【実施例】
【0062】
以下に、本発明における実施例を示し、本発明を具体的に説明する。
【0063】
六方晶フェライト粒子粉末の平均板面径は、透過型電子顕微鏡を用いて複数の視野において粒子の写真を撮影し、該写真を用いて粒子360個以上について板面径を測定し、その平均値で粒子の平均板面径を示した。なお、平均板面径を求める際の粒子の選定基準としては、粒子同士が重なっており、境界がはっきりしていないものは測定を行わないものとした。
【0064】
六方晶フェライト粒子粉末の板状比は、X線回折装置「RINT2500」(株式会社リガク製)を用いて、CuのKα線を線源とした面指数(2,2,0)面と(0,0,6)面のそれぞれのピークの半値幅を求め、Scherrerの式より結晶子径を計算し、(2,2,0)面の結晶子径/(0,0,6)面の結晶子径を板状比として示した。
【0065】
比表面積は、「モノソーブMS−11」(カンタクロム株式会社製)を用いて、BET法により測定した値で示した。
【0066】
六方晶フェライト粒子粉末に含有される各種元素の含有量は、試料0.2gと王水10mlとを100mlのフッ素樹脂製ビーカーへ入れて攪拌し、240℃で20分保持して溶解させ、この溶液を「誘導結合プラズマ発光分光分析装置 SPS4000」(セイコー電子工業株式会社製)を用いて測定した。
【0067】
六方晶フェライト粒子粉末の磁性不純物の有無については、以下に示す2つの方法によって確認を行った。
(1)XRDによる定性分析を行ない、γ−Fe
2O
3を示すピークの有無の確認を行った。
(2)「振動試料型磁力計VSM SSM−5−15」(東英工業株式会社製)を用いて外部磁場1193.7kA/mの条件で測定を行ない、保磁力分布曲線にピークが2つ以上ある場合は磁性不純物が存在すると判定した。
【0068】
六方晶フェライト粒子粉末及び磁気テープの磁気特性は、「振動試料型磁力計VSM SSM−5−15」(東英工業株式会社製)を用いて外部磁場1193.7kA/mの条件で測定した。また、粉体SFD及び磁気テープのSFDは、印加磁場が0〜397.9kA/mの範囲ではスイープ速度を79.6(kA/m)/分とし、397.9〜1,193.7kA/mの範囲ではスイープ速度を397.9(kA/m)/分として測定した。
【0069】
磁気テープの塗膜表面の光沢度は、「グロスメーター UGV−5D」(スガ試験機株式会社製)を用いて入射角45°で測定した値であり、標準板光沢を86.3%とした時の値を%で示したものである。
【0070】
表面粗度Raは、「ZYGO NewView600S」(ZYGO株式会社製)を用いて塗膜の中心線平均粗さを測定した。
【0071】
磁気記録媒体を構成する非磁性支持体及び磁気記録層の各層の厚みは、デジタル電子マイクロメーターK351C(安立電気株式会社製)を用いて測定した。
【0072】
磁気テープの電磁変換特性は、ドラムテスターを用い、記録ヘッドにはMIGヘッドを、再生用ヘッドにはMRヘッドを用いて測定を行った。ヘッドと磁気テープとの相対速度は2.5m/secとし、記録周波数10MHzにおける再生信号出力(C)及び記録周波数9MHzにおける出力をノイズ信号出力(N)を、それぞれ後出比較例2−1を0dB(基準テープ)として、基準テープに対する相対値として求めた。またC/Nはこれら再生信号出力(C)とノイズ信号出力(N)を用いて示した。
【0073】
磁気テープの劣化は、磁気テープを温度60℃、相対湿度90%の環境下で14日間保存し、保存前と保存後の磁気テープそれぞれについて、前述の電磁変換特性を測定したときと同様の条件で得られるエンベロープより、単位時間当たりのドロップアウトの個数をカウントし、保存前に対する保存後のドロップアウトの増加量で示した。
【0074】
<実施例1−1:磁気記録媒体用六方晶フェライト粒子粉末の製造>
BaCl
2・2H
2O 0.817mol、FeCl
3・6H
2O 6.00mol、TiCl
4 0.54molに純水を加えて溶解し、7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液5Lを攪拌させながら前記混合溶液を200mL/min.の流量でNaOH水溶液中に添加した後、60℃で2時間反応を行った。次に、純水を用いて十分に水洗し、共沈物を含む10Lのスラリーとした後、酢酸を用いてpH値を8.5に調整し、その後、アルミン酸ナトリウム 0.24molを添加して30分間攪拌して共沈混合物とした。次いで、フラックスとしてNaClを、ろ過・乾燥後の前記共沈混合物100重量部に対して30重量部となるように添加し、ろ過・乾燥してフラックスを含む共沈混合物を得た。
