【文献】
Nucleic Acids Research, (2005), Vol. 33, No. 4, p. 1290-1297
【文献】
Biochemical and Biophysical Research Communications,2005年10月 6日,Vol. 337,p. 1133-1138
(58)【調査した分野】(Int.Cl.,DB名)
センス鎖のアンチセンス転写物を標的化する核酸分子を含む医薬組成物であって、アンチセンス転写物を標的化する核酸分子はアンチセンス鎖に相補的であり、アンチセンス転写物は非コードまたはコードRNA転写物であり、核酸分子がセンス鎖からの遺伝子発現を制御し、ここで標的化されるコードまたは非コード核酸分子が核酸配列BACEを含み、ならびに核酸分子が18〜44塩基長であり、および配列番号:4〜8の少なくとも1つである、前記医薬組成物。
センス鎖のアンチセンス転写物を標的とする核酸分子の使用(但しヒトに対する使用を除く)であって、アンチセンス転写物を標的化する核酸分子がアンチセンス鎖に相補的であり、核酸分子がセンス鎖からの遺伝子発現を制御し、アンチセンス転写物がコードまたは非コードRNA転写物であり、ここで標的化されるコードまたは非コード核酸分子が核酸配列BACEを含み、ならびに核酸分子が18〜44塩基長であり、および配列番号:4〜8の少なくとも1つである、疾患または状態の処置のための前記使用。
核酸分子をセンス鎖のアンチセンス転写物に対する標的化を含む請求項1に記載の方法であって、アンチセンス転写物を標的化する核酸分子がアンチセンス鎖に相補的であり;および、アンチセンス転写物が非コードRNA転写物であり、およびセンス鎖がBACEを含み、核酸分子のアンチセンス転写物への結合後に遺伝子発現が調節される、前記方法。
【発明の開示】
【0005】
概要
配列特異的siRNAは標的核酸分子に結合し、遺伝子発現産物の発現を制御する。異常な細胞増殖、神経疾患、異常な細胞制御、疾患などの処置に標的核酸の上方調節または阻害が効果的である方法が提供される。創薬方法が本発明の範囲に含まれる。
【0006】
好ましい態様において、遺伝子発現を上方調節する方法は、核酸分子をセンス鎖のアンチセンス転写物に標的化すること(ここで、アンチセンス転写物を標的とする核酸分子はアンチセンス鎖と相補的である)、および核酸をアンチセンス転写物に結合させ、これによりセンス鎖の発現を高めること、および遺伝子の発現を上方調節することを含む。好ましくは、核酸分子のアンチセンス鎖への結合は、高い、中程度の、または、低いストリンジェンシー条件下で効果的である。いかなる疾患、異常(先天性または非先天性)、腫瘍、病原体(例えばプリオン、ウイルス、例えば腫瘍を引き起こすウイルス)など、分子標的、例えば細胞内および細胞外分子の両方(例えばレセプター、酵素、サイトカイン転写物)に起因する疾患は、所望のセンスおよび/またはアンチセンス遺伝子座を標的とする分子を設計することにより処置することができる。配列特異的RNA分子は、これらが、オーバーラップする配列を標的とするよう、そしてまた、相補鎖を標的とするよう設計することができる。
【0007】
別の好ましい態様において、核酸分子はRNA分子であり、配列番号1〜67のうちの少なくとも1つを含む。
【0008】
別の好ましい態様において、遺伝子発現を阻害する方法は、核酸分子をアンチセンス転写物およびセンス鎖転写物に標的化すること(ここで、アンチセンス転写物を標的とする核酸分子はアンチセンス鎖と相補的であり、センス転写物を標的とする核酸分子はセンス鎖と相補的である)、および核酸分子をアンチセンスおよびセンス転写物に結合させ、これにより遺伝子発現を阻害することを含む。好ましくは、核酸分子はRNA分子であり、アンチセンスおよびセンス転写物を標的とする核酸分子は、互いに収束する方向(convergent orientation)、発散する方向(divergent orientation)で結合し、かつ/またはオーバーラップしている。
【0009】
別の好ましい態様において、核酸分子は、配列番号4〜8のうちの少なくとも1つであり、標的となる核酸はコードまたは非コード転写物である。
【0010】
好ましい態様において、標的となる遺伝子は、CD97、TS−α、C/EBPデルタ、CDC23、PINK1、HIF1α、Gnbp3g、アドレノメデュリンAM1レセプター、6330439J10(3−オキソ酸CoAトランスフェラーゼ)、CtpW85(カテプシンW)、Ddx−39、rTS−α、I530027A02、Kif20a、PINK−AS、aHIF1α、Gnbp3g−AS、AdmR−AS、A230019L24またはCtpW−ASを含む。好ましくは、標的となる核酸は、核酸配列PINK−AS、aHIF1α、Gnbp3g−AS、AdmR−AS、A230019L24またはCtpW−ASを含む。コードおよび非コード配列、転写物のいずれも、および/または5’−3’配列および相補的3’−5’配列のいずれともオーバーラップする配列を標的化することができる。
【0011】
好ましい態様において、標的化される非コード核酸は核酸配列CD97、TS−α、C/EBPデルタ、CDC23、PINK1、HIF1α、Gnbp3g、アドレノメデュリンAM1レセプター、6330439J10(3−オキソ酸CoAトランスフェラーゼ)、CtpW85(カテプシンW)、Ddx−39、rTS−α、I530027A02、Kif20aを含む。
【0012】
別の好ましい態様において、医薬組成物は、配列番号1〜67およびその変異体のうちの少なくとも1つを含む。
【0013】
さらに別の好ましい態様において、単離された核酸は、配列番号1〜67およびその変異体のうちのいずれかを含む。
【0014】
別の好ましい態様において、組成物は、CD97、TS−α、C/EBPデルタ、CDC23、PINK1、HIF1α、Gnbp3g、アドレノメデュリンAM1レセプター、6330439J10(3−オキソ酸CoAトランスフェラーゼ)、CtpW85(カテプシンW)、Ddx−39、rTS−α、I530027A02、Kif20a、PINK−AS、aHIF1α、Gnbp3g−AS、AdmR−AS、A230019L24またはCtpW−ASを含む少なくとも1つの遺伝子および/または転写物を標的とする核酸配列を含む。標的化される遺伝子座は、オーバーラップ配列であってもよく、および/またはセンス鎖およびアンチセンス鎖の両方を標的化してもよい。他の側面では、コードおよび非コード配列が標的化される。
【0015】
好ましい態様において、パーキンソン病の処置方法は、それを必要とする患者に配列番号1〜3のうちの少なくとも1つを投与することを含む。
【0016】
別の好ましい態様において、医薬組成物は、配列番号1〜67の核酸分子およびその変異体のうちの少なくとも1つを医薬的に許容し得る担体に含む。
【0017】
別の好ましい態様において、核酸分子は、センス/アンチセンス遺伝子座のオーバーラップ領域を標的とするsiRNA分子を含む。例えば、アルツハイマー病を処置するための医薬組成物は、BACE転写物を標的とする。核酸分子は、BACE転写物のオーバーラップ配列または配列または遺伝子座を標的とするように設計することができる。アルツハイマー病の処置におけるオーバーラップ標的に特異的なこれらの分子は、配列番号41〜43および配列番号44〜45ならびにその変異体を含む。
【0018】
別の好ましい態様において、発現ベクターは、配列番号1〜67およびその変異体の任意の1つまたは2つ以上を含む。
【0019】
別の好ましい態様において、単離されたペプチドは、配列番号1〜67およびその変異体の任意の1つまたは2つ以上によってコードされる。
【0020】
別の好ましい態様において、単離された抗体は、BACE−1 mRNA、BACE−1−AS RNA、配列番号1〜67およびそのペプチドに特異的である。
【0021】
別の好ましい態様において、神経疾患を処置する方法は、それを必要とする患者に配列番号4〜8、40〜61および64〜67ならびにその変異体のうちの少なくとも1つを投与することを含む。前記方法のさらなる態様では、配列番号4〜8、40〜61、64〜67を、センス/アンチセンス遺伝子座のオーバーラップ領域を標的とする組合せで投与する。
【0022】
別の好ましい態様においては、配列番号4〜8、40〜61、64〜67およびその変異体のうちの少なくとも2つの種々の組合せを、処置期間中患者に投与する。神経疾患の例は、限定されずに、アルツハイマー病、失語症、ベル麻痺、クロイツフェルトヤコブ病、てんかん、脳炎、ハンチントン病、神経筋障害、神経腫瘍学、神経免疫学、神経耳科学、疼痛、恐怖症、睡眠障害、トゥレット症候群、パーキンソン病および他の運動障害を含む。
【0023】
別の好ましい態様において、遺伝子発現を上方調節する方法は、核酸分子をセンス鎖のアンチセンス転写物に標的化すること(ここで、アンチセンス転写物を標的とする核酸分子はアンチセンス鎖と相補的である)、および核酸をアンチセンス転写物に結合させることを含み、ここで、センス鎖の発現は上昇し、遺伝子の発現は上方調節される。好ましくは、核酸分子は、干渉RNA分子である。
【0024】
好ましい態様において、核酸分子は、配列番号1〜3、4〜32、40〜61、64〜67およびその変異体のうちの少なくとも1つである。一側面において、配列番号1〜3、4〜32、40〜61、64〜67の核酸分子およびその変異体は、少なくとも1つの修飾核酸塩基を含む。
【0025】
別の好ましい態様において、遺伝子発現を阻害する方法は、核酸分子をアンチセンス転写物およびセンス鎖転写物に標的化すること(ここで、アンチセンス転写物を標的とする核酸分子はアンチセンス鎖と相補的であり、センス転写物を標的とする核酸分子はセンス鎖と相補的である)、および核酸をアンチセンスおよびセンス転写物に結合させることを含み、ここで、遺伝子発現は阻害される。
【0026】
好ましい態様において、アンチセンスおよびセンス転写物を標的とする核酸分子は、前記転写物と互いに収束する方向または発散する方向で結合するか、あるいはオーバーラップする。好ましくは、標的となる核酸は、コードおよび/または非コード転写物である。標的となる遺伝子の例は、以下を含む:CD97、TS−α、C/EBPデルタ、CDC23、PINK1、HIF1α、Gnbp3g、アドレノメデュリンAM1レセプター、6330439J10(3−オキソ酸CoAトランスフェラーゼ)、CtpW85(カテプシンW)、Ddx−39、rTS−α、I530027A02、Kif20a、PINK−AS、aHIF1α、Gnbp3g−AS、AdmR−AS、A230019L24またはCtpW−AS。標的となるコード核酸の例は、核酸配列PINK−AS、aHIF1α、Gnbp3g−AS、AdmR−AS、A230019L24またはCtpW−ASを含む。標的となる非コード核酸の例は、核酸配列CD97、TS−α、C/EBPデルタ、CDC23、PINK1、HIF1α、Gnbp3g、アドレノメデュリンAM1レセプター、6330439J10(3−オキソ酸CoAトランスフェラーゼ)、CtpW85(カテプシンW)、Ddx−39、rTS−α、I530027A02、Kif20aを含む。
【0027】
別の好ましい態様において、加齢黄斑変性を処置することは、配列番号1〜67およびその変異体の少なくとも1つを患者に投与することを含む。
【0028】
別の好ましい態様において、組成物は、CD97、TS−α、C/EBPデルタ、CDC23、PINK1、HIF1α、Gnbp3g、アドレノメデュリンAM1レセプター、6330439J10(3−オキソ酸CoAトランスフェラーゼ)、CtpW85(カテプシンW)、Ddx−39、rTS−α、I530027A02、Kif20a、PINK−AS、aHIF1α、Gnbp3g−AS、AdmR−AS、A230019L24またはCtpW−ASのいずれかのオーバーラップ配列、コード配列および非コード配列を標的とする核酸配列を含む。
【0030】
図面の簡単な説明
本発明は、添付の特許請求の範囲に詳細に示してある。この発明の上記のおよびさらなる利点は、添付の図面とともに以下の説明を参照することによってよりよく理解することができる。
【0031】
図1Aおよび1Bは、アンチセンス転写の基本を示した概略図である。
図1Aは、アンチセンス転写物が哺乳類のトランスクリプトームの中でどのように生成し得るかについて示す。
図1Bは、アンチセンス転写物のセンス転写物とのオーバーラップに関して3つの可能性があることを示す。
【0032】
図2A〜2Bは、アンチセンスノックダウン(例えば、siRNAの使用によって)を引き起こすことによってセンス転写物レベルを変えるための2つの可能性を示した概略図である。
図2Aは制御が不一致的である(discordant)場合を表し、一方
図2Bは、センス転写物および対応するアンチセンス転写物の両方の同時(concomitant)ノックダウンを例示する。
【0033】
図3Aは、チミジル酸シンターゼ(TS−センス)およびrTSαアンチセンスmRNAの概略図である。エクソン境界は、横断的なバーでマークした。TaqManおよびin situハイブリダイゼーションに用いたプローブの位置、ならびにS−AS mRNAの3’オーバーラップ領域も示してある。
図3Bは、トランスフェクションおよびS−AS RNA生産のために用いたベクターの構造を示す。センスベクターは、3’センス配列を有するRNAを生成し、アンチセンスベクターは3’アンチセンス配列を有するRNAを生成し、S−ASベクターは、センスRNA配列とアンチセンスRNA配列との間にヘアピン配列を有する、連続したセンス−アンチセンス配列を有するRNAを生成する。
【0034】
図4は、TS転写物の単一細胞RNA発現を示した蛍光像である。HeLa細胞において固定され逆転写されたTS RNAに結合した(a)アンチセンスプローブ、(b)センスプローブならびに(c)センスおよびアンチセンスプローブ。プローブは、エクソン境界およびオーバーラップ領域の一部を鎖特異的にカバーするように設計した。(d)アクチンプローブからのシグナルは、本方法が最適に機能していたことを示す。全てのプローブは、混入DNAからのバックグラウンドシグナルを避けるため、イントロンをまたいだ。
【0035】
図5は、TSセンスおよびアンチセンス分子の内因性単一細胞mRNA発現を示したグラフである。リアルタイムPCRプライマーは、オーバーラップおよび非オーバーラップ領域の間に及ぶよう設計された。アッセイの感度を測定するために、微量のTATAボックス結合タンパク質の発現も定量した。全てのサンプルはβ2−ミクログロブリンに対して正規化され、15の個別の細胞からの結果の平均をプロットした。
【0036】
図6は、3つの細胞系(HeLa、SK−N−MCおよびHEPG2)におけるTSセンス(TS)およびそのアンチセンス(rTSα)、HIFセンス(HIF)およびそのアンチセンス(aHIF)の細胞局在を示したグラフである。細胞質および核RNAは、全RNAに対して正規化した。
【0037】
図7は、細胞質のRNAのRPAを示したブロットである。レーン1:HeLa細胞の 細胞質溶解液。レーン2:S−ASを過剰発現させたHeLa細胞の細胞質溶解液。レーン3:in vitroで転写されたS−AS RNA二重鎖でトランスフェクトしたHeLa細胞からの溶解液。レーン4:S−ASを過剰発現させたHeLa細胞からの全RNA。すべてRNAse A+Tにより処理し、変性PAGEで分離し、チミジル酸シンターゼmRNAのオーバーラップ領域についてプローブした。
【0038】
図8は、ダイサー産物に関するノーザンブロットを示す。レーン(a):HeLa細胞からの全RNA、レーン(b):S−AS mRNAを過剰発現させたHeLa細胞からの全RNA、レーン(c):IVT−オーバーラップdsRNAでトランスフェクトしたHeLa細胞からの全RNA、レーン(d):連続的なS−AS RNA(m)マーカーを過剰発現するHeLa細胞からの全RNA。
【0039】
図9は、IFNβおよびOAS2 mRNAの発現を示したグラフである。インターフェロン反応は、IVT−dsRNA TSでトランスフェクトしたかまたはS−ASを過剰発現させたHeLa細胞および参照HeLaにおいて、qRT−PCRによって定量化した。mRNAレベルは、GAPDHに対して正規化した。
【0040】
図10A〜10Bは、マウス脳および肝臓の種々の領域でのBACE−1およびBACE−1−ASの発現プロファイルを示したグラフである。いずれの転写物も、脳の種々の領域で肝臓と比較して2〜5倍多かった。大脳皮質および扁桃体は、サンプリングした脳領域の中で両方の転写物の発現が最も高かった(
図10A)。ノーザンブロット分析で、BACE−1およびBACE−1−ASのマウス脳組織における発現が確認された(
図10B)。BACE−1およびBACE−1−AS転写物はまた、未分化の、および分化したヒト神経芽細胞腫SH−SY5Y細胞で発現していた。ヒト神経芽細胞腫SH−SY5Y細胞の分化の誘導は、BACE−1−AS転写物発現のおよそ50%、およびBACE−1転写物発現のおよそ20%の減少を伴っており(図−10B)、センスおよびNAT転写物の両方の発現が一致していることが示唆された。
【0041】
図11Aおよび11Bは、siRNAによるSH−SY5Y細胞の処理後のBACE−1タンパク質のウエスタンブロットのスキャン画像である。対照細胞(レーン−1)のBACE−1タンパク質と、BACE−1(レーン−2)、BACE−1−AS(レーン−3)または両方の転写物(レーン−4)に対する20nMのsiRNAでトランスフェクトした細胞とを比較した。
【0042】
図12A〜12dは、ヒト染色体11q23.3遺伝子座におけるヒトBACE−1遺伝子座のゲノム構成を示す概略図であり、BACE−1 mRNAおよびBACE−1−ASのゲノム上の位置、および両方の転写物の、マウスを含む複数の他の種において強く保存されているパターンを示す(
図12A)。BACE−1は第11染色体のポジティブ鎖から転写され、BACE−1−ASは第11染色体のネガティブ鎖から転写され、BACE−1のエクソン−6をカバーする。
図12Bは、転写方向と、BACE−1とBACE−1−ASとの間のオーバーラップ領域を拡大視野で示す。1、2および4の番号を付した部位はBACE−1 siRNA標的部位であり、部位3は、オーバーラップ領域にあり、両方の転写物を検出できるノーザンブロットプローブ部位である。部位2および5はまた、それぞれセンスおよびアンチセンスのFISHプローブ部位を表す。部位6、7および8は、いずれもAS転写物の非オーバーラップ部分にあるBACE−1−AS siRNAの標的部位である。部位5および9は、それぞれ3’および5’RACEのプライマー部位を表す。
図12Cおよび12Dは、それぞれヒトおよびマウス脳からのBACE−1−ASのRACEシーケンシングデータを表す(それぞれ16クローン)。シーケンシングデータは、アンチセンス転写物がキャップ構造およびポリAテールを含み、ヒトおよびマウスの両方で差別的スプライシングを経ることを明らかにした。黄色の強調表示部分はBACE−1センス転写物へのオーバーラップ領域であり、緑の強調表示領域は我々のシーケンシングデータから新規に得られたものであり、これらは今までゲノムデータベースに存在しなかった。ゲノム配列に対するポイントミスマッチは、AからGへの変更については星印(*)で、CからTへの変更については十字(†)で示してある。
【0043】
図13Aおよび13Bは、合成siRNAによるBACE−1およびBACE−1−AS転写物のサイレンシングを示したグラフである。
図13Aは、BACE−1(S−a)siRNAのトランスフェクションにより、BACE−1 mRNAが、BACE−1−ASレベルの顕著な変化なしに減少したことを示す。3つの異なるsiRNA(AS−a、AS−bおよびAS−c)によるBACE−1−AS転写物の標的化は、BACE−1およびBACE−1−AS転写物の両方の有意な下方調節(P<0.0001)を引き起こした。転写物の非オーバーラップ部分を標的とするsiRNA 20nMを、神経芽腫細胞(SH−SY5Y)にトランスフェクトした。全てのサンプルは18s rRNAに対して正規化され、陰性対照siRNA試料に対する、各々のmRNAのパーセントとしてグラフ化した。
図13Bは、アミロイドAβ1−42タンパク質のELISAによる検出を示す。HEK−SW細胞の上清を、BACE−1(S−a)、BACE−1−AS(AS−a)またはこの両方に対するsiRNA 20nMのトランスフェクションの後に、アミロイドAβ1−42タンパク質について分析した。結果を、対照siRNAトランスフェクト細胞に対してプロットした。Aβ1−42タンパク質は、BACE−1またはBACE−1−ASを標的とするsiRNAにより有意に下方調節された(P<0.0001)。両方のsiRNA(各々の10nM)の組合せは、より有意な下方調節(P<0.001)を引き起こした。
【0044】
図14A〜14Eは、マウス脳への修飾されていない合成siRNAのin vivo注入を示したグラフである。修飾されていない合成siRNAは、分解のために、BACE−1(センス)またはBACE−1−ASのいずれか一方の非オーバーラップ領域を標的とするように設計された。対照siRNAは類似した特性を有しており、事前に、ヒトおよびマウス遺伝子に対して効果がないことが示されたものである。3群のマウスを、2週間にわたって、siRNAの持続注入に供した。各々のマウスからの5つの組織を、リアルタイムPCRによるRNAの定量的測定のために用いた。
図14A:背内側前頭前皮質(PFC)、
図14B:腹側海馬、
図14C:背側海馬、
図14D:背側線条体、および
図14E:小脳。BACE−1またはBACE−1−AS転写物のいずれか一方に対するsiRNAは、対照処置群と比較して、BACE−1およびBACE−1−AS両方のレベルの同時的な減少をもたらした(***=P<0.0001)。小脳(e)における両方の転写物は、脳の第三脳室に直接つながっていない組織について予想されたとおり、不変(P=0.1518)であった。
【0045】
図15A〜15Fは、アンチセンス転写物のストレス誘導性の再配置(stress induced relocation)を示す。
図15Aは、BACE−1およびBACE−1−AS RNAの核への分布対細胞質への分布を示した写真のスキャン画像である。神経芽腫細胞SH−SY5YからのRNA−FISH画像において、上側のパネルは、左から右に、DAPI核染色、細胞全体をカバーするBACE−1 mRNAシグナル(Alexa Flour 594)および両者のオーバーレイ画像を示す。下側のパネルは、左から右に、DAPI核染色、主に核の内部に検出できるBACE−1−ASシグナル(Alexa Flour 488)および両者のオーバーレイ画像を示す。RT−PCRデータは、BACE−1−AS転写物が、SH−SY5Y細胞の細胞質より核で約30倍多く存在している一方、βアクチンおよびBACE−1 mRNA(センス)は、両方のコンパートメントにおいてほとんど等しいことを明らかにした。
図15Bは、BACE−1−ASの観察された核内保留パターンが、SH−SY5Y細胞を5分間30nMのKClによる高浸透圧ショックに暴露すると実質的に消失することを示した写真のスキャン画像である。細胞をPBSで洗浄し、通常の培地に1時間戻すと、核内保留は再び回復した。画像は、5分間KClに暴露すると、BACE−1−ASシグナルがSH−SY5Yの核から細胞質に移行(translocation)することを示しており、左から右に、DAPI核染色、細胞の全体から検出できるBACE−1−ASシグナルおよび両者のオーバーレイ画像である。
図15Cは、BACE−1−ASの核内保留の変化をモニタリングのための異なるストレッサーとして合成Aβ1−42ペプチドを用いたことを示す写真のスキャン画像である。SH−SY5Y細胞を、1μMのAβ1−42に2時間暴露すると、BACE−1−ASが核を離れることが示された。再配置は、ペプチドを洗浄し、細胞を通常の培地で1時間維持するとリカバーされた。同様の暴露に伴うBACE−1−ASの再配置を表しているパネルのセットは、左から右に、DAPI核染色、BACE−1−ASおよび両者のオーバーレイ画像である。
図15Dにおいて、7PA2−CHO細胞は、Aβ1−42ダイマーおよびオリゴマーを過剰産生することが事前に示されている。これらの細胞および対照である親CHO細胞の馴化培地を回収し、SH−SY5Y細胞の通常の培地と2時間置換した。重要なことに、7PA2−CHO細胞の馴化培地のみが、BACE−1−AS転写物を核から細胞質へ再配置することができた。パネルのセットは、7PA2馴化培地でのインキュベーションに伴うBACE−1−ASの同様の再配置を示す。左から右に、DAPIは核染色、BACE−1−ASおよび両シグナルのオーバーレイ画像である。
図15Eは、HTRFアッセイから明らかとなった、ヒトのAβ1−42が、APP−tgマウスの脳において、野生型に比べて顕著に上昇していることを示すグラフである。
図15Fは、Aβ1−42のレベルの上昇が、in vitro実験と同様に、BACE−1−ASの50%の上昇(P<0.0001)と、これに続く、BACE−1の一致した上昇をもたらしたことを示すグラフである。BACE−1−ASの増加したレベルは、BACE−1(P<0.001)以上だった。
【0046】
図16A〜16Eは、BACE−1−ASの局在/制御、およびBACE−1およびBACE−1−AS転写物の安定性へのシクロフィリン−60の関与を示したグラフである。HEK−293T細胞におけるCyp−60の有効なノックダウンは、BACE−1およびBACE−1−ASの(
図16A)有意な下方調節(P<0.001)を引き起こす。
図16B:Cyp−60 siRNAによるHEK293T細胞の処理の後、BACE−1−ASの下方調節は早い時点で起こり、トランスフェクションの6時間後から始まる。
図16C:Cyp−60 siRNA処理はまた、BACE−1−ASの核内保留も有意に減少させた(P<0.0001)。
図16D:BACE−1およびBACE−1−AS転写物の経時的な安定性を、新たなRNA合成をα−アマニチンで停止させた後のHEK−293Tの細胞において、リアルタイムPCRで測定した。BACE−1−ASは、BACE−1およびβ−アクチンより短い半減期を有した。RNAポリメラーゼIIIの産物である18s rRNAは不変であり、内因性対照として利用した。
図16E:BACE−1−ASの細胞質への移行を引き起こす、7PA2細胞の馴化培地によるSH−SY5Y細胞のインキュベーションは、BACE−1の安定性を有意に増加させた(P<0.001)。
【0047】
図17は、BACE−1−ASがBACE−1の制御を媒介すること、およびアルツハイマー病の病態生理学への関与のその提案されるメカニズムの概略図である。BACE−1−AS RNAは、非ストレス状態の間、シクロフィリン−60(Cyp−60)および/またはいくらかの他の未知のタンパク質との相互作用を介して、主に核に局所している。異なる種類の細胞ストレッサーが、BACE−1−ASの移行を導く一連のイベントを潜在的に開始させることができ、これが次いで、BACE−1 mRNAの安定性の増大をもたらす。BACE−1の増大したレベルは、Aβ1−42の産生を促進し、Aβの凝集およびAβプラークの形成を導く。これらの後期のイベントは、強力な細胞ストレッサーであることが示されており、核からのより多くのBACE−1−ASの放出を導くフィードフォーワード機構として作用する。
【0048】
詳細な説明
低分子干渉RNA(siRNA)は、アンチセンス転写物をノックダウンして、そのセンスパートナーの発現を制御する。この制御は不一致的である(アンチセンスノックダウンによりセンス転写物が増加する)場合、または、一致的である(concordant)(アンチセンスノックダウンに伴いセンス転写物が減少する)場合がある。siRNAによるアンチセンスRNA転写物のノックダウン(または、別のRNAターゲティング理論)に基づく新規な薬理学的戦略が提供される。不一致的制御の場合、アンチセンス転写物のノックダウンは従来の(センス)遺伝子の発現を高め、それによって、アゴニスト/アクティベーター作用を模倣すると考えられる。一致的制御の場合、アンチセンス転写物およびセンス転写物の同時的なノックダウンは、従来の(センス)遺伝子発現を相乗的に減少させる。
定義
【0049】
他に特段の定義がない限り、本明細書中の全ての技術的および科学的用語は、この発明が属する技術の当業者により通常理解されているものと同じ意味を有する。本明細書に記載されているものと類似または均等である任意の方法および材料を本発明の実施または試験に用いることができるが、好ましい方法および材料は本明細書に記載されている。
【0050】
本明細書で用いる場合、単数形「a」、「an」および「the」は、文脈が明らかに別様に指示しない限り、複数の指示物を含む。
【0051】
本明細書で用いる場合、用語「に特異的なオリゴヌクレオチド」は、(i)標的となる遺伝子の一部と安定的な複合体を形成することができる配列、または(ii)標的となる遺伝子のmRNA転写物の一部と安定した二重鎖を形成することができる配列を有するオリゴヌクレオチドを指す。
【0052】
本明細書で用いる場合、用語「オリゴヌクレオチド」、「siRNA」、「siRNAオリゴヌクレオチド」および「siRNAs」は、本明細書中互換可能に用いられ、デオキシリボヌクレオシド、リボヌクレオシド、これらの置換型およびアルファ−アノマー形、ペプチド核酸(PNA)、ロックト核酸(LNA)、ホスホロチオエート、メチルホスホネートなどを含む、天然および/もしくは修飾モノマーまたは結合の線形または環状オリゴマーを含む。オリゴヌクレオチドは、モノマー対モノマー相互作用の規則的なパターン、例えばワトソン−クリック型の塩基対合、フーグスティーン型または逆フーグスティーン型の塩基対合などにより、標的ポリヌクレオチドと特異的に結合することができる。
【0053】
