信電力で送信されるCSI−RSが存在する場合に(例えば、隣接基地局のCSI−RSが送信される場合)、そのCSI−RSのリソース要素位置を表すCSI−RS設定を含むことができる。以降、まず、基地局側の動作について説明する。
【0151】
ステップS1310において、基地局は、一つ以上のCSI−RS設定に対する情報を端末に送信することができる。基地局が送信する一つ以上のCSI−RS設定情報は、CSI−RSに対して端末が0でない送信電力と仮定する一つのCSI−RS設定(すなわち、端末がチャネル測定に使用するCSI−RSを表すCSI−RS設定)を含むことができる。これと共に、基地局は、ステップS1310で、上記一つ以上のCSI−RS設定のうち、CSI−RSに対して上記端末が0の送信電力と仮定するCSI−RS設定(すなわち、CSI−RS送信リソース要素が無効REを表すCSI−RS設定)を表す情報を端末に送信することができる。
【0152】
ステップS1320において、基地局は、上記一つ以上のCSI−RS設定によって各CSI−RSをダウンリンクサブフレームのリソース要素にマップすることができる。このとき、CSI−RSがマップされるダウンリンクサブフレームは、セル特定で設定される所定の周期及び所定のオフセットによって設定することができる。また、CSI−RS送信の周期及びオフセットは、CSI−RS設定別に別々に設定することができ、例えば、端末が0でない送信電力と仮定するCSI−RS、及び0の送信電力と仮定するCSI−RSに対して別々に設定することができる。
【0153】
ステップS1330において、基地局は、各CSI−RSがマップされたダウンリンクサブフレームを端末に送信することができる。その後、ステップS1340において、基地局は、端末がCSI−RSなどを用いて測定したCSIを受信することができる。
【0154】
次に、端末側の動作について説明する。
【0155】
ステップS1350において、端末は、一つ以上のCSI−RS設定に対する情報を基地局から受信することができる。ここで、端末が受信する一つ以上のCSI−RS設定は、端末がCSI測定に使用するCSI−RSに対するCSI−RS設定(すなわち、端末がCSI−RSに対して0でない送信電力で送信されると仮定する一つのCSI−RS設定)を含むことができる。また、ステップS1350において、端末は、一つ以上のCSI−RS設定のうち、CSI−RSが0の送信電力で送信される(すなわち、CSI−RS送信リソース要素が無効REを表す)CSI−RS設定がどれかを表す情報を基地局から受信することができる。
【0156】
ステップS1360において、端末は、CSI−RSがマップされたダウンリンクサブフレームを受信することができる。CSI−RSの送信周期及びオフセットは、セル特定で設定することができ、CSI−RS設定別に別々に設定することができる。
【0157】
ステップS1370において、端末は、受信したCSI−RSを用いてダウンリンクチャネルを測定し、チャネル状態情報(RI、PMI、CQIなど)を生成することができる。ステップS1380において、端末は、生成されたチャネル状態情報を基地局に報告できる。
【0158】
図13と関連して説明した本発明のCSI−RS設定情報提供方法において、前述した本発明の多様な実施例で説明した事項を独立に適用したり、2以上の実施例を同時に適用したりすることができるが、重複する内容は明確性のために説明を省略する。
【0159】
図14は、本発明に係る基地局装置1410及び端末装置1420に対する好ましい実施例の構成を示す図である。
【0160】
図14を参照して本発明に係る基地局装置1410は、受信モジュール1411、送信モジュール1412、プロセッサ1413、メモリ1414及び複数個のアンテナ1415を含むことができる。複数個のアンテナ1415は、MIMO送受信をサポートする基地局装置を意味する。受信モジュール1411は、端末からのアップリンク上の各種信号、データ及び情報を受信することができる。送信モジュール1412は、端末へのダウンリンク上の各種信号、データ及び情報を送信することができる。プロセッサ1413は、基地局装置1410全般の動作を制御することができる。
【0161】
本発明の一実施例に係る基地局装置1410は、複数アンテナ送信に対するCSI−RSを送信するように構成することができる。基地局装置1410のプロセッサ1413は、一つ以上のCSI−RS設定に対する情報を送信モジュール1412を通じて端末1420に送信するように構成することができる。一つ以上のCSI−RS設定に対する情報は、CSI−RSが0でない送信電力で送信されることを表す一つのCSI−RS設定を含むことができる。また、基地局装置1410のプロセッサ1413は、一つ以上のCSI−RS設定のうち、0の送信電力で送信されることを表すCSI−RS設定がどれかを指示する情報を送信モジュール1412を通じて端末に1420送信するように構成することができる。また、基地局装置1410のプロセッサ1413は、一つ以上のCSI−RS設定によってCSI−RSをダウンリンクサブフレームのリソース要素にマップするように構成することができる。また、基地局装置1410のプロセッサ1413は、CSI−RSがマップされたダウンリンクサブフレームを送信モジュール1412を通じて端末1420に送信するように構成することができる。
【0162】
基地局装置1410のプロセッサ1413は、その他にも、基地局装置1410が受信した情報、外部に送信する情報などを演算処理する機能を提供し、メモリ1414は、演算処理された情報などを所定時間記憶することができ、バッファ(図示せず)などの構成要素に置き換えてもよい。