【0075】
次いで、得られたフラックスを含む共沈混合物を空気雰囲気下、700℃の温度で6時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、塩酸を用いてpH値を2に調製して60分間保持して酸処理を行い、水酸化ナトリウム水溶液を用いてpH値を5に調整した後、水洗・ろ過・乾燥・粉砕して、実施例1−1の六方晶フェライト粒子粉末を得た。
【0076】
得られた六方晶フェライト粒子粉末は粒状であり、平均板面径は17.9nm、板状比は1.2、BET比表面積値は45.1m
2/gであり、保磁力値(Hc)は153.8kA/m、飽和磁化(σs)は44.7Am
2/kg、粉体SFDは0.84であった。XRDの定性分析において、γ−Fe2O3のピークは認められなかった。また、磁気特性の保磁力分布曲線では、1つのピークしか認められなかった。AFe
12O
19のマグネトプランバイト型フェライトの組成式において、AはBa、Feの置換元素としてTiをFeに対して9.0mol%、AlをFeに対して4.0mol%であった。
【0077】
<実施例2−1:磁気記録媒体の製造>
非磁性下地層形成用の非磁性塗料組成
非磁性下地層用ヘマタイト粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 11.8重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 11.8重量部、
シクロヘキサノン 78.3重量部、
メチルエチルケトン 195.8重量部、
トルエン 117.5重量部、
硬化剤(ポリイソシアネート) 3.0重量部、
潤滑剤(ブチルステアレート) 1.0重量部。
【0078】
非磁性下地層用ヘマタイト粒子粉末と結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを固形分が72wt%となるよう混合し、自動乳鉢を用いて30分間混練して混練物を得た。
【0079】
次いで、上記非磁性塗料組成となるように、上記混練物と、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエン1.5mmφガラスビーズ95gと共に140mlガラス瓶に添加し、ペイントシェーカーで6時間混合・分散を行って非磁性塗料組成物を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、非磁性下地層用非磁性塗料を調整した。
【0080】
上記非磁性下地層用非磁性塗料を厚さ4.5μmの芳香族ポリアミドフィルム上に塗布し、次いで、乾燥させることにより非磁性下地層を形成した。
【0081】
磁気記録層形成用の磁性塗料組成
六方晶フェライト粒子粉末 100.0重量部、
スルホン酸カリウム基を有する塩化ビニル系共重合樹脂 12.5重量部、
スルホン酸ナトリウム基を有するポリウレタン樹脂 7.5重量部、
研磨剤(AKP−50) 5.0重量部、
カーボンブラック 2.0重量部、
潤滑剤(ミリスチン酸:ステアリン酸ブチル=1:2) 3.0重量部、
硬化剤(ポリイソシアネート) 5.0重量部、
シクロヘキサノン 170.0重量部、
メチルエチルケトン 170.0重量部。
【0082】
六方晶フェライト粒子粉末と研磨剤、カーボンブラック、結合剤樹脂溶液(スルホン酸カリウム基を有する塩化ビニル系共重合樹脂30重量%とシクロヘキサノン70重量%)及びシクロヘキサノンとを固形分が76wt%となるよう混合し、自動乳鉢を用いて40分間混練して混練物を得た。
【0083】
次いで、上記磁性塗料組成となるように、上記混練物と、追加の結合剤樹脂溶液(スルホン酸ナトリウム基を有するポリウレタン樹脂30重量%、溶剤(メチルエチルケトン:トルエン=1:1)70重量%)、シクロヘキサノン、メチルエチルケトン及びトルエン1.5mmφガラスビーズ95gと共に140mlガラス瓶に添加し、ペイントシェーカーで12時間混合・分散を行って磁性塗料組成物を得た。その後、潤滑剤及び硬化剤を加え、更に、ペイントシェーカーで15分間混合・分散した後、3μmの平均孔径を有するフィルターを用いてろ過し、磁気記録層用磁性塗料を調整した。
【0084】
上記磁気記録層用塗料を、乾燥後の厚さが1.5μmになるよう前記非磁性下地層の上に塗布した後、磁場中において配向・乾燥した。その後、60℃で24時間硬化反応を行い、12.7mm幅にスリットして磁気記録媒体を得た。