オリゴヌクレオチドは「キメラ」であってもよく、すなわち、異なる領域を含んでもよい。この発明の文脈では、「キメラ」化合物は、2または3以上の化学的領域、例えば、1または2以上のDNA領域、1または2以上のRNA領域、1または2以上のPNA領域等を含むオリゴヌクレオチドである。各々の化学的領域は、少なくとも1つのモノマー単位、すなわちオリゴヌクレオチド化合物の場合はヌクレオチドで構成される。これらのオリゴヌクレオチドは、典型的には、1または2以上の所望の特性を示すためにオリゴヌクレオチドが修飾されている少なくとも1つの領域を含む。オリゴヌクレオチドの所望の特性は、限定されずに、例えば、ヌクレアーゼ分解に対する増大した抵抗性、増大した細胞への取込み、および/または、標的核酸に対する増大した結合親和性を含む。オリゴヌクレオチドの異なる領域は、したがって、異なる特性を有してもよい。本発明のキメラオリゴヌクレオチドは、上記のような2または3以上のオリゴヌクレオチド、修飾オリゴヌクレオチド、オリゴヌクレオシドおよび/またはオリゴヌクレオチドアナログの混合構造体として形成することができる。
【0054】
オリゴヌクレオチドは、「レジスター」で(in "register")連結され得る、すなわち、モノマーが連続して連結されている場合は、天然のDNAにおけるように連結され得る、またはスペーサーを介して連結され得る領域を含むことができる。スペーサーは、領域間の共有結合的「架橋(bridge)」を構成することを目的とし、好ましいケースでは約100炭素原子を上回らない長さを有する。スペーサーは異なる機能性を有してもよく、これは例えば、陽性または陰性の電荷を有すること、特有の核酸結合特性を有すること(インターカレーター、グルーブバインダー、毒素、フルオロフォア等)、親油性であること、例えばアルファへリックスを誘発するアラニン含有ペプチドのように、特有の二次構造を誘発することを含む。
【0055】
本明細書で用いる場合、用語「モノマー」は、典型的には、ホスホジエステル結合またはそのアナログによって連結され、数モノマー単位、例えば約3〜4モノマー単位から約数百モノマー単位までの範囲の大きさのオリゴヌクレオチドを形成するモノマーを示す。ホスホジエステル結合のアナログは:ホスホロチオエート、ホスホロジチオエート、メチルホスホネート、ホスホロセレノエート、ホスホラミデート等を含み、以下でより完全に解説する。
【0056】
本文脈では、用語「核酸塩基」は、天然に存在する核酸塩基および天然に存在しない核酸塩基を包含する。以前は「天然に存在しない」と考えられていた種々の核酸塩基が、その後天然で見出されたことは、当業者には明らかである。したがって、「核酸塩基」はその既知のプリンおよびピリミジンヘテロ環ばかりでなく、複素環式アナログおよびその互変異性体をも含む。核酸塩基の説明のための例は、アデニン、グアニン、チミン、シトシン、ウラシル、プリン、キサンチン、ジアミノプリン、8−オキソ−N
6−メチルアデニン、7−デアザキサンチン、7−デアザグアニン、N
4,N
4−エタノシトシン、N
6,N
6−エタノ−2,6−ジアミノプリン、5−メチルシトシン、5−(C
3〜C
6)−アルキニルシトシン、5−フルオロウラシル、5−ブロモウラシル、シュードイソシトシン、2−ヒドロキシ−5−メチル−4−トリアゾロピリジン、イソシトシン、イソグアニン、イノシンおよびBenner et al.、米国特許第5,432,272号に記載された「天然に存在しない」核酸塩基である。用語「核酸塩基」は、これらの例の各々およびすべて、ならびにそのアナログおよび互変異性体を包含することを意図する。特に興味深い核酸塩基は、ヒトおける治療および診断用途に関して天然に存在すると考えられているアデニン、グアニン、チミン、シトシンおよびウラシルである。
【0057】
本明細書で用いる場合、「ヌクレオシド」は天然ヌクレオシドを含み、これは2’−デオキシおよび2’−ヒドロキシル型、例えば、Kornberg and Baker, DNA Replication, 2nd Ed. (Freeman, San Francisco, 1992)に記載のものを含む。
【0058】
ヌクレオシドに関して、「アナログ」は、修飾塩基部分および/または修飾糖部分を有する合成ヌクレオシド、例えば、Scheit, Nucleotide Analogs, John Wiley, New York, 1980、Freier & Altmann, Nucl. Acid. Res., 1997, 25(22), 4429-4443、Toulme, J.J., Nature Biotechnology 19:17-18 (2001)、Manoharan M., Biochemica et Biophysica Acta 1489:117-139(1999)、Freier S.,M., Nucleic Acid Research, 25:4429-4443 (1997)、Uhlman, E., Drug Discovery & Development, 3: 203-213 (2000)、Herdewin P., Antisense & Nucleic Acid Drug Dev., 10:297-310 (2000)により一般的に記載されているもの、2’−O,3’−C結合[3.2.0]ビシクロアラビノヌクレオシド(例えばN.K Christensen., et al, J. Am. Chem. Soc., 120: 5458-5463 (1998)参照)を含む。かかるアナログは、結合特性、例えば二重鎖または三重鎖の安定性、特異性などを強化するために設計された合成ヌクレオシドを含む。
【0059】
二重鎖または三重鎖の形成に関して、用語「安定性」は、一般に、アンチセンスオリゴヌクレオチドがその目的とする標的配列といかに強く結合するかを示し、より具体的には、「安定性」は、生理学的条件下での二重鎖または三重鎖の生成自由エネルギーを示す。標準的な条件のセット(例えば、下記のもの)における融解温度は、二重鎖および/または三重鎖の安定性の便利な指標である。好ましくは、本発明のオリゴヌクレオチドとしては、100mMのNaCl、0.1mMのEDTAおよび10mMのリン酸緩衝水溶液、pH7.0において、オリゴヌクレオチドおよび標的核酸の1.5μMの鎖濃度にて測定した場合に、少なくとも45℃の融解温度を有するものが選択される。したがって、生理学的条件下で用いられる場合、二重鎖または三重鎖の形成は、抗原およびその標的が解離する状態よりも実質的に有利なものとなる。安定した二重鎖または三重鎖は、いくらかの態様において、塩基対間のミスマッチ、および/または三重鎖の場合には塩基トリプレットの間のミスマッチを含み得ることが理解される。好ましくは、本発明の修飾オリゴヌクレオチド、例えばLNA単位を含むものは、その標的核酸と完全にマッチした二重鎖および/または三重鎖を形成する。
【0060】
本明細書で用いる場合、用語「下流」は、ヌクレオチド配列に沿った方向に関して用いる際は、5’から3’末端への方向を意味する。同様に、用語「上流」は、3’から5’末端への方向を意味する。
【0061】
本明細書で用いる場合、用語「遺伝子」は、遺伝子およびその全ての現在既知の変異体および明らかにされ得る任意のさらなる変異体を意味する。
【0062】
本明細書で用いる場合、ポリペチドの「変異体」は、1または2以上のアミノ酸残基が変更されたアミノ酸配列を指す。変異体は、置換されたアミノ酸が類似の構造または化学特性を有する、「保存的」変更を有してもよい(例えばイソロイシンによるロイシンの置換)。より稀に、変異体は「非保存的」変更を有してもよい(例えばトリプトファンによるグリシンの置換)。類似のマイナーなバリエーションはまた、アミノ酸の欠失もしくは挿入、またはその両方を含んでもよい。どのアミノ酸残基を、生物学的活性をなくすことなく置換し、挿入しまたは欠失させ得るかを決定するための指針は、当該技術分野でよく知られているコンピュータプログラム、例えばLASERGENEソフトウェア(DNASTAR)を用いて見いだすことができる。
【0063】
用語「変異体」は、ポリヌクレオチド配列の文脈で用いる場合、野生型遺伝子に関するポリヌクレオチド配列を含んでもよい。この定義はまた、例えば、「対立遺伝子」、「スプライス」、「種」または「多型」変異体を含んでもよい。スプライス変異体は、参照分子と顕著な同一性を有し得るが、mRNAプロセシングの間のエクソンの選択的スプライシングにより、一般的により多くのまたはより少ない数のポリヌクレオチドを有する。種変異体は、異なる種の間で変化しているポリヌクレオチド配列である。本発明において特に有用なのは、野生型標的遺伝子産物の変異体である。変異体は核酸配列における少なくとも1つの変異から生じ得、変化したmRNA、または、構造または機能が変化していても、変化していなくてもよいポリペチドをもたらし得る。任意の所定の天然または組換え遺伝子は、対立遺伝子型を有しないか、1または多数の対立遺伝子型を有し得る。変異体を生じさせる、よく見られる変異による変化は、一般的に、ヌクレオチドの天然の欠失、付加または置換によるものである。これらのタイプの変化の各々は、単独で、または、他の変化と組み合わさって、所定の配列において1または2ヶ所以上生じ得る。
【0064】
結果として生じるポリペチドは、一般的に、相互に顕著なアミノ酸同一性を有する。多型変異体は、所定の種の個体間の、特定の遺伝子のポリヌクレオチド配列における変化である。多型変異体はまた、ポリヌクレオチド配列が1塩基異なる「一塩基多型」(SNPs)または一塩基変異を包含し得る。SNPsの存在は、例えば、ある集団の疾病状態への傾向、すなわち感受性であるか、抵抗性であるかを示し得る。
【0065】
本明細書で用いる場合、用語「mRNA」は標的となる遺伝子の現在知られている1または2以上のmRNA転写物、および明らかにされ得る任意のさらなる転写物を意味する。
【0066】
「好ましいRNA」分子は、治療的、診断的、または他の視点から有用な、任意の外来RNA分子を意味する。かかる分子は、アンチセンスRNA分子、デコイRNA分子、酵素的RNA、治療的編集RNA(therapeutic ediging RNA)ならびにアゴニストおよびアンタゴニストRNAを含む。
【0067】
「アンチセンスRNA」は、RNA−RNA相互作用によって別のRNA(標的RNA)と結合して、標的RNAの活性を変化させる非酵素的なRNA分子を意味する(Eguchi et al., 1991 Annu. Rev. Biochem. 60, 631-652)。
【0068】
RNA干渉「RNAi」は、「標的」核酸配列に配列特異的相同性を有する二本鎖RNA(dsRNA)分子によって媒介される(Caplen, N. J., et al., Proc. Natl. Acad. Sci. USA 98:9742-9747 (2001))。ショウジョウバエの細胞不含溶解液での生化学研究は、本発明の一部の態様で、RNA依存性遺伝子サイレンシングの媒介物が21〜25ヌクレオチドの「低分子干渉」RNA二重鎖(siRNA)であることを示している。したがって、siRNA分子は、本発明の方法に好適に用いられる。siRNAは、ダイサー(Bernstein, E., et al., Nature 409:363-366 (2001))として知られているRNアーゼ酵素による、dsRNAのプロセシングに由来する。siRNA二重鎖産物は、RISC(RNA誘導サイレンシング複合体)と呼ばれる多タンパク質siRNA複合体にリクルートされる。いかなる特定の理論に束縛されることを望むことなく、RISCは、その後、標的核酸(好適にはmRNA)に誘導されると考えられ、そこで、siRNA二重鎖は配列特異的に相互作用し、触媒的に切断を媒介する(Bernstein, E., et al., Nature 409:363-366 (2001); Boutla, A., et al., Curr. Biol. 11:1776-1780 (2001))。本発明により用いることができる低分子干渉RNAは、当該技術分野でよく知られ、かつ、当業者が精通しているであろう手法に従って合成および使用することができる。本発明の方法に用いられる低分子干渉RNAは、好適には約0〜約50ヌクレオチド(nt)を含む。非限定的な態様の例において、siRNAは約5〜約40nt、約5〜約30nt、約10〜約30nt、約15〜約25ntまたは約20〜25ヌクレオチドを含むことができる。
【0069】
適切なRNAiの選択は、核酸配列を自動的にアラインメントし、同一性または相同性の領域を示すコンピュータプログラムを用いることにより容易になる。かかるプログラムは、例えば、GenBankなどのデータベースを検索することにより、または、PCR産物をシーケンシングすることにより得られる核酸配列を比較するのに用いられる。様々な種からの核酸配列の比較は、種間で適切な程度の同一性を示す核酸配列の選択を可能にする。シーケンシングさていない遺伝子の場合、標的種における遺伝子と他の種の遺伝子との間の同一性の程度の決定を可能にするためにサザンブロットを行う。当該技術分野でよく知られているとおりに、サザンブロットを種々の度合いのストリンジェンシーで行うことにより、同一性の近似的な指標を得ることが可能である。これらの手順は、コントロールされる対象における標的核酸配列への高い相補性、および、他の種における対応する核酸配列への低い相補性を示すRNAiの選択を可能にする。当業者は、本発明において用いるための遺伝子の適切な領域の選択に、かなりの自由度があることを理解する。
【0070】
「酵素的RNA」は、酵素活性を有するRNA分子を意味する(Cech, 1988 J. American. Med. Assoc. 260, 3030-3035)。酵素的核酸(リボザイム)は、最初に標的RNAに結合することにより作用する。かかる結合は、分子の標的RNAを切断するように作用する酵素部分に極めて近接して保持されている酵素的核酸の標的結合部分を介して生じる。こうして、酵素的核酸は塩基対合を通して、最初に標的RNAを認識し、次いでこれに結合し、そして、一度正しい部位に結合すると、酵素として作用し、標的RNAを切断する。
【0071】
「デコイRNA」は、リガンドのための天然の結合ドメインを模倣するRNA分子を意味する。デコイRNAは、したがって、特定のリガンドの結合について天然の結合標的と競合する。例えば、HIVトランス活性化反応(TAR)RNAの過剰発現が、「デコイ」として作用し、効率的にHIVのtatタンパク質と結合し、それによってそれがHIV RNAにコードされているTAR配列と結合するのを防いだことが示されている(Sullenger et al., 1990, Cell, 63, 601-608)。これは、具体的な例となるものである。当業者は、これが例の1つであるにすぎず、そして、他の態様が当該技術分野において一般的に知られている技法を用いて容易に生成できることを認識する。
【0072】
用語「相補的」は、一方の配列が他方の配列に、各配列の3’末端が他方の配列の5’末端に結合し、かつ、一方の配列の各々のA、T(U)、GおよびCが、他方の配列のT(U)、A、CおよびGとそれぞれ整列する、アンチパラレル方向で結合できる場合、2つの配列は相補的であることを意味する。通常、オリゴヌクレオチドの相補配列は、確定した(defined)配列への、少なくとも80%または90%、好ましくは95%、最も好ましくは100%の相補性を有する。好ましくは、対立遺伝子またはその変異体を同定することができる。かかる配列同一性を評価するためにBLASTプログラムを用いることもできる。
【0073】
用語「相補配列」は、ポリヌクレオチド配列に関する場合、塩基対合則による別の核酸分子における塩基配列に関する。より具体的には、本用語または同様の用語は、ヌクレオチド間または核酸間、例えば、二本鎖DNA分子の2つの鎖の間、または、オリゴヌクレオチドプライマーと、シーケンシングまたは増幅される一本鎖核酸上のプライマー結合部位との間のハイブリダイゼーションまたは塩基対合を指す。相補的なヌクレオチドは、一般的に、AおよびT(またはAおよびU)、またはCおよびGである。2つの一本鎖RNAまたはDNA分子は、一方の鎖のヌクレオチドが、最適にアラインメントされ、比較され、および適切なヌクレオチドの挿入または欠失を伴って、他方の鎖のヌクレオチドの少なくとも約95%、通常は少なくとも98%、そして、より好ましくは約99%から約100%と対合する場合に、実質的に相補的であるという。相補的なポリヌクレオチド配列は、よく知られたコンピュータアルゴリズムおよびソフトウェア、例えばBLASTプログラムの使用を含む種々のアプローチによって同定することができる。
【0074】
二重鎖または三重鎖の形成に関して、用語「安定性」は、一般に、アンチセンスオリゴヌクレオチドがその目的とする標的配列といかに強く結合するかを示し、より具体的には、「安定性」は、生理学的条件下での二重鎖または三重鎖の生成自由エネルギーを示す。標準的な条件のセット(例えば、下記のもの)における融解温度は、二重鎖および/または三重鎖の安定性の便利な指標である。好ましくは、本発明のオリゴヌクレオチドとしては、100mMのNaCl、0.1mMのEDTAおよび10mMのリン酸緩衝水溶液、pH7.0において、オリゴヌクレオチドおよび標的核酸の1.5μMの鎖濃度にて測定した場合に、少なくとも45℃の融解温度を有するものが選択される。したがって、生理学的条件下で用いられる場合、二重鎖または三重鎖の形成は、抗原およびその標的が解離する状態よりも実質的に有利なものとなる。安定した二重鎖または三重鎖は、いくらかの態様において、塩基対間のミスマッチ、および/または三重鎖の場合には塩基トリプレットの間のミスマッチを含み得ることが理解される。好ましくは、本発明の修飾オリゴヌクレオチド、例えばLNA単位を含むものは、その標的核酸と完全にマッチした二重鎖および/または三重鎖を形成する。
【0075】
本明細書で用いる場合、用語「熱融解点(Tm)」は、確定したイオン強度、pHおよび核酸濃度の下で、標的配列と相補的なオリゴヌクレオチドの50%が平衡状態で標的配列にハイブリダイズする温度を指す。標的配列は一般的に過剰量存在しているため、Tmにおいては、オリゴヌクレオチドの50%が平衡状態でふさがっている。典型的には、ストリンジェントな条件は、短いオリゴヌクレオチド(例えば10〜50ヌクレオチド)については、塩濃度がpH7.0〜8.3で少なくとも約0.01〜1.0MのNaイオン濃度(あるいは、他の塩類)であり、温度が少なくとも約30℃である条件である。ストリンジェントな条件はまた、ホルムアミドなどの不安定化剤(destabilizing agent)の添加によって達成することもできる。
【0076】
用語「ストリンジェントな条件」は、オリゴヌクレオチドがその標的部分配列にハイブリダイズするが、他の配列にはわずかなハイブリダイゼーションを伴うにすぎないか、他の配列に違いが同定されるようにハイブリダイズする条件を指す。ストリンジェントな条件は配列依存性であり、異なる状況においては異なる。より長い配列は、より高い温度で特異的にハイブリダイズする。一般的に、ストリンジェントな条件は、確定したイオン強度およびpHにおいて、特定の配列のための熱融解点(Tm)より約5℃低いものとして選択される。
【0077】
用語「標的核酸」は、オリゴヌクレオチドが特異的にハイブリダイズするように設計されている核酸(しばしば、生物試料に由来する)を指す。標的核酸の存在または欠如のいずれか、または定量すべき標的核酸の量が検出される。標的核酸は、標的に向けられる対応するオリゴヌクレオチドの核酸配列と相補的な配列を有する。用語、標的核酸は、オリゴヌクレオチドが指向するより大きな核酸の特定の部分配列、または、その発現量の検出が望まれる全体的な配列(例えば遺伝子またはmRNA)を指すこともある。用いられ方の違いは、文脈から明らかとなる。
【0078】
本明細書で用いる場合、「薬学的に許容し得る」成分/担体等は、ヒトおよび/または動物への使用に好適であり、妥当な利益/危険率に相応した不当な不利な副作用(例えば毒性、刺激、およびアレルギー応答)のないものである。
【0079】
本明細書で用いる場合、用語「安全で有効な量」は、この発明の方法で用いる場合、妥当な利益/危険率に相応した不当な不利な副作用(例えば毒性、刺激、およびアレルギー応答)なしに、所望の治療反応をもたらすのに十分な成分の量を指す。「治療的有効量」は、所望の治療反応をもたらすのに有効な本発明の化合物の量を意味する。例えば、がん、肉腫またはリンパ腫の増殖またはその発症を遅延し、あるいは、がんを縮小させまたは転移を防ぐために有効な量である。具体的な安全で有効な量または治療的有効量は、処置する具体的な症状、患者の身体状態、処置する哺乳類または動物の種類、処置の継続期間、併用療法の性質(行っている場合)、および用いられる具体的な剤形および化合物またはその誘導体の構造などの要因によって異なる。
【0080】
本明細書で用いる場合、「薬学的塩」は、限定することなく、塩基性残基、例えばアミンなどの鉱物塩または有機酸塩、酸性残基、例えばカルボン酸などのアルカリまたは有機塩を含む。好ましくは、塩は、有機酸または無機酸を用いて作製される。これらの好ましい酸性塩は、塩化物、臭化物、硫酸塩、硝酸塩、リン酸塩、スルホン酸エステル、蟻酸塩、酒石酸塩、マレイン酸エステル、リンゴ酸塩、クエン酸塩、安息香酸エステル、サリチル酸塩、アスコルビン酸塩などである。最も好ましい塩は、塩酸塩である。
【0081】
本明細書で用いる場合、「がん」は哺乳類で見出されるあらゆる種類のがんまたは腫瘍または悪性腫瘍を指し、限定することなく、白血病、リンパ腫、メラノーマ、癌腫および肉腫を含む。がんの例は、脳のがん、胸部のがん、すい臓がん、頸がん、大腸がん、頭頸部がん、腎臓がん、肺がん、非小細胞肺がん、メラノーマ、中皮腫、卵巣がん、肉腫、胃がん、子宮がんおよび髄芽腫である。
【0082】
本発明によるsiRNAにより処置することができるさらなるがんは、例えば、ホジキン病、非ホジキンリンパ腫、多発性骨髄腫、神経芽細胞腫、乳がん、卵巣がん、肺がん、横紋筋肉腫、原発性血小板血症、原発性マクログロブリン血症、小細胞肺腫瘍、原発性脳腫瘍、胃がん、大腸がん、悪性膵臓インスリノーマ、悪性カルチノイド、膀胱がん、前がん性皮膚病変、精巣がん、リンパ腫、甲状腺がん、神経芽細胞腫、食道がん、泌尿生殖器がん、悪性高カルシウム血症、子宮頸がん、子宮内膜がん、副腎皮質がんおよび前立腺がんを含む。がんはまた、病原体、例えば子宮頸がんウイルスおよびヒトパピローマウイルスによって生じ得る。したがって、1つの態様において、疾患の処置は病原体によって誘発される異常の処置を含む。
【0083】
「異種」成分は、それが天然に位置している実体とは異なる実体の中に導入されたかまたは生成された成分を指す。例えば、1つの有機体に由来し、異なる有機体に遺伝子工学技術によって導入されたポリヌクレオチドは異種ポリヌクレオチドであり、これは、発現した場合に、異種ポリペチドをコードすることができる。同様に、その天然のコード配列から取り出され、異なるコード配列に作動可能に連結されたプロモーターまたはエンハンサーは、異種プロモーターまたはエンハンサーである。
【0084】
本明細書で用いる場合、「プロモーター」は、それが作動可能に連結されている遺伝子またはコード配列の転写をコントロールするポリヌクレオチド配列を指す。構成的プロモーター、誘導性プロモーターおよび阻害可能(repressible)プロモーターを含む、種々の異なる給源からの多数のプロモーターが当該技術分野でよく知られており、クローニングされたポリヌクレオチド配列として、または、その一部として入手可能である(例えば、ATCCなどの寄託機関、ならびに他の商業的または個人的な給源から)。
【0085】
本明細書で用いる場合、「エンハンサー」は、それが作動可能に連結されている遺伝子またはコード配列の転写を増強するポリヌクレオチド配列を指す。種々の異なる給源からの多数のエンハンサーが当該技術分野でよく知られており、クローニングされたポリヌクレオチド配列として、または、その一部として入手可能である(例えば、ATCCなどの寄託機関、ならびに他の商業的または個人的な給源から)。プロモーター配列を含む複数のポリヌクレオチド(例えば、広く用いられているCMVプロモーターなど)はまた、エンハンサー配列を含む。
【0086】
「作動可能に連結される」は、このように記載される構成要素が、その意図された様式で機能することを可能にする関係で並んでいることを指す。プロモーターは、それがコード配列の転写をコントロールするならば、コード配列に作動可能に連結されている。作動可能に連結されたプロモーターは一般的にコード配列の上流に位置するが、プロモーターがコード配列に必ずしも隣接しているというわけではない。エンハンサーは、それがコード配列の転写を増大させるならば、エンハンサーはコード配列に作動可能に連結されている。作動可能に連結されたエンハンサーは、コード配列の上流、コード配列中またはコード配列の下流に位置することができる。ポリアデニル化配列は、コード配列の下流端にあって転写がコード配列を通してポリアデニル化配列へと進行するようになっているならば、コード配列に作動可能に連結されている。
【0087】
「レプリコン」は、適切な宿主細胞でのポリヌクレオチドの複製を可能にする複製起点を含むポリヌクレオチドを指す。例としては、異種核酸が組み込まれ得る標的細胞のレプリコン(例えば、核およびミトコンドリア染色体)、ならびに染色体外レプリコン(例えば複製プラスミドおよびエピソーム)が挙げられる。
【0088】
「遺伝子送達」、「遺伝子導入」などは、本明細書で用いる場合、導入のために用いられる方法にかかわりなく、宿主細胞への外因性ポリヌクレオチド(「導入遺伝子産物」と称する場合もある)の導入を指す用語である。かかる方法は、種々のよく知られた技法、例えば、ベクター媒介性遺伝子導入(例えば、ウイルス感染/トランスフェクション、または種々の他のタンパク質ベースもしくは脂質ベースの遺伝子送達複合体によるもの)、ならびに、「裸の」ポリヌクレオチドの送達を促進する技法(例えば、エレクトロポレーション、「遺伝子銃」送達、およびポリヌクレオチドの導入のために用いられる種々の他の技法)を含む。導入されたポリヌクレオチドは、宿主細胞において、安定して、あるいは、一時的に維持されてもよい。安定した維持は、典型的には、導入されたポリヌクレオチドが、宿主細胞に適合した複製起点を含むか、または、宿主細胞のレプリコン、例えば染色体外レプリコン(例えばプラスミド)または核もしくはミトコンドリア染色体に組み込まれることを要する。複数のベクターが、当該技術分野において知られており、本明細書に記載されているとおり、哺乳類細胞への遺伝子産物の移送を媒介できることが知られている。
【0089】
「in vivo」遺伝子送達、遺伝子導入、遺伝子治療などは、本明細書において用いる場合、外因性ポリヌクレオチドを含むベクターを、有機体、例えばヒトまたはヒト以外の哺乳類体内に直接導入し、それにより外因性ポリヌクレオチドをかかる有機体の細胞にin vivoで導入することを指す用語である。
【0090】
核酸が細胞外環境から細胞内に転移する場合、細胞は核酸によって「形質導入」される。核酸を細胞内に導入する任意の方法を用いることができ、この用語は、特に明記しない限り、細胞内へ核酸を送達するいかなる具体的な方法も示唆しない。核酸が細胞内に形質導入されて、安定して複製する場合、細胞は核酸によって「形質転換」される。ベクターは、細胞によって発現される核酸(通常はRNAまたはDNA)を含む。ベクターは、任意に、核酸の細胞内への進入の達成を補助する物質、例えばウイルス粒子、リポソーム、タンパク質コーティングなどを含む。「細胞形質導入ベクター」は、一旦核酸が細胞に形質導入されると、安定した複製および発現が可能な核酸をコードするベクターである。
【0091】
本明細書で用いる場合、「標的細胞」または「レシピエント細胞」は、または、外因性核酸分子、ポリヌクレオチドおよび/またはタンパク質のレシピエントであることが望まれる、またはレシピエントであった個々の細胞または細胞を指す。本用語はまた、単一細胞の子孫を含むことを意図する。
【0092】
「ベクター」(時に遺伝子送達または遺伝子導入「ビヒクル」と称する場合もある)は、宿主細胞に、in vitroまたはin vivoで送達されるポリヌクレオチドを含む巨大分子または分子の複合体を指す。送達されるポリヌクレオチドは、遺伝子治療における対象となるコード配列を含んでもよい。ベクターは、例えば、ウイルスベクター(例えばアデノウイルス(「Ad」)、アデノ随伴ウイルス(AAV)およびレトロウイルス)、リポソームおよびその他の脂質含有複合体、およびポリヌクレオチドの宿主細胞への送達を媒介することができるその他の巨大分子複合体を含む。ベクターはまた、さらに遺伝子送達や遺伝子発現をさらに調節するか、またはさもなければ、標的となる細胞に有益な特性を提供する他の成分または機能を含むことができる。以下でより詳細に記載および例示するとおり、かかる他の成分は、例えば、細胞への結合または標的化に影響する成分(細胞種または組織特異的結合を媒介する成分を含む)、細胞によるベクター核酸の取り込みに影響する成分、取り込みの後、細胞内でのポリヌクレオチドの局在に影響する成分(例えば核局在を媒介する剤)、および、ポリヌクレオチドの発現に影響する成分を含む。かかる成分はまた、マーカー、例えばベクターによって送達された核酸を取り込み、そして発現している細胞を検出または選択するのに用いることができる、検出可能なおよび/または選択可能なマーカーを含んでもよい。かかる成分は、ベクターの天然の特徴として提供されてもよく(例えば結合および取り込みを媒介する成分または機能を有する一部のウイルスベクターの利用)、または、ベクターはかかる機能を提供するために改変されていてもよい。他のベクターは、Chen et al; BioTechniques, 34: 167-171 (2003)により記載されたものを含む。多種多様なかかるベクターが当該技術分野において知られており、一般的に入手可能である。