【0163】
図14を参照して、本発明に係る端末装置1420は、受信モジュール1421、送信モジュール1422、プロセッサ1423、メモリ1424及び複数個のアンテナ1425を含むことができる。複数個のアンテナ1425は、MIMO送受信をサポートする端末装置を意味する。受信モジュール1421は、基地局からのダウンリンク上の各種信号、データ及び情報を受信することができる。受信モジュール1422は、基地局へのアップリンク上の各種信号、データ及び情報を送信することができる。プロセッサ1423は、端末装置1420全般の動作を制御することができる。
【0164】
本発明の一実施例に係る端末装置1420は、複数アンテナ送信をサポートする基地局からのCSI−RSを用いてチャネル状態情報を送信するように構成することができる。端末装置1420のプロセッサ1423は、一つ以上のCSI−RS設定に対する情報を受信モジュール1421を通じて基地局1410から受信するように構成することができる。一つ以上のCSI−RS設定に対する情報は、CSI−RSが0でない送信電力で送信されることを表す一つのCSI−RS設定を含むことができる。また、端末装置1420のプロセッサ1423は、一つ以上のCSI−RS設定のうち、0の送信電力で送信されることを表すCSI−RS設定がどれかを指示する情報を、受信モジュール1421を通じて基地局1410から受信するように構成することができる。また、端末装置1420のプロセッサ1423は、一つ以上のCSI−RS設定によってCSI−RSがリソース要素にマップされたダウンリンクサブフレームを受信モジュール1421を通じて基地局1420から受信するように構成することができる。また、端末装置1420のプロセッサ1423は、CSI−RSを用いてチャネル状態情報を測定し、その結果を送信モジュール1422を通じて基地局1410に送信するように構成することができる。
【0165】
端末装置1420のプロセッサ1423は、その他にも、端末装置1420が受信した情報、外部に送信する情報などを演算処理する機能を提供し、メモリ1424は、演算処理された情報などを所定時間記憶することができ、バッファ(図示せず)などの構成要素に置き換えてもよい。
【0166】
上記のような基地局装置及び端末装置の具体的な構成は、前述した本発明の多様な実施例で説明した事項を独立に適用したり、2以上の実施例を同時に適用したりするように具現することができるが、重複する内容は明確性のために説明を省略する。
【0167】
また、
図14に対する説明において、基地局装置1410に対する説明は、ダウンリンク送信の主体又はアップリンク受信の主体としての中継器装置に対しても同一に適用することができ、端末装置1420に対する説明は、ダウンリンク受信の主体又はアップリンク送信の主体としての中継器装置に対しても同一に適用することができる。
【0168】
上述した本発明の各実施例は様々な手段を通じて具現できる、例えば、本発明の実施例は、ハードウェア、ファームウェア、ソフトウェア又はそれらの組合せなどによって具現することができる。
【0169】
ハードウェアによる具現の場合、本発明の実施例に係る方法は、一つ又はそれ以上の特定用途集積回路(ASIC)、デジタル信号プロセッサ(DSP)、デジタル信号処理デバイス(DSPD)、プログラム可能論理デバイス(PLD)、フィールドプログラム可能ゲートアレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサなどによって具現することができる。
【0170】
ファームウェア又はソフトウェアによる具現の場合、本発明の実施例に係る方法は、以上で説明された機能又は動作を行うモジュール、手順、関数などの形態として具現することができる。ソフトウェアコードは、メモリユニットに記憶されて、プロセッサにより駆動することができる。メモリユニットは、プロセッサの内部又は外部に位置し、既に公知の様々な手段によってプロセッサとデータを授受することができる。
【0171】
上述のように開示された本発明の好適な実施例についての詳細な説明は、当業者が本発明を具現し実施できるように提供された。以上では本発明の好適な実施例を参照して説明したが、当該技術の分野における熟練した当業者には、本発明の領域を逸脱しない範囲内で、本発明を様々に修正及び変更できるということが理解できるであろう。例えば、当業者であれば、以上の実施例に記載された各構成を互いに組み合わせて用いることができるであろう。したがって、本発明は、ここに開示された実施形態に制限されるものではなく、ここに開示された原理及び新規の特徴と一致する最も広い範囲を与えるためのものである。
【0172】
本発明は、本発明の精神及び必須特徴を逸脱しない範囲で、他の特定の形態に具体化できる。したがって、上記の詳細な説明は、いずれの面においても制約的に解釈されてはならず、例示的なものとして考慮しなければならない。本発明の範囲は、添付した請求項の合理的解釈により決定されなければならないもので、本発明の等価的な範囲内における変更はいずれも本発明の範囲に含まれる。本発明は、ここに開示された実施形態に制限されるものではなく、ここに開示された原理及び新規の特徴と一致する最も広い範囲を与えるためのものである。また、特許請求の範囲において明示的な引用関係にない請求項を結合して実施例を構成したり、出願後の補正により新しい請求項として含むことができる。