【0085】
得られた磁気記録媒体は、保磁力値Hcが158.1kA/m、Br/Bmが0.82、保磁力分布SFDが0.53、光沢度が175%、表面粗度Raが9.7nmであり、再生出力(C)が+2.2dB、C/Nが2.7dB、ドロップアウトの増加量が2個/msecであった。
【0086】
前記実施例1−1及び実施例2−1に従って六方晶フェライト粒子粉末及び磁気記録媒体を作製した。各製造条件及び得られた六方晶フェライト粒子粉末及び磁気記録媒体の諸特性を示す。
【0087】
実施例1−2:
BaCl
2・2H
2O 0.817mol、FeCl
3・6H
2O 6.00mol、TiCl
4 0.54molに純水を加えて溶解し、7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液5Lを攪拌させながら前記混合溶液を200mL/min.の流量でNaOH水溶液中に添加した後、60℃で4時間反応を行った。次に、純水を用いて十分に水洗し、共沈物を含む10Lのスラリーとした後、酢酸を用いてpH値を8.5に調整し、その後、アルミン酸ナトリウム 0.42molを添加して30分間攪拌して共沈混合物とした。次いで、フラックスとしてNaClを、ろ過・乾燥後の前記共沈混合物100重量部に対して30重量部となるように添加し、ろ過・乾燥してフラックスを含む共沈混合物を得た。
【0088】
次いで、得られたフラックスを含む共沈混合物を空気雰囲気下、680℃の温度で6時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、塩酸を用いてpH値を2に調製して60分間保持して酸処理を行い、水酸化ナトリウム水溶液を用いてpH値を5に調整した後、水洗・ろ過・乾燥・粉砕して、実施例1−2の六方晶フェライト粒子粉末を得た。得られた六方晶フェライト粒子粉末の諸特性を表1に示す。
【0089】
参考例1−3:
BaCl
2・2H
2O 0.08mol、FeCl
3・6H
2O 0.60mol、TiCl
4 0.11molに純水を加えて溶解し、0.7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液0.5Lを攪拌させながら、前記混合溶液を20mL/min.の流量で35分間かけてNaOH水溶液中に添加し、オートクレーブを用いて160℃で6時間反応を行った後、室温まで冷却した。
【0090】
次に、得られた反応溶液を、純水を用いて十分に水洗して六方晶フェライト粒子の前駆体を含む1Lのスラリーとした後、酢酸を用いてpH値を8.5に調整し、超音波ホモジナイザー(BRANSON株式会社製SonifierII model 450D)を用いて10分間攪拌した。次いで、フラックスとしてNaClを、ろ過・乾燥後の前記六方晶フェライト粒子の前駆体100重量部に対して30重量部となるように添加し、ろ過・乾燥してフラックスを含む六方晶フェライト粒子の前駆体を得た。
【0091】
上記で得られたフラックスを含む六方晶フェライト粒子の前駆体を、空気雰囲気下750℃の温度で6時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、湿式粉砕後、塩酸を用いてpH値を2に調製して酸処理を行った後、水酸化ナトリウム水溶液を用いてpH値を5に調整し、水洗・ろ過・乾燥・粉砕して六方晶フェライト粒子粉末を得た。
【0092】
上記で得られた六方晶フェライト粒子粉末555gを純水に分散させてラインミル、ビーズミルを通して8Lの水分散スラリーを得た。次いで、4.5wt%の塩化コバルト水溶液を100mL添加し、10分間攪拌を行った。次いで、前記混合溶液を攪拌しながらpH値が14になるまでNaOH水溶液を添加し、30分間攪拌後、100℃まで昇温し、更に3時間混合・攪拌した。
【0093】
上記で得られた混合溶液をpH値が12以下になるまで水洗後、酢酸を用いてpH値を9に調整し、更に水洗・ろ過・乾燥・粉砕して、
参考例1−3のCo化合物により表面被覆された六方晶フェライト粒子粉末を得た。得られたCo化合物により表面被覆された六方晶フェライト粒子粉末の諸特性を表1に示す。
【0094】
実施例1−4:
BaCl
2・2H
2O 0.810mol、FeCl
3・6H
2O 6.00mol、TiCl