【0093】
「組換えウイルスベクター」は、1または2以上の異種遺伝子産物または配列を含むウイルスベクターを指す。多くのウイルスベクターが、パッケージングと関連するサイズの制約を示すため、異種遺伝子産物または配列は、典型的には、ウイルスゲノムの1または2以上の部分に置換することによって導入される。かかるウイルスは複製欠損となることがあり、ウイルス複製およびカプシド形成の間、削除された機能をin transで提供することを要求する(例えば、複製および/またはカプシド形成のために必要な遺伝子産物を有するヘルパーウイルスまたはパッケージング細胞系の使用による)。送達されるポリヌクレオチドがウイルス粒子の外部に担持される改変ウイルスベクターも記載されている(例えば、Curiel、D T, et al. PNAS 88:8850-8854, 1991参照)。
【0094】
本明細書で用いる場合、ウイルスの「パッケージング」は、ウイルスベクターの合成およびアセンブリをもたらす一連の細胞内イベントを指す。パッケージングは、典型的には、「プロウイルスゲノム」、または、「ベクタープラスミド」と典型的に呼ばれる組換えプロベクター(典型的には適切なウイルス「パッケージング配列」が隣接していることにより、ウイルスゲノムに類似した様式でパッケージングされ得る組換えポリヌクレオチドである)の複製を伴い、これに引き続き、カプシド形成またはその他の核酸のコーティングが行われる。このように、適切なベクタープラスミドが適切な状況下でパッケージング細胞系に導入された場合、それは複製され、ウイルス粒子にアセンブルされ得る。多くのウイルスゲノムで見出されている、ウイルスの「rep」および「cap」遺伝子産物は、それぞれ、複製タンパク質およびカプシド形成タンパク質をコードしている遺伝子産物である。「複製欠損」、または、「複製不能(replication-incompetent)」ウイルスベクターは、複製および/またはパッケージングのために必要な1または2以上の機能が欠けているか、または変化しており、ウイルスベクターが、宿主細胞による取り込みの後にウイルス複製を開始することができなくなっているウイルスベクターを指す。かかる複製欠損ウイルスベクターのストックを生成するために、ウイルスまたはプロウイルス核酸を、in transで供給することができる、欠損した機能をコードする遺伝子産物を含むよう改変された「パッケージング細胞系」に導入することができる。例えば、かかるパッケージング遺伝子産物は、パッケージング細胞系のレプリコンに安定して組み込むことができ、または、これらは、「パッケージングプラスミド」または欠損した機能をコードする遺伝子産物を担持するヘルパーウイルスによるトランスフェクションにより導入することができる。
【0095】
「検出可能なマーカー遺伝子」は、その遺伝子を有する細胞を特異的に検出する(例えば、マーカー遺伝子を有しない細胞と区別する)ことを可能にする遺伝子である。多種多様なかかるマーカー遺伝子産物が当該技術分野において知られている。その好ましい例は、細胞表面に現れており、それによって簡単かつ迅速な検出および/または細胞ソーティングを容易にするタンパク質をコードする検出可能なマーカー遺伝子産物を含む。例として、β−ガラクトシダーゼをコードするlacZ遺伝子が検出可能なマーカーとして用いることができ、lacZ遺伝子を有するベクターで形質導入された細胞を染色によって検出することが可能となる。
【0096】
「選択可能なマーカー遺伝子」は、その遺伝子を有する細胞を、対応する選択剤の存在下で、特異的に選択または除外することを可能にする遺伝子である。例として、抗生物質耐性遺伝子が、宿主細胞を、対応する抗生物質の存在下でポジティブ選択することを可能にするポジティブ選択可能なマーカー遺伝子として用いることができる。選択可能なマーカーはポジティブ、ネガティブまたは二機能性であり得る。ポジティブ選択可能なマーカーは、マーカーを有する細胞の選択を可能にするが、ネガティブ選択可能なマーカーは、マーカーを有する細胞を選択的に排除することを可能にする。種々のかかるマーカー遺伝子産物が記載されており、これは二機能性(すなわちポジティブ/ネガティブ)マーカーを含む(例えば、1992年5月29日に公開されたWO 92/08796、および1994年12月8日に公開されたWO 94/28143を参照)。かかるマーカー遺伝子産物は、遺伝子治療の文脈で有利であり得る追加の制御手段を提供することができる。
【0097】
「診断」または「診断された」は、病的状態の存在または性質を同定することを意味する。診断法は、その感度および特異性が異なる。診断アッセイの「感度」は、陽性と判定された罹患個体のパーセンテージ(「真陽性」のパーセント)である。アッセイによって検出されなかった罹患個体は「偽陰性」である。罹患しておらず、かつ、アッセイにおいて陰性と判定された個体は、「真陰性」と呼ばれる。診断アッセイの「特異性」は、1−偽陽性率であり、ここで、「偽陽性」率は、陽性と判定された疾患を有しない個体の割合と定義される。個別の診断法は状態の決定的な診断を提供しないかもしれないが、その方法が診断の助けになるポジティブな指標を提供するならばそれで十分である。
【0098】
用語「患者」または「個体」は、本明細書では互換可能に用いられ、処置すべき哺乳類対象を指し、ヒト患者が好ましい。場合によっては、本発明の方法は、実験動物、獣医学的用途、および疾患のための動物モデルの開発に用いられ、これには、限定することなく、マウス、ネズミおよびハムスターを含む齧歯動物、および霊長類が含まれる。
【0099】
「処置」は、疾患の発症を予防し、または、疾患の病状または症状を変化させる意図で行われる介入である。したがって、「処置」は治療的処置および予防または防止措置の両方を指す。「処置」はまた、パリアティブケアとして特定され得る。処置を必要とするものは、すでに疾患を有するもの、ならびに、疾患が予防されるべきものを含む。腫瘍(例えばがん)の処置において、治療薬は直接腫瘍細胞による病状を軽減してもよく、または、腫瘍細胞を、他の治療剤による処置、例えば放射線および/または化学療法に対する感受性を高めてもよい。
【0100】
「腫瘍性疾患、腫瘍性細胞、がんの処置」は、以下の効果の1または2以上をもたらすことができる、本明細書中および下記の例に記載されたオリゴヌクレオチド、ベクターおよび/またはペプチドの量を指す:(1)(i)減速および(ii)完全な増殖停止を含む、腫瘍の増殖のある程度の阻害、(2)腫瘍細胞の数の減少、(3)腫瘍サイズの維持、(4)腫瘍サイズの縮小(5)(i)低減、(ii)減速または(iii)完全な防止を含む、末梢器官への腫瘍細胞の浸潤の阻害、(6)(i)低減、(ii)減速または(iii)完全な防止を含む、転移の阻害、(7)(i)腫瘍サイズの維持、(ii)腫瘍サイズの縮小、(iii)腫瘍増殖の減速、(iv)浸潤の低減、減速および防止または(v)転移の低減、減速および防止をもたらし得る抗腫瘍免疫応答の強化、および/または(8)疾患に関連する、1または2以上の徴候のある程度の緩和。
【0101】
感染症有機体で苦しむ個体の処置は、個体における疾患有機体の減少および除去を指す。例えば、プラーク形成単位または他の自動化された診断法、例えばELISAなどで測定されるウイルス粒子の減少である。
【0102】
「神経性(ニューロンの、神経学的)欠陥、障害または疾患」は、本明細書で用いる場合、限定することなく以下を含む、任意の神経学的障害または疾患を指す:神経変性疾患(例えばパーキンソン病、アルツハイマー病)、または、中枢神経系の自己免疫疾患(例えば多発性硬化症)、記憶喪失、長期および短期の記憶障害、学習障害、自閉症、うつ病、良性健忘症、小児期学習障害、閉鎖性頭部外傷、および注意欠陥障害、脳の自己免疫疾患、ウイルス感染に対するニューロンの反応、脳損傷、うつ病、精神障害、例えば、バイポラリズム(bipolarism)、精神分裂症など、ナルコレプシー/睡眠障害(サーカディアンリズム障害、不眠症およびナルコレプシーを含む)、神経の切断または神経損害、脳脊髄神経(CNS)の切断および脳または神経細胞への任意の損害、エイズに関連した神経病学的欠陥、チック(例えばジル・ド・ラ・トゥレット症候群)、ハンチントン舞踏病、精神分裂症、外傷性脳損傷、耳鳴り、神経痛、特異に三叉神経痛、神経因性疼痛、糖尿病、MSおよび運動ニューロン疾患などの疾患におけるニューロジステジア(neurodysthesias)をもたらす不適切なニューロンの活動、運動失調症、筋硬直(痙性)および顎関節障害、対象における報酬不足症候群(Reward Deficiency Syndrome、RDS)行動、アルコールまたは薬物乱用(例えばエクスタシー、メトアンフェタミンなど)に起因する神経毒性。他の疾患は、限定することなく以下を含む:失語症、ベル麻痺、クロイツフェルトヤコブ病、てんかん、脳炎、ハンチントン病、神経筋障害、神経腫瘍学疾患、神経免疫学疾患、神経耳科学疾患、疼痛、恐怖症、睡眠障害およびその他の運動障害。他の変性障害は、例えば、加齢黄斑変性症を含む。
【0103】
標的核酸
非コードRNA(ncRNA)の概念:分子生物学のセントラルドグマは、半世紀以上の間、DNAにコードされている遺伝情報が転写されて中間分子であるRNAを形成し、これが今度は、タンパク質を形成するアミノ酸に翻訳されるとしていた。有力な仮説は、遺伝子がタンパク質に直接関連している(「1遺伝子−1タンパク質」)というものであった。ここ数年、我々はRNAレベルの複雑さが以前に想定していたよりはるかに重大であることを理解するに至った。かかる複雑さは、主に非コード転写物(ならびに選択的スプライシング現象)によるものであり、特に真核生物で明瞭である(Mattick, J.S. (2004) RNA regulation: a new genetics? Nat Rev Genet 5 (4), 316-323)。
【0104】
ncRNAは、マイクロRNA、アンチセンス転写物、および、高密度のストップコドンを含み、広い「オープンリーディングフレーム」を全く欠如するその他の転写単位(TU)を含む。多くのncRNAは、タンパク質コード遺伝子座の3’非翻訳領域(3’UTR)における開始部位から始まるようである。ncRNAは稀であることが多く、FANTOMコンソーシアムによってシーケンシングされたncRNAの少なくとも半数は、ポリアデニル化されていないようである。研究者のほとんどは、明らかな理由から、プロセシングされて細胞質に輸送されたポリアデニル化mRNAに注目していた。最近、一連の非ポリアデニル化核RNAが非常に多数存在し得、かかる転写物の多くがいわゆる遺伝子間領域から生じることが示された(Cheng, J. et al. (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308 (5725), 1149-1154; Kapranov, P. et al. (2005) Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res 15 (7), 987-997)。また、
図1Aを参照。
【0105】
ncRNAの概念については、主にこれらが従来のコードRNAの特徴のいくつかを共有するが全てを共有するのではないため、依然いくぶんの賛否両論がある。いくらかのncRNAは、遠縁の種においてさえ高度に保存されるようである。Carninciら(Carninci, P. et al. (2005) The transcriptional landscape of the mammalian genome. Science 309 (5740), 1559-1563)によって分析されたncRNAの大半は、種間で位置的保存を示した。機能を考慮する際に、特定の位置からの転写が重要であるか、または、ゲノム構造または配列の結果であること考えられ得る。非コード転写物は実際、それが由来するDNA配列との何らかの配列特異的相互作用を介して機能するかもしれず、または、それは他の標的を有するかもしれない。興味深いことに、ncRNA転写物は迅速に進化しているようであり、これらがしばしばよく保存されないという事実は、これらが機能を欠くということを必ずしも意味するわけではない。少なくとも4つのウェブアクセスできるncRNAに関するデータベースが存在する(表1を参照)。
【表1】
【0106】
ncRNAが遺伝子発現を制御する最もよく知られたメカニズムは、標的転写物との塩基対合によるものである。塩基対合によって機能するRNAは、(1)それが作用するRNAと同じ遺伝子位置であるが、反対の鎖にコードされ、したがって、その標的への完全な相補性を示すシスコード(cis-encoded)RNA、および、(2)それが作用するRNAとは別の染色体位置にコードされ、一般的にその標的に対し完全な塩基対合能を示さないトランスコード(trans-encoded)RNAに分類できる。
【0107】
アンチセンス転写:アンチセンス転写物は、コードRNAならびに非コードRNAに由来し得る(
図1A)。特筆すべきことに、哺乳類におけるアンチセンス転写は、わずか数年前に予想し得たよりはるかに多い。ごく最近、Katayamaら(Katayama, S. et al. (2005) Antisense transcription in the mammalian transcriptome. Science 309 (5740), 1564-1566)は、マウスにおいて、全てのゲノムマップされた転写単位の72%以上(43,553)が、一部のcDNA、5’または3’発現配列タグ(EST)配列、または、反対の鎖にマップされたタグ領域またはタグペア(tag-pair)領域とオーバーラップすることを示した。現在のところ、この状況がヒトで大きく異なることを想定する根拠はない。
【0108】
しかしながら、この転写活性が主に「意図しないもの」であり、RNA転写機構の「リーク(leakage)」であることが主張された。この後者のために、アンチセンス転写物ペアが、非アンチセンスペアと比較して、進化を通してそのゲノム構成を保存している可能性が極めて高いことが証明された。さらに、鎖特異的および従来型マイクロアレイを用いた発現分析は、種々のマウス組織の間でセンス−アンチセンスペアの発現量の顕著な変動を示した。大量の複数の大きさの転写物がセンス−アンチセンス遺伝子座から発現され、そして、これらがポリアデニル化テールを欠き、核局在を示す傾向があるようである。
【0109】
センス−アンチセンスペアの3つの基本的なタイプが存在するようである:(1)ヘッドトゥヘッド(head-to-head)または発散(convergent)型、(2)テールトゥテール(tail-to-tail)または収束(divergent)型、および(3)完全オーバーラップ型。発散(ヘッドトゥヘッド)型が、最も一般的である(
図1B)。
【0110】
重要な機能的問題は、天然アンチセンスペアが内因性RNA干渉(RNAi)の基礎を形成し得るかということである。異なる生物系においてRNAiベースのメカニズムが非常に広範囲にわたって存在していること、および、少なくとも一部の種において、RNAi経路の一部が核区画で生じ得ることを示す最近の証拠は、アンチセンス媒介性の遺伝子阻害におけるこの過程の可能な役割を示唆する。この観点によると、二本鎖RNA(dsRNA)はダイサーまたは他のRNaseIIIファミリーのメンバーによってsiRNAに切断される。しかしながら、我々は最近、天然アンチセンス転写物によるRNAの制御が、ヒト細胞において、ダイサーに関連するRNAiから独立した経路を介して生じることを証明した(Faghihi, M. and Wahlestedt, C. (2005) RNA interference is not involved in natural antisense mediated regulation of gene expression in mammals. Genome Biol)。アンチセンス−センス相互作用現象は、種々のタイプの遺伝子に影響を及ぼして、ゲノム全体で不均一に分布している。
【0111】
RNA標的化:創薬活動は、歴史的に、遺伝子のタンパク質産物を調節する化合物の検索に集中してきた。通常、これらの化合物は、レセプターのアゴニストもしくはアンタゴニスト、または酵素もしくはタンパク質−タンパク質相互作用を阻害もしくは刺激する化合物である。しかしながら、標的の検証および/または治療の目的で、RNAを標的化することに対する関心が、特に数年前にRNAiが導入されたことにより高まっている。また、mRNAを、小分子、アンチセンスオリゴヌクレオチド、リボザイムまたはアプタマーによって標的化することを目的とする多くの試みが進行中である。
【0112】
現在の薬物療法は、わずか数百の内因性の標的、主にレセプターおよび酵素に関するものである。ゲノミクスおよびトランスクリプトミクスでの取り組みにより、検証する必要がある多くの新しい薬物標的候補が特定された。標的検証研究、例えば、RNAレベルの操作によるものは、創薬プロセスにおける優先順位を定める助けとなるが、これらは候補薬を直接もたらすことはない。したがって、確立された標的に注力し続ける正当な理由がある。これらが天然アンチセンス制御を受けることが判明すれば、これらの「古い」標的を、特にこれらの標的のために利用できる薬がない場合に、新しい方法で扱う試みを行うことは可能であろう。
【0113】
タンパク質をコードする遺伝子に関して、エネルギー的な見方をすれば、転写後制御は、遺伝子発現を制御する高価なメカニズムである。mRNAは、遺伝子から活性タンパク質への多段階のプロセスにおける中間体にすぎない。細胞が最初でのみ、転写レベルでこのプロセスを制御するならば、それはタンパク質を合成するのに用いられないmRNA分子を提供、分解、およびリサイクルするために必要なエネルギーを節約できる。ncRNAの作用を調節するために、RNAレベルは、明らかに標的化の唯一の選択肢である。
【0114】
好ましい態様において、オリゴヌクレオチドは、標的核酸のアンチセンスおよびセンス転写物に標的化される。オリゴヌクレオチドは(1)ヘッドトゥヘッドまたは発散型、(2)テールトゥテールまたは収束型、および(3)完全オーバーラップ型であり得る。
図1Bは、種々のタイプの方向性の模式図を提供する。
【0115】
別の好ましい態様において、オリゴヌクレオチドはアンチセンス転写物を標的とし(「不一致的制御」)、これにより、アンチセンス転写物のみのノックダウンが、従来の(センス)遺伝子の発現を高める。したがって、本発明の1つの側面では、所望の遺伝子の発現を上方調節することができる。例えば、標的遺伝子または核酸が、既知のまたは推定される薬物標的をコードしている場合、そのアンチセンス対応物のノックダウンは受容体アゴニストまたは酵素刺激剤の作用を模倣する。表2は、アンチセンス(コードならびに非コード)転写物のノックダウンが、センス発現を不一致的に制御することが示された例を提供する。例えば、パーキンソン病では、ミトコンドリアに局在するキナーゼ、PINK1の増強した活性(例えばPINK1の上昇)が望まれる:
【化1】
【0116】
好ましい態様において、siRNA分子は所望のセンス/アンチセンス遺伝子座のオーバーラップ領域を標的とし、それによってセンスおよびアンチセンス転写物の両方を制御する。
【0117】
好ましい態様において、組成物は、所望の標的遺伝子座にオーバーラップする、および/または、センスおよびアンチセンスの両方を標的とする(オーバーラップするかまたは別の方法で)siRNAの1または2以上および/またはsiRNAの組み合わせのいずれかのsiRNA分子を含む。これらの分子は、任意の疾患または異常の可能な治療のために望まれる任意の標的に向けられ得る。例えば、標的がん遺伝子、レセプター、プロモーターをコードする遺伝子、エンハンサー、サイトカインなど。理論的に、どの分子が標的とされるかについては制限がない。この発明は、先天的か否かを問わず、各疾患、異常の治療の設計における新しい時代の先駆けとなる。さらにまた、本明細書で教示する技術は、治療を各々の個体に合わせることを可能にする。
【0118】
本発明の組成物および方法によって、遺伝子発現の上方調節が望まれる別の例は、脈管形成の上方調節、例えば創傷治癒におけるものである。脈管形成を刺激するために、Gタンパク質共役型レセプター(GPCR)、CD97を介したシグナリングの強化は、その(コード)アンチセンスパートナー、Ddx−39の標的化によって達成することができる。
【0119】
別の好ましい態様において、オリゴヌクレオチドは、アンチセンスおよびセンス転写物の両方を標的とし(「一致的制御」)、これによりアンチセンスおよびセンス転写物をノックダウンし、それによって従来の(センス)遺伝子発現の相乗的な低減を達成する。これらの概念は、
図1A〜1Bおよび2A〜2Bに例示されている。siRNAがノックダウンを達成するのに用いられる場合、この戦略は、センス転写物に標的化された1つのsiRNAおよび対応するアンチセンス転写物に標的化された別のsiRNA、または、同時にオーバーラップするセンスおよびアンチセンス転写物を同時に標的とする単一のエネルギー的に対称なsiRNAを適用することによってさらにテストされる。表2によれば、かかる二重の同時的な標的化は、例えば、その阻害が種々の病状で有益となり得る標的である、低酸素誘導因子1アルファの場合に追求することが適切である。表2における別の例は、低減したシグナリングが同じく治療的に有益であることが示されたGPCRである、アドレノメデュリンAM1レセプターである。
【0120】
アルツハイマー病に用いる、アンチセンスおよびセンス転写物の同時的ノックダウンに有用な組成物の例は、限定することなく、以下を含む:
【化2】
【0121】
これらの組成物は説明例として提供されており、限定的であることを意図しない。好ましい態様において、オリゴヌクレオチドを個々の治療に合わせることができ、例えば、これらのオリゴヌクレオチドは、個体における対立遺伝子変異体に対して配列特異的であることができ、標的の上方調節または阻害は種々の程度、例えば対照に対して10%、20%、40%、100%の発現という具合に操作することができる。すなわち、ある患者においては、標的遺伝子発現を10%増加または減少させることが有効であり得るのに対し、別の患者では80%増加または減少させることが有効であり得る。
【0122】
遺伝子発現の上方調節または阻害は、内因性の標的RNAまたは標的RNAの翻訳によって産生されるタンパク質を測定することによって定量できる。RNAおよびタンパク質を定量する技法は、当業者によく知られている。一部の好ましい態様において、遺伝子発現は少なくとも10%、好ましくは少なくとも33%、より好ましくは少なくとも50%、より一層好ましくは少なくとも80%阻害される。本発明の特に好ましい態様において、遺伝子発現は有機体の細胞内で少なくとも90%、より好ましくは少なくとも95%、または、少なくとも99%から100%まで阻害される。一部の好ましい態様において、遺伝子発現は、少なくとも10%、好ましくは少なくとも33%、より好ましくは少なくとも50%、より一層好ましくは少なくとも80%上方調節される。本発明の特に好ましい態様において、遺伝子発現は有機体の細胞内で少なくとも90%、より好ましくは少なくとも95%、または、少なくとも99%から100%まで上方調節される。
【0123】
適切なRNAiの選択は、核酸配列を自動的にアラインメントし、同一性または相同性の領域を示すコンピュータプログラムを用いることにより容易になる。かかるプログラムは、例えば、GenBankなどのデータベースを検索することにより得られる核酸配列、または、PCR産物をシーケンシングすることにより得られる核酸配列を比較するのに用いられる。様々な種からの核酸配列の比較は、種間で適切な程度の同一性を示す核酸配列の選択を可能にする。シーケンシングされていない遺伝子の場合、標的種における遺伝子と他の種の遺伝子との間の同一性の程度の決定を可能にするためにサザンブロットを行う。当該技術分野でよく知られているとおりに、サザンブロットを種々の度合いのストリンジェンシーで行うことにより、同一性の近似的な指標を得ることが可能である。これらの手順は、コントロールされる対象における標的核酸配列への高い相補性、および、他の種における対応する核酸配列への低い相補性を示すRNAiの選択を可能にする。当業者は、本発明において用いるための遺伝子の適切な領域の選択に、かなりの自由度があることを理解する。
【0124】
好ましい態様において、低分子干渉RNA(siRNA)は、RNA自体としてまたはDNAとして、発現プラスミドまたはウイルスおよびsiRNAにプロセシングされる低分子ヘアピンRNAをコードする配列を用いて、細胞に送達される。
【0125】
別の好ましい態様において、低分子ヘアピン配列のクローニングのためのDNAカセットは、RNAポリメラーゼI、IIまたはIIIによるその発現およびプロセシングを可能にする。この系は、プレsiRNAを、これらが活性を有する細胞質へ効果的に輸送することを可能にし、遺伝子発現のための制御されたおよび組織特異的プロモーターの利用を許容する。
【0126】
本発明によれば、標的細胞、原核生物および真核生物のいずれかは、その遺伝子構造に基づきsiRNAによって、選択的に標的化される。感染症はほとんど常に外来の核酸の獲得をもたらし、これはこの技術を用いて標的化することができる。具体的な標的はウイルス性のもの、例えばHIV(ウイルスまたはプロウイルス)、または細菌性のもの、例えば多剤耐性菌、例えばTB、真菌または原虫であり得る。この技術は、有効な抗微生物剤または抗ウイルス剤がない感染症(例えばエボラウイルスなど)、または既知のもしくは新規のバイオテロ剤の処置に特に有用たり得る。
【0127】
本発明の好ましいsiRNAは、標的配列、特に疾患、例えばパーキンソン病、アルツハイマー病など、がん、神経性疾患、感染性因子、例えばウイルス性、細菌性、真菌性または原虫性のものの標的オリゴヌクレオチドに、in vitroで評価し得る、ストリンジェンシー条件下でハイブリダイズ(結合)する。
【0128】
本発明は、タンパク質をコードする遺伝子産物ならびにタンパク質をコードしない遺伝子産物に対して用いることができる。タンパク質をコードしない遺伝子産物の例は、リボソームRNA、転移RNA、核内低分子RNA、細胞質低分子RNA、テロメラーゼRNA、DNA複製、染色体再編成などに関与するRNA分子をコードする遺伝子産物を含む。
【0129】
別の好ましい態様において、異常細胞またはがん細胞が、siRNAによって標的化される。例えば、多くの悪性腫瘍は、外来DNA、例えばBcr−Abl、Bcl−2、HPVの存在を伴っており、これらは選択的な悪性細胞標的化を可能にするためのユニークな分子標的を提供する。このアプローチは、一塩基置換(例えばK−ras、p53)またはメチル化変化を標的化するのに用いることができる。しかしながら、がん細胞の増殖はまた、以前に発現されていない遺伝子産物に起因し得る。これらの遺伝子配列を標的化し、それによって、さらなる発現を阻害し、がん細胞に最終的な死をもたらすことができる。他の例において、トランスポゾンがかかる脱制御の原因となり得、そして、トランスポゾン配列、例えばTn5を標的化することができる。
【0130】
本発明によれば、siRNAオリゴヌクレオチドは、患者において、疾病状態を引き起こすか、これに参与するか、またはこれを悪化させる分子に特異的であるように設計される。例えば、ウイルス感染において、siRNAはウイルス複製、ウイルス感染サイクル、例えば、細胞リガンドへの接着の原因となる分子、宿主免疫制御機能をコードするウイルス遺伝子産物に対して標的化され得る。本発明において、ヒト疾患を引き起こす特に好ましいウイルス有機体は、(限定することなく)フィロウイルス、ヘルペスウイルス、肝炎ウイルス、レトロウイルス、オルソミクソウイルス、パラミクソウイルス、トガウイルス、ピコルナウイルス、パポーバウイルス、および胃腸炎ウイルスを含む。
【0131】
別の好ましい態様において、siRNAは疾患因子、例えば炭疽菌によって産生される毒素に標的化される。例えば、バイオテロ攻撃において用いられ得る剤の1つである炭疽菌である。炭疽菌感染は、Bacillus anthracisの芽胞によって媒介され、これは皮膚の裂傷を通して、吸入を通して、または摂食を通して体に侵入し得る。致死性の炭疽は、重篤な毒血症を伴う全身性菌血症の確立によって特徴づけられる。炭疽は、ショック、低灌流および多器官系不全の致死性の症候群に関与する菌血症および/または毒血症による二面攻撃であるようである。全身性疾患を発症する可能性は、有機体の侵入門戸によって変化し、吸入による経路が最も顕著である(Dixon et al., 1999, New England J. Med. 341: 815-826に総説がある)。siRNAオリゴヌクレオチドは感染した患者における細菌の増殖を阻害するmRNAに標的化されてもよく、また、毒素産生遺伝子産物を標的とし、それによって炭疽菌感染の毒作用を排除してもよい。あるいは、siRNAは有機体に存在し、かつ、宿主には欠けている任意の配列標的に標的化することができる。
【0132】
本発明は概して、疾患、例えばがん、および感染因子、例えば、ウイルス、細胞内および細胞外寄生体、挿入因子、真菌感染などに起因する疾患であって、通常発現されていない遺伝子による遺伝子産物の発現、通常発現している遺伝子の異常な発現または異常な遺伝子の発現をも引き起こし得る疾患を処置するための方法を提供し、これは、かかる処置が必要な患者に、疾患を引き起こしている実体に特異的なsiRNAオリゴヌクレオチド、または種々の改変siRNAの混合物、または種々の改変および非改変siRNAの混合物の有効量を投与することを含む。
【0133】
本発明によれば、siRNAオリゴヌクレオチド療法は、遺伝子由来の標的化されたmRNAと接触し(相互作用し)、それにより遺伝子の発現が制御され、発現が阻害されるsiRNAオリゴヌクレオチドの投与を含む。発現のかかる制御は、好適には、対照に対する少なくとも約10%または20%の違いであってもよく、より好ましくは対照に対する少なくとも約30%、40%、50%、60%、70%、80%または90%の発現の違いである。siRNAオリゴヌクレオチドとの相互作用または接触が、対照に対する発現の完全なまたは実質的に完全な調節、例えば、対照に対する少なくとも約95%、97%、98%、99%または100%の発現の阻害または増大をもたらすことが特に好ましい。かかる調節の決定のための対照試料は、siRNAオリゴヌクレオチドと接触していない相当する細胞(in vitroまたはin vivo)であってもよい。
【0134】
本発明の方法は、異常な細胞増殖および感染因子によって引き起こされる疾患に対する処置または予防、特に、対象の肺、心臓、肝臓、前立腺、脳、精巣、胃、腸、腸管、脊髄、副鼻腔(sinuses)、尿路または卵巣などの組織に生じ得る感染症の処置のために好ましく用いられる。本発明の方法はまた、全身性疾患、例えばウイルス血症または敗血症を処置するために用いることができる。本発明の方法はまた、ウイルス感染または細菌感染に関連する疾患治療および障害、ならびに感染因子に起因する他の任意の障害の処置にも好ましく用いられる。
【0135】
好ましくは、疾患因子は患者から単離され、診断ツール、例えば、ELISA、RIA、細胞選別、PCRなどを用いて特定される。しかしながら、疾患を引き起こす因子は、siRNAオリゴヌクレオチドが標的化され得る新規な因子であってもよい。その因子から得られるシーケンシングデータを、siRNAの構築に用いることができる。因子の部分的なシーケンシングは、当該技術分野において知られている任意の手段によって達成することができる。本発明をいかようにも制限または解釈することを意図しない説明例として、以下のものが提供される。siRNAは、選択された配列と相補的となるよう設計される。
【0136】
本発明の1つの好ましい態様によると、siRNAにおける核酸塩基は、標的mRNAへのより高い特異性および親和性をもたらすために修飾されていてもよい。例えば、核酸塩基はLNAモノマーで置換されてもよく、これは、隣接する範囲(in contiguous stretches)または異なる位置にあってもよい。修飾siRNAは、好ましくは標的配列に対して、相補配列より高い会合定数(ka)を有する。修飾または非修飾siRNAの標的配列への結合は、ハイブリダイゼーションアッセイを用い、下記の例に記載したとおりに、in vitroにて種々の緊縮条件下で決定することができる。
【0137】
その潜在的治療用途の多くの基礎をなすオリゴヌクレオチドの基本的な特性は、ワトソン−クリック水素結合(A−TおよびG−C)または他の水素結合スキーム、例えば、フーグスティーン/逆フーグスティーンモードなどを用いて、相補一本鎖核酸を認識し、これと特異的にハイブリダイズするその能力である。親和性および特異性は、特定のオリゴヌクレオチドのハイブリダイゼーション特性を特徴づけるために一般に用いられる特性である。親和性は、その相補的な標的へのオリゴヌクレオチドの結合強度の指標である(二重鎖の熱安定性(Tm)として表される)。二重鎖中の各々の核酸塩基ペアは熱安定性を高め、そうして、親和性はオリゴヌクレオチドのサイズ(核酸塩基の数)が増大することにより増加する。特異性は、完全に相補的な標的配列と、ミスマッチな標的配列とを区別するオリゴヌクレオチドの能力の指標である。換言すると、特異性は標的におけるミスマッチ核酸塩基ペアと関連する親和性の損失の指標である。
【0138】
mRNAの制御(阻害を含む)のためのsiRNAオリゴヌクレオチドの有用性は、単純な試験で容易に決定することができる。したがって、標的となるmRNA、その突然変異または断片を含むin vitroまたはin vivoの発現系に、特定のsiRNAオリゴヌクレオチド(修飾または非修飾)を接触させ、発現のレベルを対照と、すなわち、siRNAオリゴヌクレオチドを接触させていない同一の発現系を用いて比較することができる。
【0139】
siRNAオリゴヌクレオチドは、組合せで用いてもよい。例えば、同じ遺伝子の異なる領域に向けられた、修飾されたおよび/または修飾されてない複数の異なるsiRNAオリゴヌクレオチドの混合物を、同時にまたは別々に投与することができる。
【0140】
本発明の実践において、標的遺伝子産物は、一本鎖または二本鎖のDNAまたはRNAであってもよい。短いdsRNAは、これが特定の遺伝子の転写のための開始部位と同じ配列であるならば、転写を阻止するのに用いることができる。例えば、Janowski et al. Nature Chemical Biology, 2005, 10:1038を参照。本発明のsiRNAオリゴヌクレオチドが指向する標的は、標的となる遺伝子の対立遺伝子型、およびスプライス変異体を含む対応するmRNAを含むことが理解される。標的ポリヌクレオチドの配列についての知識を所与として、siRNAオリゴヌクレオチドのために特定の配列を選択するための多くのガイダンスが文献に存在する。好ましいmRNA標的は、5’キャップ部位、tRNAプライマー結合部、開始コドン部位、mRNAドナースプライス部位およびmRNAアクセプタースプライス部位を含む。
【0141】
標的ポリヌクレオチドがmRNA転写物を含む場合、配列相補的なオリゴヌクレオチドは転写物の任意の所望の部分にハイブリダイズすることができる。かかるオリゴヌクレオチドは、原則として、翻訳を阻害するために効果的であり、本明細書に記載される効果を誘導することができる。翻訳は、mRNAにより開始コドンまたはその近傍の部位で最も効果的に阻害されると仮説立てられている。したがって、mRNA転写物の5’領域と相補的なオリゴヌクレオチドが好ましい。開始コドン(転写物の翻訳された部分の5’末端の最初のコドン)または開始コドンに隣接したコドンを含む、mRNAと相補的なオリゴヌクレオチドが好ましい。
【0142】
キメラ/修飾siRNA
この発明に従って、当業者は、mRNAが、翻訳開始およびストップコドンを含む3文字の遺伝コードを用いてタンパク質をコードするための情報を有するコード領域だけでなく、当業者に5’非翻訳領域、3’非翻訳領域、5’キャップ領域、イントロン領域およびイントロン/エクソンまたはスプライス部位リボヌクレオチドなどとして知られている領域を形成する、関連するリボヌクレオチドを含むことを理解する。したがって、本発明により、これらの関連するリボヌクレオチドならびにコードリボヌクレオチドに完全にまたは部分的に標的化されたオリゴヌクレオチドを作製することができる。好ましい態様において、オリゴヌクレオチドは、翻訳開始部位(AUGコドン)またはmRNAのコード領域、5’非翻訳領域もしくは3非翻訳領域における配列に標的化される。干渉されるmRNAの機能は、全ての生命機能、例えばRNAのタンパク質翻訳のための部位への移行、RNAからのタンパク質の実際の翻訳、RNAのスプライシングまたは成熟、および場合によりRNAが関与し得る独立した触媒活性さえも含む。RNA機能に対するかかる干渉の全体的な影響は、タンパク質発現に対する干渉を引き起こすことである。
【0143】
この発明の特定の好ましいオリゴヌクレオチドは、キメラオリゴヌクレオチドである。「キメラオリゴヌクレオチド」または「キメラ」は、この発明の文脈では、各々が少なくとも1つのヌクレオチドで構成される2または3以上の化学的に異なった領域を含むオリゴヌクレオチドである。これらのオリゴヌクレオチドは、典型的には、1または2以上の有益な特性(例えば、例えば、高まったヌクレアーゼ抵抗性、高まった細胞への取り込み、RNA標的に対する高まった結合親和性)を与える修飾ヌクレオチドの少なくとも1つの領域と、RNA:DNAまたはRNA:RNAハイブリッドを切断することができる酵素のための基質となる領域とを含む。例として、RNase HはRNA:DNA二重鎖のRNA鎖を切断する細胞エンドヌクレアーゼである。RNase Hの活性化は、したがって、RNA標的の切断をもたらし、それによって遺伝子発現のアンチセンス阻害の効率を大いに強化する。したがって、キメラオリゴヌクレオチドを用いる場合、同じ標的領域にハイブリダイズするホスホロチオエートデオキシオリゴヌクレオチドと比較して、同程度の結果が、より短いオリゴヌクレオチドでしばしば得られる。RNA標的の切断は、ゲル電気泳動により、そして必要に応じて、当該技術分野において知られている関連する核酸ハイブリダイゼーション技術により、通常どおり検出することができる。1つの好ましい態様において、キメラオリゴヌクレオチドは、標的結合親和性を高めるために修飾された少なくとも1つの領域および、通常、RNAse Hのために基質として作用する領域を含む。その標的(この場合、rasをコードしている核酸)に対するオリゴヌクレオチドの親和性は、オリゴヌクレオチド/標的ペアのTmを測定することによって通常どおり決定される。オリゴヌクレオチド/標的ペアのTmは、オリゴヌクレオチドおよび標的が解離する温度であり、解離は、分光測光法で検出する。Tmが高いほど、標的に対するオリゴヌクレオチドの親和性は高い。より好ましい態様において、修飾されるオリゴヌクレオチドの領域は、糖の2’位が修飾された少なくとも1つのヌクレオチド、最も好ましくは2’−O−アルキル、2’−O−アルキル−O−アルキルまたは2’−フルオロ修飾ヌクレオチドを含む。他の好ましい態様において、RNA修飾は、ピリミジンのリボースにおける2’−フルオロ、2’−アミノおよび2’O−メチル修飾、脱塩基残基またはRNAの3’末端における逆転した塩基(inverted base)を含む。かかる修飾は、通常どおりオリゴヌクレオチドに組み込まれ、これらのオリゴヌクレオチドは、所定の標的に対して、2’−デオキシオリゴヌクレオチドよりも高いTm(すなわちより高い標的結合親和性)を有することが示されている。かかる高まった親和性の影響は、遺伝子発現のRNAiオリゴヌクレオチドによる阻害を大いに強化することである。RNase HはRNA:DNA二重鎖のRNA鎖を切断する細胞エンドヌクレアーゼであり、この酵素の活性化は、したがって、RNA標的の切断をもたらし、そうしてRNAi阻害の効率を大いに強化する。RNA標的の切断は、ゲル電気泳動によって通常どおり示すことができる。別の好ましい態様において、キメラオリゴヌクレオチドはまた、ヌクレアーゼ抵抗性を強化するために修飾される。細胞は、核酸を分解することができる種々のエキソヌクレアーゼおよびエンドヌクレアーゼを含んでいる。複数のヌクレオチドおよびヌクレオシド修飾が、これらが組み込まれるオリゴデオキシヌクレオチドを、ネイティブなオリゴヌクレオチドよりもヌクレアーゼ分解に対してより抵抗性にすることが示されている。ヌクレアーゼ抵抗性は、オリゴヌクレオチドを細胞抽出物または単離されたヌクレアーゼ液とともにインキュベートし、経時的に残存する無傷のオリゴヌクレオチドの程度を、通常はゲル電気泳動により測定することによって日常的に測定される。そのヌクレアーゼ抵抗性を強化するために修飾されたオリゴヌクレオチドは、修飾されていないオリゴヌクレオチドよりも長時間無傷で存続する。種々のオリゴヌクレオチド修飾が、ヌクレアーゼ抵抗性を強化または付与することは示されている。少なくとも1つのホスホロチオエート修飾を含むオリゴヌクレオチドは、現在、より好ましい。場合によっては、標的結合親和性を高めるオリゴヌクレオチド修飾はまた、独立して、ヌクレアーゼ抵抗性を強化することができる。複数の好ましい修飾は、De Mesmaeker et al. Acc. Chem. Res. 1995, 28:366-374で見出すことができる。
【0144】
この発明のために想定された複数の好ましいオリゴヌクレオチドの特定の例は、修飾骨格、例えば、ホスホロチオエート、ホスホトリエステル、メチルホスホネート、短鎖アルキルまたはシクロアルキル糖間連結または短鎖ヘテロ原子または複素環式糖間連結を含むものを含む。最も好ましいのは、ホスホロチオエート骨格を有するオリゴヌクレオチド、およびヘテロ原子骨格、特にCH
2−NH−O−CH
2、CH
2−N(CH
3)−O−CH
2[メチレン(メチルイミノ)またはMMI骨格として知られる]、(CH
2)−O−N(CH
3)−CH
2、CH
2−N(CH
3)−N(CH
3)−CH
2およびO−N(CH
3)−CH
2−CH
2骨格(ここで、ネイティブのホスホジエステル骨格はO−P−O−CHとして表される)を有するオリゴヌクレオチドである。De Mesmaeker et al. Acc. Chem. Res. 1995, 28:366-374に開示されているアミド骨格も好ましい。また好ましいのは、モルホリノ骨格構造を有するオリゴヌクレオチド(Summerton and Weller、米国特許第5,034,506号)である。他の好ましい態様、例えばペプチド核酸(PNA)骨格では、オリゴヌクレオチドのリン酸ジエステル骨格はポリアミド骨格と入れ替えられ、核酸塩基は直接または間接的に、ポリアミド骨格のアザ窒素原子に結合している(Nielsen et al. Science 1991, 254, 1497)。オリゴヌクレオチドはまた、1または2以上の置換糖残基を含んでもよい。好ましいオリゴヌクレオチドは、2’位に以下のうちの1つを含む:OH、SH、SCH3、F、OCN、OCH
3OCH
3、OCH
3O(CH
2)
nCH
3、O(CH
2)
nNH
2またはO(CH
2)
nCH
3(ここで、nは1〜約10である)、C
1〜C
10低級アルキル、アルコキシアルコキシ、置換下級アルキル、アルカリルまたはアラルキル、Cl、Br、CN、CF
3、OCF
3、O−、S−またはN−アルキル、O−、S−または、N−アルケニル、SOCH
3、SO
2CH
3、ONO
2、NO
2、N
3、NH
2、ヘテロシクロアルキル、ヘテロシクロアルカリル、アミノアルキルアミノ、ポリアルキルアミノ、置換シリル、RNA切断基(RNA cleaving group)、レポーター基、インターカレーター、オリゴヌクレオチドの薬物動態学的特性を改善するための基、または、オリゴヌクレオチドの薬力学的性質を改善するための基、および類似した特性を有する他の置換基。好ましい修飾は、2’−メトキシエトキシ[2’−O−CH
2CH
2OCH
3、別名2’−O(2−メトキシエチル)]を含む(Martin et al., Helv. Chim. Acta, 1995, 78, 486)。他の好ましい修飾は、2’−メトキシ(2’−O−CH
3)、2’−プロポキシ(2’−OCH
2CH
2CH
3)および2’−フルオロ(2’−F)を含む。類似した修飾はまた、オリゴヌクレオチドの他の位置、特に3’末端ヌクレオチド上の糖の3’位、および5’末端ヌクレオチドの5’位で行ってもよい。オリゴヌクレオチドはまた、ペントフラノシル基の代わりにシクロブチルなどの糖模倣体を有してもよい。
【0145】
オリゴヌクレオチドはまた、付加的または代替的に、核酸塩基(当該技術分野においてはしばしば単純に「塩基」と呼ばれる)の修飾または置換を含んでもよい。本明細書で用いる場合、「非修飾」または、「天然」核酸塩基は、アデニン(A)、グアニン(G)、チミン(T)、シトシン(C)およびウラシル(U)を含む。修飾核酸塩基は、天然核酸にまれにまたは一過性にのみ見出される核酸塩基、例えば、ヒポキサンチン、6−メチルアデニン、5−Meピリミジン、特に5−メチルシトシン(5−メチル−2’デオキシシトシンとも呼ばれ、当該技術分野ではしばしば5−Me−Cと呼ばれる)、5−ヒドロキシメチルシトシン(HMC)、グリコシルHMCおよびゲンチオビオシルHMC、ならびに、合成核酸塩基、例えば2−アミノアデニ
ン、2−(メチルアミノ)アデニン、2−(イミダゾリルアルキル)アデニン、2−(アミノアルキルアミノ)アデニンまたは他のヘテロ置換アルキルアデニン、2−チオウラシル、2−チオチミン、5−ブロモウラシル、5−ヒドロキシメチルウラシル、8−アザグアニン、7−デアザグアニン、N
6(6−アミノヘキシル)アデニンおよび2,6−ジアミノプリン)を含む。(Kornberg, A., DNA Replication, W. H. Freeman & Co., San Francisco, 1980, pp75-77; Gebeyehu, G., et al. Nucl. Acids Res. 1987, 15:4513)。当該技術分野で知られている「ユニバーサル」塩基、例えばイノシンも含まれ得る。5−Me−C置換は核酸二重鎖の安定性を0.6〜1.2℃高めることが示されており(Sanghvi, Y. S., in Crooke, S. T. and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278)、現時点で好ましい塩基置換である。
【0146】
本発明のオリゴヌクレオチドの別の修飾は、オリゴヌクレオチドの活性または細胞取り込みを強化する1または2以上の部分またはコンジュゲートを、オリゴヌクレオチドに化学的に連結することを含む。かかる部分は、限定することなく、脂質部分、例えばコレステロール部分、コレステリル部分(Letsinger et al., Proc. Natl. Acad. Sci. USA 1989, 86, 6553)、コール酸(Manoharan et al. Bioorg. Med. Chem. Let. 1994, 4, 1053)、チオエーテル、例えばヘキシル−S−トリチルチオール(Manoharan et al. Ann. N.Y. Acad. Sci. 1992, 660, 306、Manoharan et al. Bioorg. Med. Chem. Let. 1993, 3, 2765)、チオコレステロール(Oberhauser et al., Nucl. Acids Res. 1992, 20, 533)、脂肪族鎖、例えばドデカンジオールまたはウンデシル残基(Saison-Behmoaras et al. EMBO J. 1991, 10, 111、Kabanov et al. FEBS Lett. 1990, 259, 327、Svinarchuk et al. Biochimie 1993, 75, 49)、リン脂質、例えば、ジ−ヘキサデシル−rac−グリセロールまたはトリエチルアンモニウム1,2−ジ−O−ヘキサデシル−rac−グリセロ−3−H−ホスホネート(Manoharan et al. Tetrahedron Lett. 1995, 36, 3651、Shea et al. Nucl. Acids Res. 1990, 18, 3777)、ポリアミンまたはポリエチレングリコール鎖(Manoharan et al. Nucleosides & Nucleotides 1995, 14, 969)、または、アダマンタン酢酸(Manoharan et al. Tetrahedron Lett. 1995, 36, 3651)を含む。親油性部分を含むオリゴヌクレオチドおよびかかるオリゴヌクレオチドを調製する方法は、当該技術分野で知られている(例えば米国特許第5,138,045号、第5,218,105号および第5,459,255号)。
【0147】
所定のオリゴヌクレオチドにおいて、全ての位置が一様に修飾されることは必要ではなく、実際、前記の修飾のうちの2つ以上が単一のオリゴヌクレオチド、さらには、オリゴヌクレオチド内の単一のヌクレオシド内に組み込むことができる。本発明はまた、上記に定義したとおりのキメラオリゴヌクレオチドであるオリゴヌクレオチドを含む。
【0148】
別の態様において、本発明の核酸分子は、限定されることなく、脱塩基ヌクレオチド、ポリエーテル、ポリアミン、ポリアミド、ペプチド、炭水化物、脂質またはポリ炭化水素化合物を含む、別の部分と結合していてもよい。当業者は、これらの分子が糖、塩基またはリン酸基の複数の位置で、核酸分子を含む任意のヌクレオチドの1または2以上に連結され得ることを認識する。
【0149】
この発明に用いるオリゴヌクレオチドは、固相合成のよく知られた技法によって、都合よく日常的に作製することができる。かかる合成のための装置は、アプライド・バイオシステムズを含む複数のベンダーによって販売されている。かかる合成のための他の任意の手段もまた用いることができ、オリゴヌクレオチドの実際の合成は、十分当業者の能力の範囲内である。他のオリゴヌクレオチド、例えばホスホロチオエートおよびアルキル化された誘導体を調製するために同様の技法を用いることもよく知られている。同様の技法と、市販の修飾アミダイトおよびコントロールドポアガラス(CPG)製品、例えば、ビオチン、フルオレセイン、アクリジンまたはソラレン修飾アミダイトおよび/またはCPG(Glen Research, Sterling VAから入手可能)とを用いて、蛍光標識された、ビオチン化された、または、他の修飾オリゴヌクレオチド、例えば、コレステロール修飾オリゴヌクレオチドを合成することもよく知られている。
【0150】
本発明によれば、オリゴヌクレオチドの効力、特異性および作用の持続性を強化するため、およびその投与経路を拡大するための修飾の利用、例えば、LNAモノマーの利用は、最近の化学的手法、例えば、MOE、ANA、FANA、PS等を含む(Uhlman, Current Opinions in Drug Discovery & Development 2000 Vol 3 No 2参照)。これは、現在のオリゴヌクレオチドにおけるモノマーの一部をLNAモノマーで置換することによって達成さすることができる。LNA修飾オリゴヌクレオチドは、親化合物と同様のサイズを有してもよく、またはより大きくてもよく、または好ましくはより小さい。かかるLNA修飾オリゴヌクレオチドが約70%未満、より好ましくは約60%未満、最も好ましくは約50%のLNAモノマーを含み、そのサイズが約10〜25ヌクレオチド、より好ましくは約12〜20ヌクレオチドであることが好ましい。
【0151】
がん治療
別の好ましい態様において、siRNAオリゴヌクレオチドは、がんを発症しやすい患者または癌に罹患した患者の処置に用いられる。がん細胞で過剰発現される遺伝子産物を同定し、siRNAオリゴヌクレオチドが正常細胞に対して選択的にがん細胞を標的とすることができる。例えば、発現配列タグ(EST)を用いて、がん細胞で過剰発現される核酸分子を同定することができる[発現配列タグ(EST)シーケンシング(Celis, et al., FEBS Lett., 2000, 480, 2-16; Larsson, et al., J. Biotechnology., 2000, 80, 143-57]。種々のデータベースからのESTを同定することができる。例えば、好ましいデータベースは、例えば、Online Mendelian Inheritance in Man(OMIM)、Cancer Genome Anatomy Project(CGAP)、GenBank、EMBL、PIR、SWISS−PROTなどを含む。疾患に関連した遺伝子変異のデータベースであるOMIMは、1つには、National Center for Biotechnology Information(NCBI)のために開発された。OMIMはインターネットのワールドワイドウェブを介して、例えばncbi.nlm.nih.gov/Omim/にてアクセスすることができる。CGAPは、がん細胞の分子解剖を解明するのに必要な情報および技術的ツールを確立するための学際的なプログラムである。CGAPはインターネットのワールドワイドウェブを介して、例えばncbi.nlm.nih.gov/ncicgap/でアクセスすることができる。これらのデータベースのいくつかは、完全なまたは部分的なヌクレオチド配列を含み得る。加えて、選択的転写形態(alternative transcript form)を、私的遺伝子データベースから選択することもできる。あるいは、核酸分子は利用可能な出版物から選択することができ、または、本発明に関連して用いるために、特別に決定することができる。
【0152】
選択的転写形態は、データベースの各々にある個々のESTから、コンティグ配列を生成するコンピュータソフトウェアにより生成することができる。本発明の別の態様において、標的核酸分子のヌクレオチド配列は、複数のオーバーラップESTを組み合わせることによって決定される。当業者に知られ、当業者が利用可能なESTデータベース(dbEST)は、約500〜1000ヌクレオチドで構成される約100万の異なるヒトmRNA配列、および複数の異なる有機体からの種々の数のESTを含む。dbESTはインターネットのワールドワイドウェブを介して、例えばncbi.nlm.nih.gov/dbEST/index.htmlでアクセスすることができる。これらの配列は、ゲノムシーケンシングのためにcDNA発現クローンを用いるクローンニング戦略に由来する。ESTは、新しい遺伝子産物の探索、ゲノムのマッピングおよびゲノム配列におけるコード領域の同定に用いられる。急速に利用できるようになったEST配列情報の別の重要な特徴は、組織特異的遺伝子発現データである。これは、治療的介入のための1または複数の選択的な遺伝子からmRNAを標的化するのに極めて有用となり得る。EST配列は比較的短いため、完全な配列を提供するためには、これらを組み合わせなければならない。それぞれの利用可能なクローンはシーケンシングされているため、それはデータベースに登録された複数のオーバーラップ領域をもたらす。最終的な結果は、例えば、正常細胞およびがん細胞からの選択的転写形態の導出である。
【0153】
5’および3’の両方向に沿って広がったオーバーラップESTの組み合わせは、全長「仮想転写物」をもたらす。得られる仮想転写物は、すでに特徴づけられた核酸を表すこともあり、または、既知の生物学的機能を有しない新規な核酸であることもある。当業者に知られ、当業者が利用可能なThe Institute for Genomic Research(TIGR)Human Genome Index(HGI)データベースは、ヒト転写物のリストを含む。TIGRはインターネットのワールドワイドウェブを介して、例えばtigr.orgでアクセスすることができる。転写物は、仮想転写物を構築するエンジンであり、当業者に知られ、当業者が利用可能なTIGR-Assemblerを用いてこのようにして生成することができる。TIGR-Assemblerは、オーバーラップ配列データの大きなセット、例えば、EST、BACまたは小ゲノムなどを組み合わせるためのツールであり、真核生物または原核生物の配列を組み合わせるのに用いることができる。TIGR-Assemblerは、例えば、参照によって本明細書に組み込まれ、インターネットのファイル転送プログラムを介して、例えば、tigr.org/pub/software/TIGR. assemblerでアクセスできるSutton, et al., Genome Science & Tech., 1995, 1, 9-19に記載されている。また、当業者に知られ、当業者が利用可能なGLAXO−MRCは、仮想転写物を構築ための別のプロトコルである。ESTの同定および全長RNA分子を形成するためのコンティグESTの生成は、参照によって本明細書に組み込まれる米国特許出願番号第09/076440号に詳述されている。
【0154】
正常細胞と比較してがん細胞によって過剰発現される遺伝子産物、例えば、正常組織と比較して膵臓がんで少なくとも5倍多く発現される遺伝子産物を同定することができる。遺伝子発現は、遺伝子セグメントに対応する転写物の部分的な、確定した配列の同定および特性化に基づく、Serial Analysis of Gene Expression(SAGE)によって分析することができる[SAGE(遺伝子発現の連続分析)(Madden, et al., Drug Discov. Today, 2000, 5, 415-425)]。これらの確定した転写物配列「タグ」は、例えば、細胞、組織または抽出物で発現される遺伝子産物のマーカーである。
【0155】
標的核酸配列の同定
好ましい態様において、発明の組成物は、所望の核酸配列を標的とする。標的核酸配列は、種々の方法、例えばSAGEなどによって同定することができる。SAGEは、複数の原理に基づく。第1に、短いヌクレオチド配列タグ(9〜10b.p.)は、それが転写物内の確定した位置から単離されるならば、転写物をユニークに特定するのに足りる十分な情報内容を含む。例えば、9b.p.の短い配列は、タグ部位でのランダムなヌクレオチド分布を所与とすれば、262,144の転写物を識別することができる一方、ヒトゲノムが推定で約80,000〜200,000の転写物をコードすることが示唆されている(Fields, et al., Nature Genetics, 7:345 1994)。タグのサイズは、例えば、ゲノムによってコードされる転写物の数がより少ない下等真核生物または原核生物についてはより短くてもよい。例えば、6〜7b.p.の短いタグは、酵母において転写物を識別するのに十分であろう。
【0156】
第2に、タグのランダムな二量体化により、バイアス(増幅および/またはクローニングに起因する)を減少させる手順が可能となる。第3に、これらの短い配列タグの連結は、単一のベクターまたはクローン内で複数のタグをシーケンシングすることにより、転写物連続的かつ効率的な分析を可能にする。情報がデータの継続列として送られるコンピュータでのシリアル通信と同様に、配列タグの連続分析は、各々のタグのレジスタおよび境界を確立する手段を要する。本発明による、配列から確定したタグを得る概念は、試料のタグを配列データベースにマッチングさせるのに有用である。好ましい態様において、コンピュータ手法が、試料配列を既知の配列にマッチングさせるのに用いられる。
【0157】