4 0.48mol、に純水を加えて溶解し、7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液5Lを攪拌させながら前記混合溶液を200mL/min.の流量でNaOH水溶液中に添加した後、65℃で2時間反応を行った。次に、純水を用いて十分に水洗し、共沈物を含む10Lのスラリーとした後、酢酸を用いてpH値を8.5に調整し、その後、アルミン酸ナトリウム 0.54molを添加して30分間攪拌して共沈混合物とした。次いで、フラックスとしてNaClを、ろ過・乾燥後の前記共沈混合物100重量部に対して30重量部となるように添加し、ろ過・乾燥してフラックスを含む共沈混合物を得た。
【0095】
次いで、得られたフラックスを含む共沈混合物を空気雰囲気下、750℃の温度で6時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、塩酸を用いてpH値を2に調製して60分間保持して酸処理を行い、水酸化ナトリウム水溶液を用いてpH値を5に調整した後、水洗・ろ過・乾燥・粉砕して、実施例1−4の六方晶フェライト粒子粉末を得た。
【0096】
実施例1−5:
実施例1−1の六方晶フェライト粒子粉末550gを純水に分散させて、ラインミル、ビーズミルを通して8Lの水分散スラリーを得た。次いで、該スラリーに水酸化ナトリウム水溶液を添加してpH値を9とした後、加熱して60℃とし、このスラリー中に20wt%のアルミン酸ナトリウム水溶液68.2g(六方晶フェライト粒子粉末に対してAl換算で1.3重量%に相当する)を加え、30分間保持した後、酢酸を用いてpH値を9に調整した。この状態で30分間保持した後、濾過・水洗・乾燥・粉砕し、粒子表面がアルミニウムの水酸化物等により被覆されている実施例1−5の六方晶フェライト粒子粉末を得た。得られた粒子表面がアルミニウムの水酸化物等により被覆されている六方晶フェライト粒子粉末の諸特性を表1に示す。
【0097】
参考例1−6:
BaCl
2・2H
2O 0.798mol、FeCl
3・6H
2O 6.00mol、TiCl
4 0.18mol、NiCl
2 0.042molに純水を加えて溶解し、7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液5Lを攪拌させながら前記混合溶液を200mL/min.の流量でNaOH水溶液中に添加した後、80℃で4時間反応を行った。次に、純水を用いて十分に水洗し、共沈物を含む10Lのスラリーとした後、フラックスとしてBaCl
2・2H
2Oを前記スラリー1Lに対して100g添加し、ろ過・乾燥して共沈物を得た。
【0098】
次いで、得られた共沈物を空気雰囲気下、800℃の温度で6時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、塩酸を用いてpH値を2に調製して60分保持して酸処理を行い、水酸化ナトリウム水溶液を用いてpH値を5に調整した後、水洗・ろ過・乾燥・粉砕して、
参考例1−6の六方晶フェライト粒子粉末を得た。得られた六方晶フェライト粒子粉末の諸特性を表1に示す。
【0099】
比較例1−1:
BaCl
2・2H
2O 0.817mol、FeCl
3・6H
2O 6.00mol、TiCl
4 0.036molに純水を加えて溶解し、7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液5Lを攪拌させながら前記混合溶液を200mL/min.の流量でNaOH水溶液中に添加した後、60℃で2時間反応を行った。次に、純水を用いて十分に水洗し、共沈物を含む10Lのスラリーとした後、酢酸を用いてpH値を8.5に調整し、その後、アルミン酸ナトリウム 1.80molを添加して30分間攪拌して共沈混合物とした。次いで、フラックスとしてNaClを、ろ過・乾燥後の前記共沈混合物100重量部に対して30重量部となるように添加し、ろ過・乾燥してフラックスを含む共沈混合物を得た。
【0100】
次いで、得られたフラックスを含む共沈混合物を空気雰囲気下、750℃の温度で6時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、塩酸を用いてpH値を2に調製して60分間保持して酸処理を行い、水酸化ナトリウム水溶液を用いてpH値を5に調整した後、水洗・ろ過・乾燥・粉砕して、比較例1−1の六方晶フェライト粒子粉末を得た。得られた六方晶フェライト粒子粉末の諸特性を表1に示す。
【0101】
比較例1−2:
BaCl
2・2H
2O 0.817mol、FeCl
3・6H
2O 6.00mol、TiCl