ここで用いられるタグは、遺伝子産物をユニークに同定する。これは、その長さ、およびそれが引き出される遺伝子におけるその特定の位置(3’)によるものである。全長遺伝子産物は、タグを遺伝子データベースの構成要素とマッチングさせることによって、または、タグ配列をプローブとして用い、これまで未確認であった遺伝子産物をcDNAライブラリーから物理的に単離することによって同定することができる。DNAプローブを用いて遺伝子産物をライブラリーから単離する方法は、当該技術分野でよく知られている。例えば、Veculescu et al., Science 270: 484 (1995)およびSambrook et al. (1989), MOLECULAR CLONING: A LABORATORY MANUAL, 2nd ed. (Cold Spring Harbor Press, Cold Spring Harbor, N.Y.)を参照。データベースエントリーとのマッチングにより、または、cDNA分子に物理的にハイブリダイズすることにより、一度遺伝子または転写物が同定されると、転写物におけるハイブリダイズ領域またはマッチング領域の位置を決定することができる。タグ配列が、SAGEタグを生成するのに用いた制限酵素に直接隣接した3’末端にないときは、誤ったマッチングがなされた可能性がある。SAGEタグの同一性の確認は、タグの転写レベルを、特定の細胞種における同定された遺伝子のそれと比較することによって行うことができる。
【0158】
遺伝子発現の分析は、上記の方法に限定されず、当該技術分野において知られている任意の方法を含み得る。これらの原理の全ては、独立して、組み合わせて、または、配列同定の他の既知の方法と組み合わせて適用することができる。
【0159】
当該技術分野において知られている遺伝子発現分析の方法の例は、DNAアレイまたはマイクロアレイ(Brazma and Vilo, FEBS Lett., 2000, 480, 17-24; Celis, et al., FEBS Lett., 2000, 480, 2-16)、READS(消化cDNAの制限酵素増幅(restriction enzyme amplification of digested cDNAs))(Prashar and Weissman, Methods Enzymol., 1999, 303, 258-72)、TOGA(全遺伝子発現分析(total gene expression analysis)(Sutcliffe, et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 1976-81)、タンパクアレイおよびプロテオミクス(Celis, et al., FEBS Lett., 2000, 480, 2-16、Jungblut, et al., Electrophoresis, 1999, 20, 2100-10)、サブトラクティブRNAフィンガープリント法(SuRF)(Fuchs, et al., Anal. Biochem., 2000, 286, 91-98、Larson, et al., Cytometry, 2000, 41, 203-208)、サブトラクティブクローニング、ディファレンシャルディスプレイ(DD)(Jurecic and Belmont, Curr. Opin. Microbiol., 2000, 3, 316-21)、比較ゲノムハイブリダイゼーション(Carulli, et al., J. Cell Biochem. Suppl., 1998, 31, 286-96)、FISH(蛍光in situハイブリダイゼーション)技法(Going and Gusterson, Eur. J. Cancer, 1999, 35, 1895-904)、および、質量分析法(Comb. Chem. High Throughput Screen, 2000, 3, 235-41にレビューされている)を含む。
【0160】
さらに別の側面では、標的遺伝子発現産物の変異体に選択的に結合するsiRNAオリゴヌクレオチドは、がんの処置に有用である。例えば、p53変異体は、種々の腫瘍でよく知られている。「変異体」は、遺伝子の代替的な形態である。変異体は核酸配列における少なくとも1つの変異から生じ得、変化したmRNA、または、構造または機能が変化していても、変化していなくてもよいポリペチドをもたらし得る。任意の所定の天然または組換え遺伝子は、対立遺伝子型を有しないか、1または多数の対立遺伝子型を有し得る。変異体を生じさせる、よく見られる変異による変化は、一般的に、ヌクレオチドの天然の欠失、付加または置換によるものである。これらのタイプの変化の各々は、単独で、または、他の変化と組み合わさって、所定の配列において1または2ヶ所以上生じ得る。
【0161】
配列類似性検索は手動で、または、当業者に知られた複数の利用可能なコンピュータプログラムを用いて行うことができる。好ましくは、当業者に知られ、当業者が利用可能なBlastおよびスミス−ウォーターマンアルゴリズムなどを用いることができる。Blastは、ヌクレオチドおよびタンパク質配列データベースの分析を支援するために設計されたNCBIの配列類似性検索ツールである。Blastは、インターネットのワールドワイドウェブを介して、例えば、ncbi.nlm.nih.gov/BLAST/にてアクセスすることができる。GCG Packageは、パブリックドメインデータベースで、または、任意のローカルで利用できる検索可能なデータベースとともに用いることができるBlastのローカルバージョンを提供する。GCG Package v9.0は、配列を編集、マッピング、比較およびアラインメントすることによりその分析を可能にする100以上の相互に関連するソフトウェアプログラムを含む市販のソフトウェアパッケージである。GCG Packageに含まれる他のプログラムは、例えば、RNA二次構造予測、核酸フラグメントアセンブリおよび進化解析を容易にするプログラムを含む。そのうえ、最も著名な遺伝子データベース(GenBank、EMBL、PIRおよびSWISS-PROT)は、GCG Packageとともに配布され、データベース検索および操作プログラムにより完全にアクセスできる。GCGは、インターネットを介して、例えば、http://www.gcg.com/にてアクセスすることができる。FetchはGCGで利用できるツールであり、アクセッション番号に基づいて注釈付のGenBankレコードを獲得でき、Entrezと類似している。別の配列類似性検索は、PangeaからのGeneWorldおよびGeneThesaurusで行うことができる。GeneWorld 2.5は、ポリヌクレオチドおよびタンパク質配列の分析のための自動化された、柔軟な、高スループットアプリケーションである。GeneWorldは、配列の自動分析および注釈付を可能にする。GCGのように、GeneWorldには、相同性検索、遺伝子探索、多重配列アラインメント、二次構造予測およびモチーフ同定のための複数のツールが組み込まれている。GeneThesaurus 1.0(TM)は、複数のソースから情報を提供し、公的データおよびローカルデータについての関係データモデルを提供する、配列および注釈データ申込サービスである。
【0162】
別の代替的な配列類似性検索は、例えば、BlastParseによって行うことができる。BlastParseは、上述の方策を自動化するUNIX(登録商標)プラットフォーム上で動作するPERLスクリプトである。BlastParseは対象となる標的アクセッション番号のリストを取得し、全てのGenBankフィールドを解析して「タブ区切り」テキストにする。これは、その後より簡便な検索および分析のために「リレーショナルデータベース」フォーマットで保存することができ、柔軟性を提供する。最終結果は、簡単にソート、フィルタリングおよび問い合せを行うことができる一連の完全に解析されたGenBankレコード、ならびに注釈−リレーショナルデータベースである。
【0163】
本発明により、適切なsiRNAオリゴヌクレオチドを設計するためにパラログを同定することができる。パラログは、種内の遺伝子であって、遺伝子重複のために生じるが、新たな機能を発展させたものであり、アイソタイプとも称される。
【0164】
この発明のポリヌクレオチドは、実験項に記載した技法を用いて単離し、または、PCRを用いて複製することができる。PCR技術は、米国特許第4,683,195号、第4,800,159号、第4,754,065号および第4,683,202号の対象であり、PCR:The Polymerase Chain Reaction(Mullis et al. eds, Birkhauser Press, Boston (1994))およびその中の引用文献に記載されている。あるいは、当業者は、同定された配列および市販のDNA合成装置を用いてDNAを複製することができる。したがって、本発明はまた、本発明のポリヌクレオチドを得るための方法であって、そのポリヌクレオチドの線形配列、その複製のためのヌクレオチド、適切なプライマー分子、酵素などの化学物質および指示を提供し、ヌクレオチドを適切な方向に化学的に複製または連結してポリヌクレオチドを得ることによる方法を提供する。別の態様において、これらのポリヌクレオチドはさらに単離される。またさらに、当業者は、複製および増幅のために、ポリヌクレオチドを適切な複製ベクターに挿入し、そのベクターを適切な宿主細胞(原核細胞または真核細胞)に挿入することができる。このようにして増幅したDNAは、当業者によく知られた方法によって、細胞から単離することができる。ここで、この方法によってポリヌクレオチドを得る方法、ならびにそうして得られるポリヌクレオチドがさらに提供される。
【0165】
疾患治療
別の好ましい態様において、siRNAは、免疫細胞が疾患に関与する疾患、例えば自己免疫性疾患、アレルゲンに対する過敏症、臓器拒絶、炎症などの処置に用いることができる。炎症の例は、例えば以下の状態に関連するものである:敗血症または外傷に続発する成人呼吸窮迫症候群(ARDS)または多臓器損傷症候群、心筋または他の組織の再灌流障害、急性糸球体腎炎、反応性関節炎、急性炎症成分による皮膚病、急性化膿性髄膜炎または他の中枢神経系炎症性疾患、熱傷、血液透析、白血球アフェレーシス、潰瘍性大腸炎、クローン病、壊死性腸炎、顆粒球輸血関連症候群、および、サイトカイン誘発毒性。自己免疫性疾患の例は、限定することなく、乾癬、I型糖尿病、レイノー症候群、自己免疫性甲状腺炎、EAE、多発性硬化症、慢性関節リウマチおよび紅班性狼瘡を含む。
【0166】
本発明の方法は、免疫に関連した分子発現を制御する1または2以上の遺伝子の機能的発現を阻害するsiRNAポリヌクレオチドをスクリーニングするのに用いることができる。例えば、CD−18ファミリーの分子は、細胞接着において重要である。接着の過程により、リンパ球は常に動物を外来抗原の存在についてモニタリングすることができる。これらの過程は通常は望ましいが、これらはまた、移植臓器拒絶反応、移植組織拒絶反応および多くの自己免疫性疾患の原因である。それゆえに、細胞接着を低減または阻害することができるsiRNAは、臓器移植(例えば腎臓移植)、組織移植のレシピエントにおいて、または、自己免疫患者のために極めて望ましい。
【0167】
別の好ましい態様において、siRNAオリゴヌクレオチドは、臓器移植または組織移植に関与するMHC分子の発現を阻害する。例えば、ドナーのクラスIおよびクラスII分子である。siRNAはこれらの分子の発現を阻害し、それによって同種移植反応を改善する。免疫細胞は、臓器または組織移植より前に処理してもよく、移植時および/またはその後の任意の時点、主治医により決定されうる時点で投与してもよい。siRNAは、免疫抑制剤療法を伴ってまたは伴わずに投与することができる。
【0168】
別の好ましい態様において、siRNAは抗原に対して過敏反応性である個体、例えばアレルギー個体の処置に用いられる。siRNAは、アレルゲンに特異的なIgE分子を産生することが知られているV領域遺伝子を標的とするように設計される。IgE抗体特異性は、日常的な免疫診断技法、例えば、ELISA、RIA、PCR、ウエスタンブロットなどで決定することができる。IgE分子のアミノ酸配列から、以下に記載されるデータベース技法のいずれかを用いて核酸配列を推定することができる。siRNAはV領域遺伝子、または、再構成されたおよび再編成されていない免疫グロブリン核酸配列を含む、所望の抗体をコードする遺伝子の他の任意の部分と結合するように設計される。
【0169】
別の好ましい態様において、siRNAは、正常個体で抑制されていない遺伝子の発現を抑制する抑制分子を標的とするように設計される。例えば、細胞周期依存性遺伝子を阻害する抑制分子、p53 mRNAの阻害、細胞表面分子をコードする遺伝子によって転写されたmRNAの阻害、アポトーシスなどに関係するカスパーゼの阻害などである。
【0170】
アポトーシスは、複数の理由で臨床的に重要である。腫瘍学の分野では、臨床的に有用な薬物の多くは、アポトーシスを誘発することによって、腫瘍細胞を殺す。例えば、シスプラチン、エトポシドおよびタキソールなどのがん化学療法剤はすべて、標的細胞にアポトーシスを誘発する。加えて、種々の病理学的疾病状態は、細胞が、適切に制御されたアポトーシスに失敗することから生じ得る。例えば、アポトーシスの失敗は、多くの自己免疫性疾患で起こるような自己反応性のリンパ球の病的蓄積をもたらし得、また、ウイルス感染細胞の蓄積、および、過剰増殖性細胞、例えば、新生物細胞または腫瘍細胞などの蓄積をももたらし得る。そこからタンパク質が翻訳されるmRNAを標的とし、かつ、特異的にアポトーシスを誘発することができるsiRNAはしたがって、これらの病理学的疾患状態の処置において治療的価値を有する。
【0171】
一方で、アポトーシスの阻害もまた臨床的に重要である。例えば、細胞は、脳および心臓において、それぞれ脳卒中および心筋梗塞の後にアポトーシスによって死ぬと考えられる。さらに、アポトーシスの不適切な活性化はまた、例えば、後天性免疫不全症候群(AIDS)、神経変性疾患および虚血傷害を含む種々の他の病理学的疾病状態の原因となり得る。アポトーシスのインデューサーが前記の疾病状態において有益であったように、アポトーシスの特異的インヒビターは、同様にこれらの後者の病理学的疾病状態の処置において治療的価値を有する。
【0172】
好ましい態様において、siRNAは、上述のような治療上有益な遺伝子の通常の発現、または、必要に応じて、過剰発現を防止する遺伝子を標的とする。本明細書で用いる場合、用語「過剰発現する」は、遺伝子発現のレベルに関して用いるときには、過剰発現する細胞における遺伝子産物の、対応する正常細胞におけるそのレベルと比較して増大した蓄積を意味するものとする。過剰発現は、天然の生物学的現象によって、ならびに、遺伝子操作された細胞の場合のように、特定の修飾によって達成することができる。過剰発現はまた、内因性のまたは外因性のメカニズムによる、細胞内で存続するポリペチドの増大の達成を含む。天然現象による過剰発現は、例えば、RNAの発現、プロセシング、輸送、翻訳または安定性を増大させる変異、ならびに、ポリペプチドの増大した安定性または低減された分解をもたらす変異によって生じ得る。かかる増大した発現レベルの例はまた、過剰発現の内因性のメカニズムの例でもある。外因性メカニズムによる過剰発現をもたらす天然の生物学的現象の具体例は、レトロウイルスまたはトランスポゾンの近接した組み込みである。特定の修飾による過剰発現は、例えば、本明細書に記載されるsiRNAオリゴヌクレオチドの使用によって達成することができる。
【0173】
siRNAポリヌクレオチドは、それが標的タンパク質の発現を干渉することができるという条件で、複数の異なる手法で構築することができる。siRNAポリヌクレオチドは、一般に標的分子配列と実質的に同一である(相補的な方向においてであるが)。最小の同一性は、典型的には約80%以上、約90%以上、約95%以上であり、または約100%同一である。
【0174】
受容体制御および候補治療薬
好ましい態様において、細胞表面レセプターが制御される(制御される)。細胞レセプターの制御は、例えば、疾患治療のための候補薬のスクリーニングに用いることができる。siRNAを用いて、我々はsiRNAによるアンチセンスRNAの混乱が、対応するセンスメッセンジャーRNAの発現を変化させることができるという実験的な証拠を提供した。しかしながら、この制御は、一致的(アンチセンスノックダウンがセンス転写物の増大をもたらす)、または、不一致的(アンチセンスノックダウンが付随するセンス転写物の低減をもたらす)であり得る。理論に束縛されることを望むことなく、遺伝子を制御する概念を
図1A〜1Bおよび
図2A〜2Bに例示した。表2に、siRNAによって標的化された様々なヒトおよびマウスのアンチセンス転写物を示す。これらの場合、2または3以上のsiRNAがアンチセンス鎖の非オーバーラップ部分に標的化され、ノックダウンをRT−PCRを用いて確認した。表2は、コードアンチセンスならびに非コードアンチセンスを同一の方法で標的化でき、いずれのカテゴリーも対応するセンス転写物を、一致的または不一致的様式で制御することができるという所見を例示する。ここで我々はsiRNAによるアンチセンスRNA転写物のノックダウン(または、その他のRNA標的化原理)に基づく可能性のある2つの新規な薬理学的戦略を提案する:
【0175】
戦略1:不一致的制御の場合、アンチセンス転写物のみをノックダウンすることにより、従来の(センス)遺伝子の発現を高めることができる。後者の遺伝子が既知のまたは推定される薬物標的をコードする場合、そのアンチセンス対応物のノックダウンは、受容体作用薬または酵素刺激剤の作用を模倣することができると考えられる。表2は、アンチセンス(コードならびに非コード)転写物のノックダウンが、センス発現を不一致的に制御することが示された例を提供する。例えば、パーキンソン病では、ミトコンドリアに局在するキナーゼ、PINK1の増強した活性(例えばPINK1の上昇)が望ましいといえ、その非コードアンチセンスパートナーのノックダウンはそのための手段となり得る。さらに、特定の状況においては、脈管形成を刺激するために、Gタンパク質共役型レセプター(GPCR)、CD97を介したシグナリングの強化は、その(コード)アンチセンスパートナー、Ddx−39の標的化によって達成することができる。
【0176】
戦略Iの例(PINK1の上昇、例えばパーキンソン病):
【化3】
【0177】
戦略2:一致的制御の場合、アンチセンスおよびセンス転写物を同時的にノックダウンし、それによって従来の(センス)遺伝子発現の相乗的な低減を達成することができる。これらの概念は、
図2Aおよび2Bに例示されている。siRNAがノックダウンを達成するのに用いられる場合、この戦略は、センス転写物に標的化された1つのsiRNAおよび対応するアンチセンス転写物に標的化された別のsiRNA、または、同時にオーバーラップするセンスおよびアンチセンス転写物を同時に標的とする単一のエネルギー的に対称なsiRNAを適用することによってさらにテストされる。表2によれば、かかる二重の同時的な標的化は、例えば、その阻害が種々の病状で有益となり得る標的である、低酸素誘導因子1アルファの場合に追求することが適切である。表2における別の例は、低減したシグナリングが同じく治療的に有益であることが示されたGPCRである、アドレノメデュリンAM1レセプターである。
【0178】
新たな機能的なRNAの世界の出現により、考慮すべき新たな潜在的薬物標的が存在する。これらの中には、従来の薬物標的をコードするものを含むセンス転写物の発現を制御する能力を有する多数の天然に存在するアンチセンス転写物がある。これらのアンチセンス転写物の多くが非コードRNAであるため、これらはタンパク質レベルで操作することができない。siRNAを用いることにより、我々はアンチセンス転写物ノックダウンがセンス転写物発現の増大(一致的制御)または減少(不一致的制御)のいずれかをもたらし得ることを示した。これらの知見および概念は、新たな薬理学的戦略の基礎を形成し得る。
【0179】
好ましい態様において、疾患、例えばパーキンソン病、アルツハイマー病、神経性障害/疾患、腫瘍などの処置のための候補治療剤を同定する方法は、例えば、細胞を培養すること(ここで、細胞レセプターは発明の方法を用いて制御されている。例えば、制御(すなわち上方調節またはレセプターの発現阻害))および培養細胞に候補治療剤を投与すること、候補治療剤の存在化または不在化におけるレセプターの発現量およびリン酸化を、候補治療剤の存在下で培養した正常細胞および制御されたレセプターを有する細胞と比較して関連づけることを含み、薬物が所望の治療結果に基づいて同定される。その結果、例えば、レセプターの発現を増大させる薬物、レセプターの発現を低減する薬物、レセプターをリン酸化または脱リン酸化する薬物などが、レセプターを制御する候補治療剤として同定される。
【0180】
診断および候補薬物探索のための別の好ましい方法は、試験試料をレセプターまたはその遺伝子、その対立遺伝子もしくは断片を発現する細胞に接触させること、および、試験試料と、遺伝子、その対立遺伝子もしくは断片、またはその遺伝子、その対立遺伝子もしくは断片の発現産物との相互作用を検出することを含む。所望の遺伝子、対立遺伝子もしくはその断片、または遺伝子、対立遺伝子もしくはその断片の発現産物は、好適には、検出可能に、例えば蛍光または放射性成分により標識することができる。
【0181】
別の好ましい態様において、患者からの細胞を単離し、候補治療分子と接触させる。遺伝子、その発現産物は、どの遺伝子または発現産物がその薬物によって制御されるかを特定するためにモニターされる。次に、薬物によって制御される特定された遺伝子、発現産物を制御する干渉RNAを合成することができ、そうして治療的オリゴヌクレオチドを提供する。これらは個々の患者に合わせることができ、これは、異なる患者が同じ薬に対し、等しく効果的に応答しないため有利である。このように、オリゴヌクレオチドは従来の薬物処置より安価で個別的処置を提供する。
【0182】
1つの側面において、所望の遺伝子または密接に関連した分子をコードする、ゲノム配列を含むポリヌクレオチド配列を検出することができるオリゴヌクレオチドプローブによるハイブリダイゼーションは、標的核酸配列を特定するのに用いることができる。プローブの特異性は、それが非常に特異的な領域、例えば5’制御領域から、または、特異性のより低い領域、例えば保存されたモチーフから作製されたかどうか、およびハイブリダイゼーションまたは増幅(最大の、高い、中間のまたは低い)のストリンジェンーにかかわらず、プローブが、天然に存在する配列をコードする遺伝子、対立遺伝子変異体または関連配列のみを同定できるかどうかを決定する。
【0183】
プローブはまた、関連配列の検出のために用いることもでき、好ましくは、任意の特定された遺伝子をコードする配列に対して少なくとも50%の配列同一性、より好ましくは、任意の特定された遺伝子をコードする配列に対して、少なくとも約60、70、75、80、85、90または95パーセントの配列同一性を有するべきである(配列同一性の決定は上記で述べられており、Blastプログラムの使用を含む)。対象発明のハイブリダイゼーションプローブは、DNAまたはRNAであってもよく、発明の配列に、または遺伝子のプロモーター、エンハンサーおよびイントロンを含むゲノム配列に由来し得る。
【0184】
本明細書で用いる場合、「相同」は、2つのポリマー分子の間、例えば、2つのDNA分子または2つのポリペチド分子などの2つの核酸分子の間のサブユニット配列類似性を指す。2つの分子の両方のサブユニットの位置が、同じモノマーサブユニットで占められている場合(例えば、2つのDNA分子のある位置が、アデニンによって占められている場合)、これらはその位置で相同である。2配列間の相同性は、マッチしている位置または相同な位置の数の一次関数である。例えば、2つの化合物の配列において、10の位置のうちの5つがマッチしているか相同である場合、この2つの配列は50%相同であり、10のうちの9つがマッチしているか相同である場合、この2つの配列は90%の相同性を有する。例として、DNA配列3’ATTGCC5’と3’TTTCCG5’とは、50%の相同性を有する。
【0185】
標的遺伝子をコードするDNAのための特異的なハイブリダイゼーションプローブを作製する手段は、mRNAプローブ作製用のベクターに標的遺伝子または誘導体をコードしているポリヌクレオチド配列をクローニングすることを含む。かかるベクターは当該技術分野において知られており、市販されており、適切なRNAポリメラーゼおよび適切な標識されたヌクレオチドの添加によって、in vitroでRNAのプローブを合成するのに用いることができる。ハイブリダイゼーションプローブは、種々のレポーター基によって、例えば、
32Pまたは
32Sなどの放射性核種によって、または、アビジン−ビオチン結合系によってプローブに結合したアルカリホスファターゼなどの酵素標識、蛍光標識などによって標識することができる。
【0186】
標的遺伝子をコードするポリヌクレオチド配列は、サザンもしくはノザン分析、ドットブロットまたは他のメンブレンベースの技術において、PCR技術において、ディップスティック、ピンおよびマルチフォーマットELISA様アッセイにおいて、および、患者からの液体または組織を利用して変化した標的遺伝子発現を検出するマイクロアレイにおいて用いることができる。ゲルベースのモビリティーシフト分析法を利用してもよい。他の好適な定性的または定量的方法は、当該技術分野でよく知られている。
【0187】
遺伝子またはその変異体の同一性は、当該技術分野でよく知られた技法を用いて確認することができる。例は、限定することなく、増幅遺伝子の核酸シーケンシング、一塩基多型分析(SNP)などのハイブリダイゼーション技法、対象となる分子がバイオチップ上も固定されたマイクロアレイを含む。オーバーラップcDNAクローンは、蛍光色素ターミネーターおよびABIシーケンサー(Applied Biosystems, Foster City, Calif.)を用いたジデオキシ連鎖反応によってシーケンシングすることができる。1つの成分が固定された任意の種類のアッセイは、本発明の基材プラットフォームを用いて行うことができる。固定された成分を利用したバイオアッセイは、当該技術分野でよく知られている。固定された成分を用いるアッセイの例は、例えば、イムノアッセイ、タンパク質−タンパク相互作用の分析、タンパク質−核酸相互作用の分析、核酸−核酸相互作用の分析、レセプター結合アッセイ、酵素アッセイ、リン酸化アッセイ、疾病状態を決定するための診断アッセイ、薬物適合性分析(drug compatibility analysis)のための遺伝子プロファイリング、SNP検出などを含む。
【0188】
対象となる生体分子と結合することができる核酸配列の同定は、核酸のライブラリーを基材表面上に、各々のユニークな核酸が所定の位置に配置されてアレイを形成するように固定することによって達成することができる。アレイは、次いで、生体分子に、同生体分子の核酸への結合を促進する条件下で暴露される。非特異的に結合した生体分子は、望まれる結合の特異性のレベルに応じて、マイルド〜ストリンジェントなバッファー条件により洗い流すことができる。核酸アレイは、その後、どの核酸配列が生体分子と結合したかについて決定するために分析される。好ましくは、生体分子は、結合した核酸の位置の検出に用いる蛍光タグを保持する。
【0189】
核酸配列の固定されたアレイを用いたアッセイは、未知の核酸の配列の決定、一塩基多型(SNP)分析、特定の種、組織、細胞種などからの遺伝子発現パターンの分析、遺伝子の同定などに用いることができる。
【0190】
所望の遺伝子発現産物をコードする配列から設計されたオリゴヌクレオチドのさらなる診断用途は、PCRの使用を含んでもよい。これらのオリゴマーは、化学的に合成しても、酵素的に生成しても、またはin vitroで作製してもよい。オリゴマーは、好ましくは、発現産物をコードするポリヌクレオチドの断片、またはポリヌクレオチドに相補的なポリヌクレオチドの断片を含み、特定の遺伝子の同定のために最適化された条件の下で用いられる。オリゴマーはまた、緊密に関連したDNAまたはRNA配列の検出または定量のために、より低いストリンジェンシーの条件の下で用いることができる。
【0191】
さらなる態様において、オリゴヌクレオチド、または任意のポリヌクレオチド配列に由来するより長い断片を、マイクロアレイで標的として用いることができる。マイクロアレイは、多数の遺伝子および遺伝子転写物の同一性や発現量をモニターすると同時に標的遺伝子またはその産物が相互作用する遺伝子を特定するため、および/または、例えば神経疾患を媒介する遺伝子の発現産物の制御における候補治療薬の有効性を評価するために用いることができる。この情報は、遺伝子機能を決定し、治療薬の活性を開発およびモニターするのに用いることができる。
【0192】
マイクロアレイは、当該技術分野において知られた方法を用いて調製、使用および分析すことができる(Brennan et al., 1995, 米国特許第5,474,796号、Schena et al., 1996, Proc. Natl. Acad. Sci. U.S.A. 93: 10614-10619、Baldeschweiler et al., 1995, PCT出願WO95/251116、Shalon, et al., 1995, PCT出願WO95/35505、Heller et al., 1997, Proc. Natl. Acad. Sci. U.S.A. 94: 2150-2155およびHeller et al., 1997, 米国特許第5,605,662号を参照)。
【0193】
候補剤は多数の化学物質群を含むが、典型的には、これらは低分子有機化合物、オリゴヌクレオチドを含む核酸、およびペプチドを含む有機化合物である。低分子有機化合物は、少なくまだ例えば好適には約40または50より高いが約2,500より低い分子量を有し得る。候補剤は、タンパク質および/またはDNAと相互作用する機能的な化学基を含んでもよい。
【0194】
候補剤は、合成または天然化合物のライブラリーを含む多種多様なソースから得ることができる。例えば、多数の手段が多種多様な有機化合物および生体分子のランダム合成および指向合成(directed synthesis)のために利用可能であり、これはランダム化された(randomized)オリゴヌクレオチドの発現を含む。あるいは、例えば細菌、菌類および動物抽出物の形態の天然化合物のライブラリーが利用できるか、または、容易に作製される。
【0195】
本発明の治療剤アッセイは、好適には、動物モデル、細胞ベースのシステムおよび非細胞ベースのシステムを含む。
【0196】
好ましくは、特定された遺伝子、その変異体、断片またはオリゴペプチドを治療的に有用な剤を特定するために用い、これは例えば、化合物のライブラリーをスクリーニングすること、さもなければ種々の薬物スクリーニングまたは分析技法によって対象となる化合物を特定することによる。かかるスクリーニングにおいて用いられる遺伝子、その対立遺伝子、断片またはオリゴペプチドは、溶液中に遊離していても、固体支持体に付加されていても、細胞表面上に担持されていても、または、細胞内に位置していてもよい。
【0197】
薬物スクリーニングの別の技法は、対象とするタンパク質に対する好適な結合親和性を有する化合物のハイスループットスクリーニングを提供する(例えば、Geysen et al., 1984, PCT出願WO84/03564を参照)。この方法では、多数の異なる低分子の試験化合物が、固形基材上で合成される。試験化合物を特定された遺伝子またはその断片と反応させ、洗浄する。次いで、結合した分子を当該技術分野でよく知られた方法により検出する。あるいは、非中和抗体を、ペプチドを捕獲し、これを固体支持体上に固定するために用いることができる。
【0198】
本発明のスクリーニング方法は、多様な分子のライブラリーから、所望の活性を有する1または2以上の化合物を特定するスクリーニングアッセイを用いることを含む。「スクリーニングアッセイ」は、コレクション内の、あらかじめ選択された活性を有する化合物を同定、単離および/または構造決定するために設計された選択的アッセイである。「同定する」は、所望の活性を有する化合物が単離され、その化学構造が決定されること(限定されずに、核酸およびポリペチドのそれぞれのヌクレオチドおよびアミノ酸配列、その構造を決定すること、および、付加的または代替的に、スクリーニングされた活性を有する化合物を精製することを含む)を意味する。生化学的および生物学的アッセイは、タンパク質−タンパク相互作用、酵素触媒作用、小分子−タンパク質結合から、細胞機能に至る幅広い範囲のシステムにおいて、活性について試験するために設計される。かかるアッセイは、自動化されたアッセイ、半自動化されたアッセイおよびHTS(ハイスループットスクリーニング)アッセイを含む。
【0199】
HTS法では、多数の試験化合物が、同時に、または、ほとんど同時に所望の活性についてスクリーニングされるように、多くの別々の化合物が、好ましくは、ロボットによる方法、自動的方法、または、半自動的方法によって並行して試験される。本発明の統合されたシステムを用いることにより、1日あたり約6,000〜20,000種まで、さらには約100,000〜1,000,000種までの異なる化合物をアッセイおよびスクリーニングすることが可能である。
【0200】
HTSでは典型的に、標的分子は、制御されたレセプターを有する単離された細胞に投与されるか、これらと培養され、これは適切な対照を含む。
【0201】
1つの態様において、スクリーニングは、各々の細胞培養物を、メンバー化合物(その幾つかは標的のリガンドである)の多様なライブラリーに、標的とリガンドの複合体が形成され得る条件下で接触させること、および、ライブラリーのどのメンバーがかかる複合体に存在するのかを同定することを含む。別の非限定的な手法において、スクリーニングは、標的酵素を、メンバー化合物(その幾つかは標的のインヒビターまたはアクティベーターである)の多様なライブラリーに、その酵素により触媒される反応の生成物または反応物が検出可能なシグナルを生成する条件下で接触させることを含む。後者の手法において、標的酵素のインヒビターは、検出可能な生成物からのシグナルを減少させるか、または、検出可能な反応物からのシグナルを増大させる(アクティベーターについてはこの逆である)。
【0202】
化学ライブラリー:コンビナトリアルケミストリーにおける進歩は、何百〜何千もの別々の化合物の迅速で経済的な合成を可能にする。これらの化合物は、典型的には、効率的なスクリーニングのために設計された小分子の中程度の大きさのライブラリーに配列される。コンビナトリアル法を、新規化合物の同定に好適な偏りのないライブラリーを作出するのに用いることができる。また、事前に決定された生物学的活性を有する単一の親化合物に由来する、より小さな、多様性のより低いライブラリーを作出することができる。いずれの場合においても、コンビナトリアル化学により製造した治療に関連する生体分子、例えば重要な酵素のインヒビターなどを特異的に標的化する有効なスクリーニングシステムの欠如が、これらの資源の最適な利用を妨げている。
【0203】
コンビナトリアル化学ライブラリーは、化学合成または生物学的合成のいずれかにより、複数の化学的「ビルディングブロック」、例えば試薬を組み合わせることによって作出した多様な化学的化合物のコレクションである。例えば、リニアコンビナトリアル化学ライブラリー、例えばポリペチドライブラリーは、化学ビルディングブロック(アミノ酸)のセットを、多数の組み合わせで、そして、潜在的にあらゆる可能な方法で、所定の化合物長(すなわちポリペチド化合物中のアミノ酸の数)について組み合わせることにより形成される。何百万もの化学的化合物が、化学ビルディングブロックのかかるコンビナトリアル混合を介して合成され得る。
【0204】
「ライブラリー」は、2〜50,000,000の多様なメンバー化合物を含み得る。好ましくは、ライブラリーは少なくとも48の多様な化合物、好ましくは96以上の多様な化合物、より好ましくは384以上の多様な化合物、より好ましくは10,000以上の多様な化合物、好ましくは100,000以上の多様なメンバーおよび最も好ましくは1,000,000以上の多様なメンバー化合物を含む。「多様な」は、ライブラリー中の50%を超える化合物がライブラリーの他のいずれのメンバーとも同一ではない化学構造を有することを意味する。好ましくは、ライブラリー中の化合物の75%超、より好ましくは90%超、そして最も好ましくは約99%超が、コレクションの他のいずれのメンバーとも同一ではない化学構造を有する。
【0205】
コンビナトリアル化学ライブラリーの調製は、当業者によく知られている。総説については、Thompson et al., Synthesis and application of small molecule libraries, Chem Rev 96:555-600, 1996、Kenan et al., Exploring molecular diversity with combinatorial shape libraries, Trends Biochem Sci 19:57-64, 1994、Janda, Tagged versus untagged libraries: methods for the generation and screening of combinatorial chemical libraries, Proc Natl Acad Sci USA. 91:10779-85, 1994、Lebl et al., One-bead-one-structure combinatorial libraries, Biopolymers 37:177-98, 1995、Eichler et al., Peptide, peptidomimetic, and organic synthetic combinatorial libraries, Med Res Rev. 15:481-96, 1995、Chabala, Solid-phase combinatorial chemistry and novel tagging methods for identifying leads, Curr Opin Biotechnol. 6:632-9, 1995、Dolle, Discovery of enzyme inhibitors through combinatorial chemistry, Mol Divers. 2:223-36, 1997、Fauchere et al., Peptide and nonpeptide lead discovery using robotically synthesized soluble libraries, Can J. Physiol Pharmacol. 75:683-9, 1997、Eichler et al., Generation and utilization of synthetic combinatorial libraries, Mol Med Today 1: 174-80, 1995、およびKay et al., Identification of enzyme inhibitors from phage-displayed combinatorial peptide libraries, Comb Chem High Throughput Screen 4:535-43, 2001を参照。
【0206】
化学的多様性ライブラリーを作出するための他の化学的手法を用いることもできる。かかる化学的手法は、限定することなく、ペプトイド(PCT公開WO 91/19735)、コードされたペプチド(PCT公開WO 93/20242)、ランダムバイオオリゴマー(PCT公開WO 92/00091)、ベンゾジアゼピン(米国特許第5,288,514号)、ダイバーソマー、例えばヒダントイン、ベンゾジアゼピンおよびジペプチドなど(Hobbs, et al., Proc. Nat. Acad. Sci. USA, 90:6909-6913 (1993))、ビニル様ポリペチド(Hagihara, et al., J. Amer. Chem. Soc. 114:6568 (1992))、ベータ−D−グルコースの足場を有する非ペプチド性ペプチド模倣体(Hirschmann, et al., J. Amer. Chem. Soc., 114:9217-9218 (1992))、低分子化合物ライブラリーの類似有機合成(Chen, et al., J. Amer. Chem. Soc., 116:2661 (1994))、オリゴカルバメート(Cho, et al., Science, 261:1303 (1993))、および/またはペプチジルホスホネート(Campbell, et al., J. Org. Chem. 59:658 (1994))、核酸ライブラリー(上記Ausubel, BergerおよびSambrook参照)、ペプチド核酸ライブラリー(例えば、米国特許第5,539,083号参照)、抗体ライブラリー(例えば、Vaughn, et al., Nature Biotechnology, 14(3):309-314 (1996)およびPCT/US96/10287参照)、炭水化物ライブラリー(例えば、Liang, et al., Science, 274:1520-1522 (1996)および米国特許第5,593,853号参照)、小有機分子ライブラリー(例えば、ベンゾジアゼピン、Baum C&E News, January 18, page 33 (1993)参照)、イソプレノイド(米国特許第5,569,588号)、チアゾリジノンおよびメタチアザノン(米国特許第5,549,974号)、ピロリジン(米国特許第5,525,735号および第5,519,134号)、モルホリノ化合物(米国特許第5,506,337号)、ベンゾジアゼピン(米国特許第5,288,514号)等を含む。
【0207】
コンビナトリアルライブラリーの調製のための装置は市販されている(例えば、357 MPS, 390 MPS, Advanced Chem. Tech, Louisville Ky.、Symphony, Rainin, Woburn, Mass.、433A Applied Biosystems, Foster City, Calif.、9050 Plus, Millipore, Bedford, Mass.参照。)。また、多数の組み合わせのライブラリーがそれ自体市販されている(例えば、ComGenex, Princeton, N.J.、Asinex, Moscow, Ru、Tripos, Inc., St. Louis, Mo.、ChemStar, Ltd., Moscow, RU、3D Pharmaceuticals, Exton, Pa.、Martek Bio sciences, Columbia, Md.等参照。)。
【0208】
ハイスループットスクリーニングは、シグナル伝達経路などの複雑な分子事象、ならびに、限定することなく、例えば細胞機能、アポトーシス、細胞分裂、細胞接着、移動、エキソサイトーシスおよび細胞−細胞コミュニケーションを含む細胞機能に対する薬物の作用の測定に用いることができる。多色蛍光は、複数の標的および細胞プロセスを1つの画面でアッセイすることを可能にする。細胞応答の相互相関は、標的の評価に必要な豊富な情報をもたらし、最適化を導く。
【0209】
別の側面において、本発明は、細胞を分析する方法であって、複数の細胞を含み、その細胞が1または2以上の蛍光レポーター分子を含む位置のアレイを提供すること、細胞を含む各位置における複数の細胞をスキャンし、細胞内の蛍光レポーター分子からの蛍光シグナルを得ること、蛍光シグナルをデジタルデータに変換すること、および、細胞内の蛍光レポーター分子の分布、環境または活性を決定することを含むものを提供する。
【0210】
新たな創薬パラダイムの主要な構成要素は、細胞内イオン、代謝物、巨大分子およびオルガネラの時間的および空間的分布、含量および活性を測定するのに用いる、絶えず増大している蛍光および発光試薬群である。これらの試薬の種類は、生細胞および固定細胞における分子の分布および量を測定する標識試薬、シグナル伝達イベントを時間的および空間的に報告する環境指標、および生細胞内での標的分子活性を測定する蛍光タンパク質バイオセンサーを含む。複数の試薬を単一の細胞で組み合わせるに組み込むマルチパラメーターアプローチは、創薬のための強力な新しいツールである。
【0211】
この方法は、特定の細胞成分に対する蛍光または発光分子の高い親和性に依っている。特定の成分への親和性は、物理的な力、例えば、イオン相互作用、共有結合(タンパク質ベースの発色団、蛍光団およびルミフォア(lumiphore)とのキメラ融合を含む)、ならびに、疎水性相互作用、電位、および、場合によっては、細胞成分内での単純な捕捉によって制御される。発光プローブは、小分子、標識された巨大分子または遺伝子操作したタンパク質であってもよく、限定することなく、緑色蛍光タンパク質キメラを含む。
【0212】
当業者は、蛍光標識された生体分子、例えば、タンパク質、リン脂質、RNAおよびDNAハイブリダイゼーションプローブなどを含むがこれに限定されない、本発明において用いることができる広範な種類の蛍光レポーター分子を認識する。同様に、特別に合成された、特定の化学的結合特性または会合特性を有する蛍光試薬が蛍光レポーター分子として用いられている(Barak et al., (1997), J. Biol. Chem. 272:27497-27500、Southwick et al., (1990), Cytometry 11:418-430、Tsien (1989) in Methods in Cell Biology, Vol. 29 Taylor and Wang (eds.), pp. 127-156)。蛍光標識された抗体は、細胞または組織と同程度に複雑な分子の混合物において単一の分子標的に付着するその高度の特異性のために、特に有用なレポーター分子である。
【0213】
発光プローブは、生細胞内で合成することができ、または、拡散、促進輸送もしくは能動輸送、シグナル配列媒介輸送、およびエンドサイトーシス性もしくはピノサイトーシス性取り込みを含む複数の非機械的様式で細胞内に輸送することができる。当該技術分野でよく知られた機械的なバルクローディング法を、発光プローブを生細胞に負荷するのに用いることもできる(Barber et al. (1996), Neuroscience Letters 207:17-20、Bright et al. (1996), Cytometry 24:226-233、McNeil (1989) in Methods in Cell Biology, Vol. 29, Taylor and Wang (eds.), pp. 153-173)。これらの方法は、エレクトロポレーションおよび他の機械的方法、例えばスクレープローディング、ビーズローディング、インパクトローディング、シリンジローディング、ハイパートニックローディングおよびハイポトニックローディングを含む。また、以前に記載されているように、細胞を、対象となるタンパク質に結合させたレポーター分子、例えばGFPを発現するように遺伝子操作することができる(ChalfieおよびPrasher米国特許第5,491,084号、Cubitt et al. (1995), Trends in Biochemical Science 20:448-455)。
【0214】
細胞内で、発光プローブは、標的領域との特異的で高親和性の相互作用または他の様式の分子標的化、例えば、シグナル配列媒介輸送などの結果として、その標的領域に集積する。蛍光標識されたレポーター分子は、レポーターの位置、量および化学的環境を決定するのに有用である。例えば、レポーターが親油性の膜環境にあるか、または、より水性の環境にあるかどうかを決定することができる(Giuliano et al. (1995), Ann. Rev. of Biophysics and Biomolecular Structure 24:405-434、Giuliano and Taylor (1995), Methods in Neuroscience 27.1-16)。レポーターのpH環境を決定することができる(Bright et al. (1989), J. Cell Biology 104:1019-1033、Giuliano et al. (1987), Anal. Biochem. 167:362-371、Thomas et al. (1979), Biochemistry 18:2210-2218)。キレート基を有するレポーターがイオン、例えばCa
++に結合しているかどうかを決定することができる(Bright et al. (1989), in Methods in Cell Biology, Vol. 30, Taylor and Wang (eds.), pp. 157-192、Shimoura et al. (1988), J. of Biochemistry (Tokyo) 251:405-410、Tsien (1989) in Methods in Cell Biology, Vol. 30, Taylor and Wang (eds.), pp. 127-156)。
【0215】
さらにまた、有機体内の一部の細胞種は、他の細胞種には存在しないかもしれない、特異的に標識することのできる成分を含み得る。例えば、神経細胞は、しばしば分極した膜成分を含む。すなわち、これらの細胞は、その形質膜に沿って非対称的に巨大分子を分布させている。結合組織細胞または支持組織細胞はしばしば、その細胞種に特有の分子がその内部に捕捉されている顆粒を含む(例えばヘパリン、ヒスタミン、セロトニンなど)。大部分の筋組織細胞は、細胞質内のカルシウムイオンの濃度を制御する機能を有する専門オルガネラである筋小胞体を含む。多くの神経組織細胞は、その内部に神経ホルモンまたは神経伝達物質が捕捉されている分泌顆粒および分泌小胞を含む。したがって、蛍光分子は特定の細胞内の特定の成分だけでなく、雑多な細胞種の集団内の特定の細胞をも標識するように設計することができる。
【0216】
当業者は、蛍光を測定する多種多様な方法を認識している。例えば、ある種の蛍光レポーター分子は、励起または発光スペクトルの変化を示し、ある種のものは共鳴エネルギー移動(そこでは、1つの蛍光レポーターが蛍光を失うが、もう1つのものは蛍光を増す)を示し、ある種のものは蛍光の消失(消光)または出現を示し、一方、ある種のものは回転運動をレポートする(Giuliano et al. (1995), Ann. Rev. of Biophysics and Biomol. Structure 24:405-434、Giuliano et al. (1995), Methods in Neuroscience 27:1-16)。
【0217】
手順全体を完全に自動化することができる。例えば、試料物質のサンプリングは、試料容器から試料を採取すること、および、採取した試料の少なくとも一部を試験細胞培養物(例えば、遺伝子発現が制御されている細胞培養物)に送達することを含む、複数の工程により達成することができる。サンプリングはまた、追加の工程、特に、そして好ましくは、試料調製工程を含んでもよい。1つの手法においては、一度に1つのみの試料がオートサンプラーのプローブに採取され、一度に1つのみの試料がプローブに存する。他の態様においては、複数の試料を、溶媒によって分離されたオートサンプラーのプローブに採取することができる。さらに別の態様において、自動サンプリングのために、複数のプローブを並行して用いることができる。
【0218】
一般的なケースでは、サンプリングは、手動で、半自動的方法で、または、自動的方法で行うことができる。試料は、試料容器から手動で、例えば、ピペットで、または、注射器型の手動プローブで採取し、次いで手動で、特性解析システムのローディングポートまたはインジェクションポートに送達することができる。半自動プロトコルでは、プロトコルの一部の局面は自動的に行われるが(例えば送達)、他の一部の局面は手動による干渉を必要とする(例えば、プロセス制御ラインからの試料の採取)。しかしながら、好ましくは、1または複数の試料は、完全に自動化した方法で、例えば、オートサンプラーにより、試料容器から採取され、特性解析システムに送達される。
【0219】
1つの態様において、自動サンプリングは、自動化システム(例えばロボットアーム)を制御するマイクロプロセッサーを用いてなされてもよい。好ましくは、マイクロプロセッサーは、様々な配置の試料を有する試料のライブラリー(例えば、「n行」×「n列」の正方形アレイ、「n行」×「m列」の長方形アレイ、円形アレイ、「r」×「r」×「r」の等辺を有する三角形アレイ、「r底辺」×「s」×「s」の二等辺を有する三角形アレイなど。ここで、n、m、rおよびsは整数である)に対応するためにユーザーがプログラムすることができる。
【0220】
試料物質の自動化したサンプリングは、任意に、加熱インジェクションプローブ(チップ)を有するオートサンプラーで行うことができる。かかるオートサンプラーの例は、(参照によって組み込まれる)米国特許6,175,409 B1に開示されている。
【0221】
本発明によると、1または2以上のシステム、方法またはその両方が、複数の試料物質を同定するのに用いられる。手動のまたは半自動化されたシステムおよび方法が可能であるが、好ましくは、自動化されたシステムまたは方法が用いられる。種々のロボットシステムまたは自動システムが、固体、液流体またはガスの形態の材料を、予め定められたプロトコルに従ってハンドリングし、接触させ、分配し、または別様に操作するための予め定められた動作を、自動的にまたはプログラム可能に提供するために利用できる。かかるシステムは、システムが材料の機械的特性を決定することを援助するための、種々のハードウェア、ソフトウェアまたはその両方を包含するために、適合または増強することができる。ロボットシステムを増強するためのハードウェアおよびソフトウェアは、限定することなく、センサー、トランスデューサー、データ取得および操作ハードウェア、データ取得および操作ソフトウェアなどを含む。典型的なロボットシステムは、CAVRO Scientific Instruments(例えばModel NO.RSP9652)またはBioDot(Microdrop Model 3000)から商業的に入手可能である。
【0222】
通常、自動化されたシステムは、情報、例えば合成、組成、位置情報、または基材に大して配置された材料のライブラリーに関連した他の情報によってプログラムすることができる適切なプロトコル設計および実行ソフトウェアを含む。プロトコル設計および実行ソフトウェアは、ロボットまたは他の自動化された装置またはシステムを制御するために、典型的には、ロボット制御ソフトウェアと交信する。プロトコル設計および実行ソフトウェアはまた、ソフトウェアが反応測定ハードウェアからデータを収集するためのデータ取得ハードウェアまたはソフトウェアと交信する。一旦データがデータベースに収集されると、データを分析するために、そしてより具体的には、候補薬物の特性を決定するために分析ソフトウェアを用いることができ、またはデータを手動で分析することができる。
【0223】
別の好ましい態様において、細胞培養物による候補薬物または試料のアッセイは、1または2以上の方法と組み合わされる。1つの態様において、試料は、サイズ排除クロマトグラフィーを用いて、試料中のタンパク質のサイズに従ってプレ分画され得る。利用できる試料の量が少ない生体試料については、好ましくは、サイズ選択スピンカラムを用いる。一般に、カラムから溶出する最初の画分(「画分1」)は、最も高いパーセンテージの高分子量タンパク質を有し、画分2は、より低いパーセンテージの高分子量タンパク質を有し、画分3は、より一層低いパーセンテージの高分子量タンパク質を有し、画分4は、最も低い量の大型タンパク質を有する。各々の画分は、その後、イムノアッセイ、気相イオンスペクトロメトリーなどによって、化合物の検出のために分析することができる。
【0224】
別の態様において、試料を陰イオン交換クロマトグラフィーによってプレ分画することができる。陰イオン交換クロマトグラフィーは、試料中のタンパク質をその電荷特性によって大まかにプレ分画することを可能にする。例えば、Q陰イオン交換樹脂を用いることができ(例えばQ HyperD F、Biosepra)、試料は異なるpHを有する溶離剤で順次溶離することができる。陰イオン交換クロマトグラフィーは、他の種類の化合物よりも負に荷電している試料中の化合物の分離を可能にする。高いpHを有する溶離剤で溶離されるタンパク質は、わずかに陰性に荷電していると考えられ、低いpHを有する溶離剤で溶離される画分は、強く陰性に荷電していると考えられる。このように、試料の複雑さを低減することに加え、陰イオン交換クロマトグラフィーはタンパク質をその結合特徴によって分離する。
【0225】
さらに別の態様において、試料をヘパリンクロマトグラフィーによってプレ分画することがあり得る。ヘパリンクロマトグラフィーはまた、ヘパリンとの親和性相互作用および電荷特性に基づいて、試料中の化合物をプレ分画することを可能にする。硫酸化されたムコ多糖であるヘパリンは、正に荷電した部分を有する化合物を結合し、試料は異なるpHまたは塩濃度を有する溶離剤で順次に溶離することができる。低いpHを有する溶離剤で溶離される試料は、わずかに陰性に荷電していると考えられる。高いpHを有する溶離剤で溶離される試料は、強く陰性に荷電していると考えられる。このように、陰イオン交換クロマトグラフィーもまた、試料の複雑さを低減することに加え、タンパク質をその結合特徴によって分離する。
【0226】
さらに別の態様において、試料を、特定の特徴を有するタンパク質、例えばグリコシル化されたタンパク質を単離することによって、プレ分画することができる。例えば、CSF試料は、試料をレクチンクロマトグラフィーカラム(これは、糖に対して高い親和性を有する)に通すことによって分画することができる。グリコシル化されたタンパク質はレクチンコラムに結合し、非グリコシル化タンパク質はフロースルーを通過する。グリコシル化タンパク質は、次いで、糖、例えばN−アセチル−グルコサミンを含む溶離剤でレクチンコラムから溶離し、さらなる分析に利用可能となる。
【0227】
このように、試料中のタンパク質の結合特性または試料中のタンパク質の特徴に基づいて、試料の複雑さを低減するための多くの方法が存在する。
【0228】
siRNAの送達
好ましい発明の実行は、前述のsiRNAポリヌクレオチドの少なくとも1つを好適な核酸送達システムで投与することを含む。1つの態様において、そのシステムは、ポリヌクレオチドに作動可能に連結された非ウイルスベクターを含む。かかる非ウイルスベクターの例は、単独の、または、好適なタンパク質、多糖または脂質製剤と組み合わせたポリヌクレオシドを含む。
【0229】
さらなる好適な核酸送達システムは、ウイルスベクター、典型的にはアデノウイルス、アデノウイルス随伴ウイルス(AAV)、ヘルパー依存性アデノウイルス、レトロウイルスまたはセンダイウイルス(HVJ)−リポソーム複合体の少なくとも1つからの配列を含む。好ましくは、ウイルスベクターは、ポリヌクレオチドに作動可能に連結された強い真核生物プロモーター、例えばサイトメガロウイルス(CMV)プロモーターを含む。
【0230】