4 0.011molに純水を加えて溶解し、7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液5Lを攪拌させながら前記混合溶液を200mL/min.の流量でNaOH水溶液中に添加した後、60℃で2時間反応を行った。次に、純水を用いて十分に水洗し、共沈物を含む10Lのスラリーとした後、酢酸を用いてpH値を8.5に調整し、その後、アルミン酸ナトリウム 1.20molを添加して30分間攪拌して共沈混合物とした。次いで、フラックスとしてNaClを、ろ過・乾燥後の前記共沈混合物100重量部に対して30重量部となるように添加し、ろ過・乾燥してフラックスを含む共沈混合物を得た。
【0102】
次いで、得られたフラックスを含む共沈混合物を空気雰囲気下、650℃の温度で6時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、塩酸を用いてpH値を2に調製して60分間保持して酸処理を行い、水酸化ナトリウム水溶液を用いてpH値を5に調整した後、水洗・ろ過・乾燥・粉砕して、
比較例1−2の六方晶フェライト粒子粉末を得た
。得られた六方晶フェライト粒子粉末の諸特性を表1に示す。
【0103】
比較例1−3:
BaCl
2・2H
2O 0.817mol、FeCl
3・6H
2O 6.00mol、TiCl
4 0.012molに純水を加えて溶解し、7Lの混合溶液を調製した。次いで、18.55mol/LのNaOH水溶液5Lを攪拌させながら前記混合溶液を200mL/min.の流量でNaOH水溶液中に添加した後、60℃で2時間反応を行った。次に、純水を用いて十分に水洗し、共沈物を含む10Lのスラリーとした後、酢酸を用いてpH値を8.5に調整し、その後、アルミン酸ナトリウム 0.90molを添加して30分間攪拌して共沈混合物とした。次いで、フラックスとしてNaClを、ろ過・乾燥後の前記共沈混合物100重量部に対して30重量部となるように添加し、ろ過・乾燥してフラックスを含む共沈混合物を得た。
【0104】
次いで、得られたフラックスを含む共沈混合物を空気雰囲気下、750℃の温度で6時間焼成し、得られた焼成物に純水1Lを加えて分散スラリーとした。得られたスラリーを、塩酸を用いてpH値を2に調製して60分間保持して酸処理を行い、水酸化ナトリウム水溶液を用いてpH値を5に調整した後、水洗・ろ過・乾燥・粉砕して、
比較例1−
3の六方晶フェライト粒子粉末を得た
。得られた六方晶フェライト粒子粉末の諸特性を表1に示す。
【0105】
比較例1−4:
BaCl
2・2H
2O 0.075mol、FeCl
3・6H
2O 0.60mol、TiCl
4 0.03mol、CoCl
2 0.03molを1Lの水に溶解し、得られた溶液を、2.8molの水酸化ナトリウムを溶解した1Lの水酸化ナトリウム水溶液に加えて攪拌した。次いで、該懸濁液を1日間熟成した後、オートクレーブを用いて250℃で4時間反応を行い六方晶フェライト粒子の前駆体を得た。
【0106】
次に、得られた六方晶フェライト粒子の前駆体を含む反応溶液を、純水を用いて洗液のpH値が8以下になるまで十分に水洗した後、六方晶フェライト粒子の前駆体の懸濁液を調製し、上澄み液を除去した後、該懸濁液中にフラックスとして500gのNaClを添加して攪拌し、NaClを溶解させた。次に、溶解したNaClを含む六方晶フェライト粒子の前駆体の懸濁液を面積の広いバットに入れ、乾燥機で100℃に加熱して、水分を蒸発させた。
【0107】
次いで、得られた六方晶フェライト粒子の前駆体とNaClの混合物を解砕し、坩堝に入れ、まず830℃で20分間加熱してNaClを融解し、次に、温度を800℃まで下げ、800℃で約10時間加熱処理し、その後、室温まで冷却した。次に、水洗によりNaClを除去し、ろ過・乾燥・粉砕して、比較例1−4の六方晶フェライト粒子粉末を得た。得られた六方晶フェライト粒子粉末の諸特性を表1に示す。
【0108】
【表1】
【0109】
<磁気記録媒体の製造>
実施例2−2
,2−4及び2−5、参考例2−3及び2−6、比較例2−1及び2−4:
六方晶フェライト粒子粉末の種類を種々変化させた以外は、前記実施例2−1の磁気記録媒体の作製方法に従って磁気テープを製造した。
【0110】
得られた磁気テープの諸特性を表2に示す。
【0111】
【表2】
【0112】
上記実施例より、本発明によって得られた六方晶フェライト粒子粉末は、平均板面径が10〜30nmであり、六方晶フェライト粒子粉末の平均板面径(L)(nm)とBET比表面積値(SSA)(m
2/g)が特定の範囲にあることによって、これらを用いて得られた磁気記録媒体は、ノイズがより低減されていることがわかる。