さらなる好ましいベクターは、ウイルスベクター、融合タンパクおよび化学的コンジュゲートを含む。レトロウイルスベクターは、モロニーマウス白血病ウイルスおよびHIVベースのウイルスを含む。1つの好ましいHIVベースのウイルスベクターは、gagおよびpol遺伝子がHIVゲノムからのものであり、env遺伝子が別のウイルスからのものである、少なくとも2つのベクターを含む。DNAウイルスベクターが好ましい。これらのベクターはポックスベクター、例えば、オルソポックスベクターまたはアビポックスベクターなど、ヘルペスウイルスベクター、例えば、単純ヘルペスI型ウイルス(HSV)ベクターなど[Geller, A.I. et al., J. Neurochem, 64: 487 (1995)、Lim, F., et al., in DNA Cloning: Mammalian Systems, D. Glover, Ed. (Oxford Univ. Press, Oxford England) (1995)、Geller, A.I. et al., Proc Natl. Acad. Sci.: U.S.A.:90 7603 (1993)、Geller, A.I., et al., Proc Natl. Acad. Sci USA: 87:1149 (1990)]、アデノウイルスベクター[LeGal LaSalle et al., Science, 259:988 (1993)、Davidson, et al., Nat. Genet. 3: 219 (1993)、Yang, et al., J. Virol. 69: 2004 (1995)]およびアデノ随伴ウイルスベクター[Kaplitt, M.G., et al., Nat. Genet. 8:148 (1994)]を含む。
【0231】
ポックスウイルスベクターは、遺伝子を細胞質に導入する。アビポックスウイルスベクターは、核酸の短期間の発現のみをもたらす。アデノウイルスベクター、アデノ随伴ウイルスベクターおよび単純ヘルペスウイルス(HSV)ベクターは、複数の発明の態様に好適であり得る。アデノウイルスベクターは、アデノ随伴ウイルスよりも短期間(例えば、約1ヵ月未満の)の発現をもたらし、複数の態様においては、より長い発現を示し得る。選択される特定のベクターは、標的細胞および処置する症状に依存する。適切なプロモーターの選択は、容易に達成することができる。好ましくは、高発現プロモーターを利用することができる。適切なプロモーターの例は763塩基対のサイトメガロウイルス(CMV)プロモーターである。ラウス肉腫ウイルス(RSV)(Davis, et al., Hum Gene Ther 4:151 (1993))およびMMTプロモーターもまた用いることができる。あるタンパク質は、その天然プロモーターを用いて発現させることができる。発現を強化することができる他の要素はまた、高レベルの発現をもたらすエンハンサーまたはシステムなど、例えば、tat遺伝子およびtarエレメントなどを含んでもよい。このカセットは、次いで、ベクター、例えばpUC19、pUC118、pBR322などのプラスミドベクター、または、例えば、大腸菌複製起点を含む他の既知のベクターに挿入することができる。例えば、Sambrook, et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory press, (1989)を参照。プラスミドベクターはまた、選択可能なマーカー、例えば、アンピシリン耐性のためのβ−ラクタマーゼ遺伝子んでもよいが、ただし、マーカーポリペプチドは、処置する有機体の代謝に悪影響を与えない。カセットはまた、合成送達システム、例えばWO 95/22618に開示されているシステムにおける核酸結合部分に結合することができる。
【0232】
必要に応じて、発明のポリヌクレオチドはまた、マイクロデリバリービヒクル、例えばカチオン性リポソームおよびアデノウイルスベクターなどとともに用いることもできる。リポソームの調製、標的化および内容物の送達のための手順についての総説として、Mannino and Gould-Fogerite, BioTechniques, 6:682 (1988)を参照。また、Felgner and Holm, Bethesda Res. Lab. Focus, 11(2):21 (1989)およびMaurer, R.A., Bethesda Res. Lab. Focus, 11(2):25 (1989)も参照。
【0233】
複製欠損組換えアデノウイルスベクターは、既知の技法により産生することができる。Quantin, et al., Proc. Natl. Acad. Sci. USA, 89:2581-2584 (1992)、Stratford-Perricadet, et al., J. Clin. Invest., 90:626-630 (1992)、およびRosenfeld, et al., Cell, 68:143-155 (1992)参照。
【0234】
別の好ましいsiRNA送達方法は、siRNAを細胞内で産生することができる、一本鎖DNA産生ベクターを用いることである。例えば、その全体が参照により本明細書に組み込まれるChen et al, BioTechniques, 34: 167-171 (2003)を参照。
【0235】
核酸の有効量は、特定の発現タンパク質、標的とされる特定の心臓不整脈、患者およびその臨床状態、体重、年齢、性別などに依存する。
【0236】
1つの好ましい送達システムは、その中に1または2以上のポリヌクレオチド、好ましくは約1つのポリヌクレオチドを組み込んだ組換えウイルスベクターである。好ましくは、本発明の方法で用いるウイルスベクターは、約108〜約5×1010pfuまでからのpfu(プラーク形成単位)を有する。ポリヌクレオチドを非ウイルスベクターにより投与する態様において、約0.1ナノグラム〜約4000マイクログラム、例えば、約1ナノグラム〜約100マイクログラムの使用がしばしば有用である。
【0237】
遺伝子発現の上方調節または阻害の評価
宿主細胞または有機体への外因性核酸ベクターによるの移送は、細胞または有機体において直接核酸の存在を検出することによって評価することができる。かかる検出は、当該技術分野においてよく知られた複数の方法によって達成することができる。例えば、外因性核酸の存在は、サザンブロットによって、または、核酸に関連するヌクレオチド配列を特異的に増幅するプライマーを用いたポリメラーゼ連鎖反応(PCR)技法によって検出することができる。外因性核酸の発現はまた、従来の方法を用いて測定することができる。例えば、外因性核酸から産生されるmRNAは、ノーザンブロットおよび逆転写PCR(RT−PCR)を用いて検出および定量化することができる。
【0238】
外因性核酸からのRNAの発現はまた、酵素活性またはレポータータンパク質活性を測定することによって検出することができる。例えば、siRNA活性は、外因性核酸がエフェクターRNAを産生している目安となる、標的核酸発現の低減または増大として間接的に測定することができる。配列保存に基づいて、プライマーを設計し、標的遺伝子のコード領域を増幅するのに用いることができる。最初に、各々の遺伝子から最も高度に発現しているコード領域をモデルコントロール遺伝子を構築するのに用いることができるが、任意のコード領域または非コードが用いることができる。各々のコントロール遺伝子は、各々のコード領域を、レポーターコード領域とそのポリ(A)シグナルとの間に挿入することによってアセンブルする。これらのプラスミドは、遺伝子の上流部分にレポーター遺伝子を、そして、3’非コード領域に潜在的なRNAi標的を有するmRNAを産生する。個々のRNAiの効果は、レポーター遺伝子の変化によって評価される。本発明の方法に有用なレポーター遺伝子は、アセトヒドロキシ酸シンターゼ(AHAS)、アルカリホスファターゼ(AP)、ベータガラクトシダーゼ(LacZ)、ベータグルクルニダーゼ(GUS)、クロラムフェニコールアセチルトランスフェラーゼ(CAT)、緑色蛍光タンパク質(GFP)、赤色蛍光タンパク質(RFP)、黄色蛍光タンパク質(YFP)、シアン蛍光タンパク質(CFP)、西洋ワサビペルオキシダーゼ(HRP)、ルシフェラーゼ(Luc)、ノパリンシンターゼ(NOS)、オクトピンシンターゼ(OCS)およびこれらの誘導体を含む。アンピシリン、ブレオマイシン、クロラムフェニコール、ゲンタマイシン、ハイグロマイシン、カナマイシン、リンコマイシン、メトトレキサート、ホスフィノスリシン、ピューロマイシンおよびテトラサイクリンに対する耐性を与える、複数の選択可能なマーカーが利用可能である。レポーター遺伝子の変化を決定する方法は当該技術分野においてよく知られており、限定することなく、蛍光分析法(例えば、蛍光分光法、蛍光活性化細胞選別法(FACS)、蛍光顕微鏡法)、抗生物質耐性の決定を含む。
【0239】
生物ゲノム情報およびモデル遺伝子は、潜在的RNAiのハイスループットスクリーニングのために極めて貴重であるが、標的核酸に対する干渉活性は、最終的には、標的核酸を発現する細胞において実験的に立証しなければならない。RNAi配列の干渉能力を決定するために、RNAi含有ベクターを、その標的核酸を発現する適切な細胞系にトランスフェクトする。各々の選択されたRNAi構築物は、標的核酸の定常状態のmRNAを変化させるその能力について試験される。加えて、試験の第1ラウンドに「生き残った」任意の標的mRNAを、逆転写−PCRによって増幅し、シーケシングする(例えば、Sambrook, J. et al. "Molecular Cloning: A Laboratory Manual," 2nd addition, Cold Spring Harbor Laboratory Press, Plainview, N.Y. (1989)を参照)。これらの配列は、mRNAが現在のRNAiライブラリーから逃れるのを可能にする個々の多型を決定するために分析される。この情報はまた、より稀な多型をも標的とするためにRNAi構築物をさらに改変するのに用いられる。
【0240】
RNAiベクターで細胞をトランスフェクトする方法は、当該技術分野においてよく知られており、限定することなく、エレクトロポレーション、粒子衝撃、マイクロインジェクション、ウイルスベクターによるトランスフェクション、レトロウイルスベースのベクターによるトランスフェクションおよびリポソーム媒介トランスフェクションを含む。RNA干渉を媒介する任意の種類の核酸を、当該技術分野においてよく知られた種々の方法を用いてin vitroで合成し、直接細胞に挿入することができる。また、dsRNAおよびRNA干渉を媒介する他の分子は、商業的なベンダー、例えばRibopharma AG (Kulmach, Germany)、Eurogentec (Seraing, Belgium)、Sequitur (Natick, Mass.)およびInvitrogen (Carlsbad, Calif.)などから入手可能である。Eurogentecは、蛍光団(例えば、HEX/TET;5’−フルオレセイン、6−FAM;3’−フルオレセイン、6−FAM;フルオレセインdTインターナル;5’TAMRA、ローダミン;3’TAMRA、ローダミン)で標識されたdsRNAを提供しており、これらもまた本発明において用いることができる。RNAi分子は、よく知られた固相合成技術によって作製することができる。かかる合成のための装置は、例えばApplied Biosystems (Foster City, Calif.)を含む複数のベンダーによって販売されている。当該技術分野において知られているかかる合成のための他の方法を、付加的または代替的に用いることができる。オリゴヌクレオチドを調製するために類似した技法、例えばホスホロチオエートおよびアルキル化誘導体を用いることはよく知られている。
【0241】
直接細胞に挿入されるRNAは、リン酸−糖骨格またはヌクレオシドに修飾を含んでいてもよい。例えば、天然RNAのホスホジエステル結合を修飾し、窒素または硫黄ヘテロ原子の少なくとも1つを含ませることができる。干渉RNAは、酵素的に、または、部分的/完全な有機合成によって製造することができる。構築物は、細胞RNAポリメラーゼまたはバクテリオファージRNAポリメラーゼ(例えばT3、T7、SP6)によって合成することができる。化学的に、または、in vitroの酵素合成によって合成する場合、RNAは細胞または動物への導入の前に精製してもよい。例えば、RNAは、当該技術分野において知られているとおりに、溶媒または樹脂による抽出、沈殿、電気泳動、クロマトグラフィーまたはその組み合わせによって、混合物から精製することができる。あるいは、干渉RNA構築物は、試料処理による損失を避けるために、精製せずに、または最小限の精製で用いることができる。RNAi構築物は保管のために乾燥することができ、または、水溶液に溶解することができる。溶液は、二重鎖のアニーリングおよび/または安定化を促進するために、バッファーまたは塩類を含んでもよい。本発明において用いることができるバッファーまたは塩類の例は、限定されずに、生理食塩水、PBS、N−(2−ヒドロキシエチル)ピペラジン−N’−(2−エタンスルホン酸)(HEPES(TM))、3−(N−モルホリノ)プロパンスルホン酸(MOPS)、2−ビス(2−ヒドロキシエチレン)アミノ−2−(ヒドロキシメチル)−1,3−プロパンジオール(ビス−TRIS(TM))、リン酸カリウム(KP)、リン酸ナトリウム(NaP)、リン酸水素二ナトリウム(Na
2HPO
4)、リン酸二水素ナトリウム(NaH
2PO
4)、リン酸ナトリウムカリウム(NaKHPO
4)、リン酸マグネシウム(Mg
3(PO
4)
2−4H
2O)、酢酸カリウム(CH
3COOH)、D(+)−α−ナトリウムグリセロリン酸(HOCH
2CH(OH)CH
2OPO
3Na
2)、および、当業者に知られた他の生理緩衝液を含む。本発明に用いられるさらなるバッファーは、水溶液に溶解した塩M−X、その会合産物または解離産物を含み、ここでMはアルカリ金属(例えば、Li
+、Na
+、K
+、Rb
+)、好適にはナトリウムまたはカリウムであり、Xはアニオンである塩はリン酸塩、酢酸塩、重炭酸塩、硫酸塩、ピルビン酸塩からなる群から選択されるアニオン、および有機一リン酸エステルからなる、グルコース6−リン酸またはDL−α−グリセロールリン酸である。
【0242】
RNAi分子により制御/標的化される遺伝子
本発明のさらなる側面では、特定の遺伝子または遺伝子ファミリーの発現を制御するRNAi分子が提供され、そうして遺伝子の発現が機能的に消去または上方調節され得る。1つの態様においては、遺伝子の同じ領域を標的とする少なくとも2つのRNAi分子が提供される。別の態様においては、同じ遺伝子の少なくとも2つの異なる領域を標的とする少なくとも2つのRNAi分子が提供される。さらなる態様において、少なくとも2つの異なる遺伝子を標的とする少なくとも2つのRNAi分子が提供される。発明のさらなる態様は、遺伝子標的化のための上記戦略の組み合わせを提供する。
【0243】
1つの態様において、RNAi分子は、同じ配列であってもよい。代替的な態様において、RNAi分子は、異なる配列であってもよい。他の態様において、少なくとも2つのRNAi分子が提供され、ここで、そのRNAi分子の発現によって遺伝子1つまたは2つ以上のファミリーを制御することができる。別の態様において、少なくとも3つの、4つの、または、5つのRNAi分子が提供され、ここで、そのRNAi分子の発現によって遺伝子1つまたは2つ以上のファミリーを制御することができる。RNAi分子は、1または2以上の遺伝子における保存配列に相同であってもよい。本発明のかかる方法を用いて制御される遺伝子のファミリーは、細胞にとって内因性のもの、関連するウイルス遺伝子のファミリー、ウイルスの属において保存されている遺伝子のファミリー、関連する真核生物寄生虫遺伝子のファミリー、またはより具体的にはブタ内因性レトロウイルスからの遺伝子のファミリーであってもよい。1つの特定の態様において、少なくとも2つのRNAi分子は、同じ遺伝子のファミリーのメンバーである少なくとも2つの異なる遺伝子を標的とすることができる。RNAi分子は遺伝子のファミリーにおける相同領域を標的とすることができ、そうして、1つのRNAi分子は複数の遺伝子の同じ領域を標的化することができる。
【0244】
RNAi分子は、限定されずに、以下の種類のRNAiから選択することができる:アンチセンスオリゴヌクレオチド、リボザイム、低分子干渉RNA(sRNAi)、二本鎖RNA(dsRNA)、逆位反復、短鎖ヘアピンRNA(shRNA)、時間的に制御された低分子RNA(small temporally regulated RNA)、および、放射クラスター化阻害RNA(radial clustered inhibitory RNA)、非対称クラスター化阻害RNA、線形クラスター化阻害RNAおよび複雑または複合(complex or compound)クラスター化阻害RNAを含む、クラスター化阻害RNA(cRNAi)。
【0245】
別の態様においては、哺乳類細胞系またはトランスジェニック動物における標的遺伝子を制御するためのRNAi分子の発現は、標的遺伝子の発現が機能的に消去されるか、または、検出可能レベル以下となるか、または上方調節されるよう、すなわち、標的遺伝子の発現が、少なくとも約70%、75%、80%、85%、90%、95%、97%または99%減少または増大するよう提供される。
【0246】
本発明のこの側面の別の態様において、干渉RNA分子が標的遺伝子の発現を制御するために発現されている細胞および動物を作製する方法が提供される。例えば、本発明のこの側面による方法は、例えば:細胞において1または2以上の標的核酸配列を同定すること、1または複数の標的核酸配列と結合する少なくとも1つのRNAi分子を得ること、任意に発現ベクターにパッケージングされたRNAi分子を細胞内に導入すること、および、RNAiを細胞内で、RNAiが標的核酸配列に結合し、それによって1または2以上の標的遺伝子の発現を制御する条件下で発現させることを含む。
【0247】
本発明の態様において、少なくとも1つのRNAi分子の発現によって制御することができる内因性遺伝子は、限定されずに、細胞生存または細胞複製に必要な遺伝子、ウイルス複製に必要な遺伝子、遺伝子免疫グロブリン遺伝子座、例えばカッパ軽鎖をコードする遺伝子、および細胞表面タンパク質、例えば血管細胞接着分子(VCAM)をコードする遺伝子、および、細胞、組織、臓器および動物の構造および/または機能にとって重要な他の遺伝子を含む。本発明の方法はまた、1または2以上の非コードRNA配列の発現を制御するのに用いることができる。これらの非コードRNA配列は、RNAウイルスゲノム、内因性遺伝子、真核生物寄生虫遺伝子の配列、または当該技術分野において知られており、当業者が精通している他の非コードRNA配列であってもよい。本発明の側面に従って、細胞または動物において発現されているRNAi分子は、1または2以上の標的遺伝子の発現を低減、増大または維持することができる。1または2以上の遺伝子、遺伝子のファミリー、遺伝子の所望のサブセットまたは遺伝子の対立遺伝子の発現が制御される特定の標的核酸領域を同定するために、各々の標的遺伝子について配列の代表的試料を得ることができる。配列は、類似および非類似領域を見出すために比較することができる。この分析は、全てのファミリーメンバー間、および、ファミリーメンバーのサブセット(すなわち、遺伝子ファミリー内のグループ)内の同一性を有する領域を決定することができる。加えて、この分析は、各々のファミリーメンバーの対立遺伝子間の同一性を有する領域を決定することができる。ファミリーメンバーの対立遺伝子間、ファミリーメンバーのサブセット間、および、ファミリー全体を通しての同一性を有する領域を考慮することによって、全ファミリー、ファミリーメンバーのサブセット、個々のファミリーメンバー、個々のファミリーメンバーの対立遺伝子のサブセットまたはファミリーメンバーの個々の対立遺伝子を特定する標的領域を同定することができる。
【0248】
発現の制御は、1または2以上の標的遺伝子の発現を減少させることができる。減少した発現は、標的遺伝子、そして最終的には、標的遺伝子の最終産物のタンパク質の転写後下方調節をもたらす。下方調節のために、配列へのRNAiの結合が標的遺伝子の発現を減少させる標的核酸配列を同定する。遺伝子の減少した発現は、RNAiの導入がない場合と比較した、標的遺伝子からのタンパク質および/またはmRNA産物のレベルの不在、または、観察可能な、もしくは、検出可能な減少を指す。標的遺伝子の完全な抑制/阻害ならびに部分的に抑制された発現は、本発明の方法で可能である。「部分的に抑制された発現」は、標的遺伝子が約10%から約99%まで抑制される(すなわち、標的遺伝子の発現が低減する)ことを意味し、100%は標的遺伝子の完全な抑制/阻害である。例えば、1または2以上の遺伝子の遺伝子発現の約10%、約20%、約30%、約40%、約50%、約60%、約70%、約80%、約90%、約95%または約99%が抑制され得る。あるいは、発現は、検出可能な限界値未満に抑制または阻害される。
【0249】
本発明の他の態様において、発現の制御は1または2以上の遺伝子の発現を増大することができる。増大した発現は、下記の例において詳述するとおりに生じ得る。本発明のこの態様において、標的核酸と対象となる遺伝子は、別々の配列であってもよい。タンパク質のレベルやRNAiの導入のないそれと比較して1または2以上の標的遺伝子からのmRNA産物では、遺伝子の増大した発現は、RNAiの導入がない場合と比較した、1または2以上の標的遺伝子からのタンパク質および/またはmRNA産物のレベルの存在、または、観察可能な増大を指す。遺伝子の増大した発現は、発現された標的遺伝子の測定可能な量が、RNAiの導入がない場合と比較して、任意の量増大していることを意味する。例えば、遺伝子の発現レベルは、干渉RNAが存在しない場合に生じるよりも上方に、2倍、約5倍、約10倍、約50倍、約100倍、約500倍、約1000倍または約2000倍増大し得る。
【0250】
本発明のさらに他の側面では、発現の制御により、1または2以上の遺伝子が、一般に当該1または2以上の遺伝子の低減したまたは増大した発現をもたらす環境条件下に置かれた場合に、その1または2以上の遺伝子の発現を維持することができる。1または2以上の遺伝子の発現は、通常は遺伝子発現を増大または減少させる環境条件下において維持することができ、これは、さもなければ発現を増大または減少させる環境条件の存在以前の発現と比較した遺伝子発現の定常レベル(すなわち、経時的な発現の増大または減少がない)をもたらす。遺伝子発現を増大させ得る環境条件の例は、限定されずに、増殖因子の存在、増加したグルコース産生、高熱および細胞周期の変化を含む。遺伝子発現を減少させ得る環境条件の例は、限定されずに、酸素圧低下、低体温、増殖因子の欠如およびブドウ糖の枯渇を含む。
【0251】
遺伝子発現の定量化は、1または2以上のRNAi分子を含む細胞または動物における遺伝子発現の阻害(または増強)の程度の決定を可能にする。注入した材料のより低い用量、および、RNAiの投与または組み込み後のより長い期間は、より少ない割合の細胞または動物における阻害または増強をもたらし得る(例えば、標的細胞または動物の少なくとも10%、20%、50%、75%、90%または95%)。細胞または動物における遺伝子発現の定量化は、標的mRNAの蓄積または標的タンパク質の翻訳のレベルで、類似した量の阻害または増強を示し得る。阻害または増強の効率は、当該技術分野において知られている任意の方法を用いて、細胞または動物における遺伝子産物の量を評価することによって決定することができる。例えば、mRNAは、干渉RNAに用いた領域外のヌクレオチド配列を有するハイブリダイゼーションプローブで検出することができ、または、翻訳されたポリペチドは、その領域のポリペチド配列に対して作製した抗体で検出することができる。mRNAおよびポリペチド定量するための方法は当該技術分野においてよく知られている。例えば、Sambrook, J. et al. "Molecular Cloning: A Laboratory Manual," 2nd addition, Cold Spring Harbor Laboratory Press, Plainview, N.Y. (1989)を参照。
【0252】
本発明はまた、遺伝子のファミリーの発現の制御に関する。用語「遺伝子のファミリー」は、類似した機能、配列または表現型を有する1または2以上の遺伝子を指す。遺伝子のファミリーは、保存配列、すなわち遺伝子ファミリーの全メンバーの中で同じか、または、相同性の高いヌクレオチド配列を含んでもよい。特定の態様において、RNAi配列は遺伝子ファミリーのこの保存領域にハイブリダイズすることができ、したがって、1つのRNAi配列が遺伝子ファミリーの2以上のメンバーを標的化することができる。
【0253】
本発明の方法はまた、進化的に関連した遺伝子のファミリー内の遺伝子の発現を制御するのに用いることができる。進化的に関連した遺伝子は、共通の祖先遺伝子配列から分かれた遺伝子であり、それ自体1または2以上のmRNAをコードする配列であってもなくてもよい。この進化的に関連したファミリー内には、遺伝子のサブセットが存在し得、そして、このサブセット内に、保存されたヌクレオチド配列が存在し得る。本発明はまた、この遺伝子のサブセットの発現を、この保存されたヌクレオチド配列にRNAi分子を標的化することによって制御する方法を提供する。本発明の方法によって制御することができる進化的に関連した遺伝子は、細胞または動物において内因性または外因性であってもよく、ウイルスの遺伝子のファミリーのメンバーであってもよい。また、本発明の方法によって制御することができるウイルス遺伝子のファミリーは、細胞または動物において内因性であるファミリーメンバーを有し得る。
【0254】
他の態様において、本発明の方法は、細胞または動物において内因性である遺伝子または遺伝子のファミリーの発現を制御するのに用いることができる。内因性の遺伝子は、動物種のゲノムの一体的な要素として遺伝する任意の遺伝子である。本発明の方法による内因性の遺伝子の制御は、細胞または動物のフェノタイプまたは生物学的状態を抑制または増強する方法を提供することができる。本発明の方法によって制御することができる内因性の遺伝子は、限定されずに、細胞の生存に必要な内因性遺伝子、細胞複製に必要な内因性遺伝子、ウイルス複製に必要な内因性遺伝子、免疫グロブリン遺伝子座をコードする内因性遺伝子および細胞表面タンパク質をコードする内因性遺伝子を含む。内因性遺伝子のさらなる例は、発生遺伝子(例えば、接着分子、サイクリンキナーゼインヒビター、Writファミリーメンバー、Paxファミリーメンバー、ウイングドヘリックスファミリーメンバー、Hoxファミリーメンバー、サイトカイン/リンホカインおよびそのレセプター、増殖/分化因子およびそのレセプター、神経伝達物質およびそのレセプター)、腫瘍抑制遺伝子(例えば、APC、BRCA1、BRCA2、MADH4、MCC、NF1、NF2、RB1、TP53およびWTI)、および酵素(例えば、ACCシンターゼおよびオキシダーゼ、ACP不飽和化酵素および水酸化酵素、ADPグルコースピロホスホリラーゼ、ATPアーゼ、アルコールデヒドロゲナーゼ、アミラーゼ、アミログルコシダーゼ、カタラーゼ、セルラーゼ、カルコンシンターゼ、キチナーゼ、シクロオキシゲナーゼ、デカルボキシラーゼ、デキストリナーゼ、DNAおよびRNAポリメラーゼ、ガラクトシダーゼ、グルカナーゼ、グルコースオキシダーゼ、顆粒結合型スターチシンターゼ、GTPアーゼ、ヘリカーゼ、ヘミセルラーゼ、インテグラーゼ、イヌリナーゼ、インベルターゼ、イソメラーゼ、キナーゼ、ラクターゼ、リパーゼ、リポキシゲナーゼ、リゾチーム、ノパリンシンターゼ、オクトピンシンターゼ、ペクチンエステラーゼ、ペルオキシダーゼ、ホスファターゼ、ホスホリパーゼ、ホスホリラーゼ、フィターゼ、植物生長調整因子合成酵素、ポリガラクツロナーゼ、プロテイナーゼおよびペプチダーゼ、プラナーゼ(pullanase)、リコンビナーゼ、逆転写酵素、RUBISCO、トポイソメラーゼおよびキシラナーゼ)を含む。
【0255】
他の態様において、細胞の腫瘍抗原を制御(調節)し、例えば、これらの腫瘍細胞を宿主免疫系が検出できるようにすることが望ましい場合がある。多くの腫瘍抗原は当該技術分野においてよく知られている。例えば、参照により本明細書に組み込まれるVan den Eynde BJ, van der Bruggen P. Curr Opin Immunol 1997; 9: 684-93、Houghton AN, Gold JS, Blachere NE. Curr Opin Immunol 2001; 13: 134-140、van der Bruggen P, Zhang Y, Chaux P, Stroobant V, Panichelli C, Schultz ES, Chapiro J, Van den Eynde BJ, Brasseur F, Boon T. Immunol Rev 2002; 188: 51-64を参照。また、腫瘍抗原に向けられた多くの抗体が市販されている。
【0256】
腫瘍抗原の非限定例は、変異により生じた腫瘍抗原、例えば:アルファ−アクチニン−4(肺癌)、BCR−ABL融合タンパク質(b3a2)(慢性骨髄性白血病)、CASP−8(頭頸部扁平上皮癌)、ベータ−カテニン(メラノーマ)、Cdc27(メラノーマ)、CDK4(メラノーマ)、dek−can融合タンパク質(骨髄性白血病)、延長因子2(肺扁平上皮癌)、ETV6−AML1融合タンパク質(急性リンパ芽球性白血病)、LDLR−フコシルトランスフェラーゼAS融合タンパク質(メラノーマ)、HLA−A2dの過剰発現(腎細胞癌)、hsp70−2(腎細胞癌)、KIAAO205(膀胱腫瘍)、MART2(メラノーマ)、MUM−1f(メラノーマ)、MUM−2(メラノーマ)、MUM−3(メラノーマ)、neo−PAP(メラノーマ)、ミオシンクラスI(メラノーマ)、OS−9g(メラノーマ)、pml−RARアルファ融合タンパク質(前骨髄球性白血病)、PTPRK(メラノーマ)、K−ras(膵臓腺癌)、N−ras(メラノーマ)などを含む。分化腫瘍抗原の例は、限定されずに:CEA(消化管癌)、gp100/Pmel17(メラノーマ)、カリクレイン4(前立腺)、マンマグロビン−A(乳がん)、Melan−A/MART−1(メラノーマ)、PSA(前立腺癌)、TRP−1/gp75(メラノーマ)、TRP−2(メラノーマ)、チロシナーゼ(メラノーマ)を含む。過剰発現または過少発現腫瘍抗原は、限定されずに:CPSF(遍在)、EphA3、G250/MN/CAIX(胃、肝臓、膵臓)、HER−2/neu、腸カルボキシルエステラーゼ(肝臓、腸、腎臓)、アルファ−フィトプロテイン(肝臓)、M−CSF(肝臓、腎臓)、MUC1(腺上皮)、p53(遍在)、PRAME(精巣、卵巣、子宮内膜、副腎)、PSMA(前立腺、CNS、肝臓)、RAGE−1(網膜)、RU2AS(精巣、腎臓、膀胱)、スルビビン(survivin)(遍在)、テロメラーゼ(精巣、胸腺、骨髄、リンパ節)、WT1(精巣、卵巣、骨髄、脾臓)、CA125(卵巣)を含む。
【0257】
本発明の方法はまた、特定の対立遺伝子の発現を制御するのに用いることができる。対立遺伝子は、同じ染色体座を占める遺伝子の多型変異体である。本発明の方法は、遺伝子または遺伝子のファミリーの1または2以上の特定の対立遺伝子の制御を可能にする。この態様では、RNAiの配列は、遺伝子または遺伝子のファミリーの1または2以上の特定の対立遺伝子は制御されるが、同じ遺伝子または遺伝子のファミリーの他のさらなる対立遺伝子は制御されないよう調製することができる。
【0258】
以下の例は、制限するためではなく、例示として提供される。特定の例が提供されているが、上記の説明は例示的であって制限的ではない。上記に記載した態様の特徴の任意の1または2以上を、本発明における任意の他の態様の1または2以上の特徴と、任意の様式で組み合わせることができる。さらにまた、本発明の多くのバリエーションが、本明細書を精査することにより、当業者において明らかになる。
【0259】
本出願で引用した全ての出版物および特許文献は、関連する部分において、全ての目的について同程度に、あたかもそれぞれの個々の出版物および特許文献が個々に表示されているごとくに、参照により組み込まれる。本出願人は、本明細書に種々の参考文献を引用することによっては、任意の特定の参考文献がその発明に対する「従来技術」であることを認めない。
【0260】
例
材料および方法
in situハイブリダイゼーション
HeLa細胞をシランコートされたスライドの表面上で一晩増殖させ、4%のパラホルムアルデヒド(pH7.4)で4分間固定した。スライドを風乾した後、付着細胞のDNaseによる37℃、16時間の処理を容易にするためにチャンバーを用いた。DNase Master Mixは、10×TurboDNase Buffer(Ambion社)、100単位のDNase1、100単位のTurboDNaseおよび100単位のSuprasinを最終容量200μl中に含んだ。その後細胞を1×PBSで洗浄し、次いで95℃で5分間インキュベートした。第一鎖cDNAは、10×RT Buffer(Applied Biosystems社)、2.5mMのMgCl
2、10mMのdNTP混合物、10pMのRandom Hexamers、100単位のRNase Inhibitorおよび500単位の逆転写酵素を最終容量200μlに含むRT-Master Mixで合成した。RT反応は、以下の条件を用いて達成した:室温で30分、42℃で3時間、および、95℃で5分間。in situハイブリダイゼーションのために、細胞を65℃で1時間、ブロッキングバッファー(10mMのTris-HCl、50mMのKCl、1.5mMのMgCl
2、1%のTriton-X、20μMのRandom DNAを最終容量200μl中に含む)中でインキュベートした。ブロッキングの後、細胞を70℃で1時間、10μMのイントロンをまたぐ特異的プローブ(配列を表1、3に示す)でハイブリダイズした。次いで、スライドを、事前に温めたPBSで2回洗浄した。
【0261】
希釈単一細胞(Dilutional single cell)RT−PCR
HeLa培養物を、各々の明視野で数個の細胞に希釈した。RNAを、共焦顕微鏡の案内の下で採取した15の個別細胞から抽出した。第一鎖cDNA合成は、RNAから、Clontech社からのSMARTおよびCDSIII 3’オリゴヌクレオチドおよびPowerscript逆転写酵素を用い、製造者の指示に従って行った。次いで、この第一鎖cDNAを、Clontech社cDNAライブラリーキットからのLDプライマー、DSIII PCRプライマーおよびAdvantage2 Polymeraseミックスを用いたPCR増幅に用いた。
【0262】
細胞抽出物の調製および分画
細胞質抽出物を、種々のベクターでトランスフェクトしたHeLa細胞から調製した。細胞を24時間のトランスフェクションの後に回収し、1000gで5分間、4℃にて遠心分離した。細胞ペレットを、氷冷PBS、pH7.2で3回洗浄し、細胞容積の3倍量の溶解バッファー(20mMのTris−HCl、pH7.4、200mMのNaCl、14mMのMgCl
2、20単位のSuprasin、100単位のプロテアーゼインヒビター、100μg/mlのシクロヘキサミド、0.1%の(v/v)のTriton X-100)中、10分間氷上で溶解した。核を、5000gで10分間、4℃にて遠心分離して単離した。上清は細胞質抽出物を含んでおり、これを直ちにTrizol(Invitrogen社)によるRNA抽出に用いた。核抽出物は、ペレットを細胞溶解バッファーで1回、そして、1×PBS、pH7.2で2回洗浄して調製した。次いで、核RNAをTrizol試薬を用いて回収した。純度(>98%)および核の完全性を、顕微鏡で決定した。
【0263】
リボヌクレアーゼプロテクションアッセイ(RPA)
Ambion社からのDirect Protect Lysate RPAキットを用いて、細胞質溶解液をRNaseカクテルバッファーで処理し、RNaseAおよびTカクテルとともに37℃で30分間インキュベートした。ヌクレアーゼは、サルコシル(sacrosyl)ナトリウムおよびプロテイナーゼとともに37℃で30分間インキュベートすることにより除去した。RNAは、99%エタノールおよびグリコーゲンブルー(glycogen blue)を用いて沈殿させ、次いでTurboDNase(Ambion社)でDNase処理し、その後10%変性PAGE/8M尿素で分離した。
【0264】
ダイサー産物のためのノーザンブロット
全RNAを、Trizol(Invitrogen社)を用いて回収し、99%エタノールで沈殿させた。1レーンあたり30μgの全RNAを負荷し、10%のPAGE/尿素ゲル上で分離した。次いで、RNAをナイロンメンブレン(Amersham社)に転写し、サケ精子DNAで6時間ブロッキングした。ブロッキングしたメンブレンを、TSおよびrTSα遺伝子のオーバーラップ領域をまたぐ放射性標識S−ASプローブで、一晩ハイブリダイズした。プローブは、
32P標識ヌクレオチドおよびAmersham社のランダムプライミングキットを用いた、オーバーラップDNAのランダムプライミングによって作製した。全てのメンブレンを、低ストリンジェンシーバッファーで1回、そして、高ストリンジェンシーバッファーで2回、それぞれ1時間洗浄し、シグナルをTyphoon蛍光画像装置で検出した。
【0265】
細胞培養およびトランスフェクション
HeLa細胞を、10%FBS添加D−MEMで培養した。対数増殖期の細胞を、センスまたはアンチセンスオーバーラップ領域のいずれかまたはその両方を有するルシフェラーゼ遺伝子を含むプラスミドでトランスフェクトした。トランスフェクションの24時間後に、細胞をさらなる実験に用いた。pGL3コントロールベクター(Promega社)を、全てのS−AS構築物の作製に用いた。我々は、クローニングのためにホタルルシフェラーゼの下流に、Pst1およびEcoR1制限部位を設けた。BamH1配列を用いてオーバーラップ領域間にヘアピンを形成し、連続的なS−AS配列を有するベクターを構築した(プライマーおよびプローブ配列は、表3に列挙した)。同じベクターを、MEGAscript転写キット(Ambion社)を用いた、S−ASオーバーラップmRNAのIVTのテンプレートとして用いた。
【0266】
リアルタイムPCR
リアルタイムPCR(RT−PCR)は、GeneAmp 7000装置(Applied Biosystems社)で行った。PCR反応は、20ngのcDNA、SybrgreenまたはUniversal Mastermix(Applied Biosystems社)、300nMのフォワードおよびリバースプライマー、および200nMのプローブを最終容量50μlに含んだ(プライマーおよびプローブ配列は、表1、3に列挙した)。プライマーおよびプローブは、PrimerExpressソフトウェア(Applied Biosystems社)を用いて設計した。これらは各々のS−ASペアに対して鎖特異的であり、プローブは、ゲノムDNA増幅の可能性を排除するためにエクソン境界をカバーしている。全ての遺伝子のPCR条件は、以下の通りであった:2分間50℃および10分間95℃、15秒95℃および1分間60℃を40サイクル。結果はサイクル閾値(Ct値)に基づいている。被験遺伝子および参照遺伝子(β2MまたはGAPDHのいずれか)のCt値の差は、ΔΔCtとして計算した。
【0267】
例1:アンチセンス転写物のノックダウン
現状において、アンチセンス転写物レベルに影響を及ぼす唯一の手法は、効果的な転写物のノックダウンを達成することを目的とするsiRNAの使用によるものであった。後の用語−ノックダウン−は、アンチセンスオリゴヌクレオチドを研究していた1990年代初めに、我々が導入したものであるが(Wahlestedt, C. (1994) Antisense oligonucleotide strategies in neuropharmacology. Trends Pharmacol Sci 15 (2):42-46)、これはsiRNAにも等しく適用できる。
【0268】
発現プロファイリングは、センス/アンチセンスペアが頻繁に一致的に制御されていることを明らかにした。siRNAを用いて、我々は、siRNAによるアンチセンスRNAの攪乱が、対応するセンスメッセンジャーRNAの発現を変化させ得るという実験的な証拠を提供した。しかしながら、この制御は、不一致的(アンチセンスノックダウンがセンス転写物の増加をもたらす)、または、一致的(アンチセンスノックダウンが、同時的なセンス転写物の減少をもたらす)であり得る。表2に、siRNAによって標的化された一連のヒトおよびマウスのアンチセンス転写物を示す。各ケースにおいて、2または3以上のsiRNAはアンチセンス鎖の非オーバーラップ部分に標的化され、ノックダウンはRT−PCRを用いて確認した。表2は、コードアンチセンスならびに非コードアンチセンスを同一の方法で標的化でき、いずれのカテゴリーも対応するセンス転写物を、一致的または不一致的様式で制御できることを例示する。ここで我々はsiRNAによるアンチセンスRNA転写物のノックダウン(または、その他のRNA標的化原理)に基づく2つの新規な薬理学的戦略を提案する:
【0269】
戦略1:不一致的制御の場合、アンチセンス転写物のみをノックダウンすることにより、従来の(センス)遺伝子の発現が高まる。後者の遺伝子が既知のまたは推定される薬物標的をコードする場合、そのアンチセンス対応物のノックダウンは、受容体作用薬または酵素刺激剤の作用を模倣することができると考えられる。表2は、アンチセンス(コードならびに非コード)転写物のノックダウンが、センス発現を不一致的に制御することが示された例を提供する。例えば、パーキンソン病では、ミトコンドリアに局在するキナーゼ、PINK1の増強した活性(例えばPINK1の上昇)が望ましいといえ、その非コードアンチセンスパートナーのノックダウンはそのための手段となり得る。さらに、脈管形成を刺激するために、Gタンパク質共役型レセプター(GPCR)、CD97を介したシグナリングの強化は、その(コード)アンチセンスパートナー、Ddx−39の標的化によって達成することができる。
【0270】
戦略1の例(PINK1の上昇、例えばパーキンソン病):
【化4】
【0271】
戦略2:一致的制御の場合、アンチセンスおよびセンス転写物の同時的ノックダウンにより、従来の(センス)遺伝子発現の相乗的な低減が達成される。これらの概念は、
図2Aおよび2Bに例示されている。siRNAがノックダウンを達成するのに用いられる場合、この戦略は、センス転写物に標的化された1つのsiRNAおよび対応するアンチセンス転写物に標的化された別のsiRNA、または、同時にオーバーラップするセンスおよびアンチセンス転写物を同時に標的とする単一のエネルギー的に対称なsiRNAを適用することによってさらにテストされる。表2によれば、かかる二重の同時標的化を追求することは、例えば、その阻害が種々の病状で有益となり得る標的である、低酸素誘導因子1アルファの場合に適切であろう。表2における別の例は、低減したシグナリングが同じく治療的に有益であることが示されたGPCRである、アドレノメデュリンAM1レセプターである。
【0272】
新たな機能的なRNAの世界の出現により、考慮すべき新たな潜在的薬物標的が存在する。これらの中には、従来の薬物標的をコードするものを含むセンス転写物の発現を制御する能力を有する多数の天然に存在するアンチセンス転写物がある。これらのアンチセンス転写物の多くが非コードRNAであるため、これらはタンパク質レベルで操作することができない。siRNAを用いることにより、我々はアンチセンス転写物ノックダウンがセンス転写物発現の増加(一致的制御)または減少(不一致的制御)のいずれかをもたらし得ることを示した。これらの知見および概念は、新たな薬理学的戦略の基礎を形成する。
【表2】
【0273】
戦略IIの例(アルツハイマー病に用いるアンチセンスおよびセンス転写物の同時ノックダウン):
【表3】
【0274】
例2:哺乳類における遺伝子発現の天然アンチセンス媒介性制御
天然に存在するアンチセンス転写物(NAT)は、ヒトゲノムの20%について報告されている。最近の報告は、マウス転写物の少なくとも72%についてNATが存在することを示している。大部分の天然アンチセンス転写物は、シスコードされたアンチセンスである。定義上、シスNATは、同じ染色体座におけるオーバーラップ転写単位を有する相補的なmRNAである。トランスNATは、異なる染色体座から転写される相補的なRNAである。キメラ転写物はゲノムの2以上の領域に対して同一性を有するmRNAであり、cDNAライブラリー作製のアーティファクトである可能性がある。70%以上のシスNATは、3’オーバーラップを有するテールトゥテール型であるが、15%は5’オーバーラップ領域を有するヘッドトゥヘッド型である。残りの分子は、イントロンまたはコード配列オーバーラップを有する。多くのNATはオープンリーディングフレームを示さず、非コードRNAに分類される。
【0275】
アンチセンスおよび対応するセンス転写物パートナーとの相互作用は、統一された予想可能なパターンに従わない。ヒト遺伝子、HIF−1αおよびTS、を標的とする2つのNAT間の相互作用を調査した。HIF(aHIF)のアンチセンス転写物は、HIFのスプライシング、およびまたHIFの2つのスプライシング型の間の比率を変化させ得る非コードRNAであり。具体的には、アンチセンス分子がHIF mRNAの1つのスプライス変異体を不安定化し、バランスを他の変異体側にシフトし得ることが仮定された。編集は、プレmRNAにおけるアデノシンのイノシンヌクレオチドへの変換を介した、NATの別の提案された機能である。TS(rTSα)のアンチセンス配列は、センスRNA分子の編集を誘導し、それによってTS mRNAの下方調節を推進する。重要なことに、TSのNATはタンパク質をコードするが、aHIFについては予想されるオープンリーディングフレームがない。2つの異なった作用様式を通してセンスmRNAを潜在的に制御することができる、NATのコードおよび非コードサブグループからのこれらの2つの既知の候補を研究に選択した。
【0276】
近年のゲノム生物学における最も刺激的な知見の1つはRNA干渉(RNAi)の発見であり、これが、NATが遺伝子発現を制御し得る可能なメカニズムとして提案されている。RNAiは、二本鎖RNA(dsRNA)が細胞に入ると活性化される固有の細胞過程である。もともとCaenorhabditis elegansで発見されたRNAiは、進化的に保存された、転写後遺伝子サイレンシング機構である。dsRNAは、ダイサーと呼ばれるRNaseIII酵素によって、低分子干渉RNA(siRNA)と呼ばれる約21〜22のヌクレオチドの小さな二重鎖RNA分子にプロセシングされる。siRNA分子は次いで、RNA誘導サイレンシング複合体(RISC)と呼ばれる多タンパク質複合体と相互作用し、活性化したRISCと関連RNA転写物との配列特異的な会合をもたらす。この相互作用は、標的転写物の配列特異的切断を導く。内因性のS−AS二重鎖に由来するdsRNAがダイサーの基質として機能し、次いでsiRNAを生成することによりRNAi経路を介して作用し得ることが示唆されている。siRNAは、その後S−AS転写物の一方または両方を制御する。
【0277】
要約すると、NATは遺伝子転写、RNAスプライシング、ポリアデニル化、編集、安定性、輸送および翻訳を制御することが提案されている。この研究の目的は、NAT作用のメカニズムを調査することであった。NATのエクソンにおける共通の相補的領域は、細胞質での二重鎖形成の可能性を意味し、イントロンのオーバーラップ配列は核内dsRNA二重鎖を示唆する。理論的には、全ての提案された制御機構は細胞質または核でのRNA二重鎖形成を必要とし、したがって、HIFおよびTSをモデル遺伝子として用いた、RNA二重鎖についての細胞的な証拠が本研究の主な焦点であった。
【0278】
結果:in situハイブリダイゼーション法を用いて、内因性のTSおよびrTSαの両方の同時的存在を評価した。HeLa細胞をスライド表面上で増殖させ、固定し、DNaseで処理した(材料および方法を参照)。第一鎖cDNAを合成し、鎖特異的なイントロンをまたぐプローブを用いたin situハイブリダイゼーションに供した。(TSセンス−アンチセンス遺伝子およびプローブの概略図は、
図3Aに示した)。重要なことに、イントロンをまたぐプローブを用いることにより混入DNAの検出が排除され、プローブは両方の転写物のオーバーラップ領域の少なくとも一部をカバーし、シグナルが全長mRNAから得られたものであることが保証される。結果は、両方の転写物が単一細胞に同時に共存することを示す(
図4)。
【0279】
細胞集団と対立する概念としての単一細胞におけるS−ASペアの共存を示すために、単一細胞内でのNATの共発現を検出するよう方法を設計した。RNAを、顕微鏡による案内の下で単一細胞から抽出し、TSおよびrTSα転写物を、TaqMan技術を用いたリアルタイムPCRで定量した(
図5)。プライマーは、センスおよびアンチセンスの両方に対して鎖特異的であった。S−AS発現は、内部対照としての、極めて大量に存在するmRNAであるベータ2−ミクログロブリン(β
2M)対して正規化した。方法の感度は、TSおよびrTSαの発現を、比較的存在量の少ない遺伝子であるTATA結合タンパク質(TBP)のそれと比較することによって評価した。
図5に示すとおり、TSおよびrTSαは、低い発現を伴う遺伝子について予想される、β
2Mの7%であり、TBPのレベルはβ
2Mに対して5%であった。このように、S−AS転写物のいずれも単一細胞に、ほぼ同様のレベルで存在した。
【0280】
次に、TSおよびHIF転写物の細胞内位置を調査した。細胞質抽出物および核抽出物をHeLa細胞から調製し、直ちにRNA抽出に用いた。次いでRNAを逆転写し、リアルタイムPCRによるS−AS転写物の定量に用いた。重要なことに、両方の遺伝子のセンス鎖は細胞質および核において同様の発現量を有したが、これとは対照的に、アンチセンス転写物レベルは、核において、細胞質で検出されたレベルと比較して1000倍高かった。このように、これらのデータは、S−ASペアの空間的な乖離を示唆している(
図6)。
【0281】
次に、HeLa細胞の細胞質におけるS−AS二重鎖の形成を、リボヌクレアーゼプロテクションアッセイ(RPA)を用いて調査した。HeLa細胞は内因性にS−ASmRNAの両方を発現するが、真核細胞内でセンス、アンチセンスまたは連続的S−ASオーバーラップmRNAを生成する3種のベクターを構築した(
図3B)。構築物のうちの2つについては、TSおよびrTSαの3’オーバーラップ領域をルシフェラーゼ遺伝子の下流に配置し、これによってトランスフェクション効率をモニターすることを可能にした。これらの2種のベクターをHeLa細胞にコトランスフェクトし、オーバーラップ領域を有するRNAが過剰発現された状態を生成した。第3の構築物については、センスおよびアンチセンス相補領域を、S−ASオーバーラップ部分の間で短いヘアピンとともに、同一のベクターに設計した。このベクターからのRNAは、細胞内でそれ自体に対して折り畳まれ、RNA二重鎖を形成すると考えられる。さらなる対照として、ベクターのin vitro転写(IVT)を行い、人工のRNA二重鎖を作製し、次いで細胞にトランスフェクトした。トランスフェクト細胞および未処理細胞におけるRNA二重鎖の存在を調査するために、細胞質溶解液は単離し、次いでRNAse AおよびTで処理した後、ポリアクリルアミドゲル上で分離した。既存のRNA二重鎖は、S−ASオーバーラップ領域に対する放射性標識プローブで検出した。S−AS二重鎖は、IVT dsRNAでトランスフェクトした細胞で検出された。S−ASを過剰発現させた細胞または内因性レベルのNATを発現している細胞において、RNA二重鎖は検出されなかった(
図7)。これらのデータは、内因性NAT、ならびに、合成的に過剰発現させたS−AS RNAが、HeLa細胞の細胞質で二重鎖を形成しなかったことを示唆する。生細胞における想定されるRNA二重鎖が一過性かつ不安定であり、内因性siRNAまたは他の中間産物に迅速にプロセシングされている可能性がある。この可能性を調査するために、S−AS mRNAのオーバーラップ領域をまたぐ放射性標識プローブによるノーザンブロット分析を設計した。全長RNAから20bp未満のダイサー産物までの任意の長さのS−AS配列を検出する可能性を有し得るこれらのランダムに設計されたプローブを、プロセシングされたRNAの存在を探索するのに用いた。仮説は、RNA二重鎖が存在するならば、これらは最終的にはダイサーによって21塩基対のRNAオリゴヌクレオチドにプロセシングされるはずであるというものであった。HeLa細胞を、センス、アンチセンスまたはS−AS RNAを生成する、前述の実験で用いたのと同じベクターでトランスフェクトした。IVTによって産生されるS−ASオーバーラップ領域からのRNA二重鎖を陽性対照として用い、これを細胞にトランスフェクトした。ダイサー産物は、IVT dsRNAでトランスフェクトした細胞、または、内部ヘアピンdsRNAを生成するベクターでトランスフェクトした細胞にのみ存在した(
図8)。陽性バンドは、過剰発現させた細胞においては1100bp(ベクターから生成された全長RNA)に、および、IVT RNAトランスフェクト細胞においては200bpに検出された。しかしながら、非トランスフェクト細胞または過剰発現細胞における21bpRNA分子の欠如は、S−AS二重鎖がダイサーによってプロセシングされなかったことを示唆する。
【0282】
インターフェロンシグナリングカスケードは細胞の抗ウイルス防衛機制の一部であり、dsRNAによって誘発することができる。インターフェロンβ(IFNβ)、および、2’,5’−オリゴアデニル酸シンテターゼ−2(OAS2)のmRNAレベルを、S−AS転写物を過剰発現する細胞で測定した(
図9)。IFNβ mRNAレベルはin vitro転写dsRNAでトランスフェクトした細胞において10,000倍上方調節されたが、過剰発現されたS−AS転写物を有する細胞では不変であった。OAS2レベルはまた、IVT二重鎖RNAのトランスフェクションを受けた細胞においてのみ約600倍上方調節された。これらのデータは、S−AS mRNAによる細胞質RNA二重鎖は形成されないようであることを示しているが、インターフェロン経路が細胞内RNA二重鎖に無反応であり得る可能性がある。
【0283】
本研究は、総合すると、NATがRNAiメカニズムを作動させる細胞質RNA二重鎖を形成しないことを示唆する。タンパク質をコードするまたはコードしない、アンチセンス方向のオーバーラップ転写物は、複数の異なるRNA調節経路のための基質であるdsRNAを形成する可能性を有する。dsRNAについての1つの顕著な経路は、ダイサー酵素複合体による低分子RNAへのその分解である。複数の実験的なアプローチが、細胞の細胞質におけるRNA二重鎖の存在を同定し、dsRNAのプロセシングに関与するダイサー産物を検出する試みに用いられた。合成S−AS構築物および内因性NATを用いた結果は、細胞質RNA二重鎖の存在またはRNAiメカニズムの関与を支持しなかった。
【0284】
S−ASmRNAの両方の同時的存在は、NAT制御の1要件であり、in silicoで予測されたNAT候補の多くは、この基準のみで除外することができる。S−ASの発現レベルは、これらによって制御の様式を予測することができるため重要である。我々の実験モデルから示唆された、単一細胞におけるS−ASの高いレベルは、RNAiの関与とは相反するものである。しかしながら、この現象の別の説明は、翻訳のブロック、または、mRNAレベルの変化を伴わない、他の種類の遺伝子発現のRNA媒介性制御である。発現評価およびmRNAレベルの評価は、他の予想されるS−AS候補の研究の第一段階として推奨される。
【0285】
アンチセンス転写物レベルの変更は、センスmRNAレベルに影響を及ぼし得るが、S−ASの変化は、必ずしも相互的ではない。最近我々は、アンチセンス転写物のノックダウンはセンス転写物レベルを高めるが、逆の相互作用は観察されなかったことを示した。この所見は、アンチセンスmRNAがセンス転写物の制御に関与しているが、センスmRNAはアンチセンス発現を制御しないようであることを示唆している。内因性のRNAiが哺乳類のS−AS現象に関与しているならば、両方の転写物がノックダウン実験において、同様の発現プロファイルを示すことが予想され得る。
【0286】
概して、上記所見は、S−AS遺伝子制御がRNAi機構に関与していないとの結論と一致している。実際、さらなる裏付けが、別の2つの所見から導かれる。第1は、小RNA分子は高発現S−ASについてさえ検出されず、ダイサーに依存しないRNAプロセシングが示唆されたこと、第2は、インターフェロンカスケードが、NATによって活性化しなかったことである。実際、少なくとも70%の哺乳類の遺伝子がNATを有し、メカニズムがRNA二重鎖形成を通したものであるならば、累積的なインターフェロン応答があることが予想され得る。我々の研究は、dsRNAトランスフェクションによる劇的なβ−インターフェロンおよびOAS2 mRNAの誘導を示したが、S−ASを過剰発現する細胞においてはこれがみられず、これはNATの二重鎖の欠如を示すものである。
【0287】
現在まで、NATに由来する内因性の哺乳類siRNAについての報告はない(Makalowska I, Lin CF, Makalowski W: Overlapping genes in vertebrate genomes. Comput Biol Chem 2005, 29(1):1-12)。しかしながら、内因性siRNAがRISCにプログラム化され得、その効果が長期のものであり、標的RNAの下方調節を導く可能性がある。理論的には、500bpのdsRNAは、siRNAのライブラリーを産生する。このsiRNAのコレクションは、2つのレベルで、多くの「的外れの(off targeted)」mRNAを分解することによるか、または、翻訳をブロックすることにより、タンパク質産生を損なうことができる。この非特異的効果の範囲は、アンチセンス配列を有することが知られている遺伝子が多数あることを考慮すると、はるかに大きいものである。
【0288】
本研究におけるデータと一致して、内因性miRNAの存在は報告されているが、内因性の哺乳類siRNAはこれまで記載されていない。この所見はまた、内因性RNA二重鎖のダイサー依存性経路でのプロセシングに相反するものであり、我々の知見をさらに実証するものである。
【0289】
我々のデータは、アンチセンス発現が転写物分解経路とリンクしていないことを示唆している。しかしながら、我々の方法は、細胞核におけるRNA二重鎖の形成、または、遺伝子発現のNATによる制御について提案されている任意の機能、例えば、編集、核内保留、スプライシングまたは輸送などを完全には除外していない。多くの異なる機能およびメカニズムがNATについて示唆されているが、現在までに示唆されたメカニズムの分類法または予測のための系統的アプローチはなされていない。我々の研究は、NATの、そのユニークな生物情報学的特徴に基づく分類を導き得る、NAT研究への機能的なアプローチのスタートとなり得るものである。我々の方法論はまた、遺伝子発現の天然アンチセンス媒介性の制御への系統的アプローチを提供するよう拡張することができる。
【表4】
【0290】
例
3:核内保留RNA転写物はβ−セクレターゼの発現をフィードフォーワードメカニズムによって制御する
cDNA末端の迅速増幅法(RACE):RLM-RACE ready cDNA(Ambion社、Austin、TX)を利用し、ヒトのおよびマウス脳からのcDNAを、遺伝子特異的プライマーおよびキットプライマーによるネストPCR反応に用いた。マウスおよびヒトの3’および5’PCR産物をゲルから切り出し、精製し、T-Easyベクター(Promega社)にクローニングした。各系列からの20個の陽性コロニーをシーケンシングした。
【0291】
リアルタイムPCR:リアルタイムPCR(RT−PCR)は、GeneAmp 7900装置(Applied Biosystems社)で行った。PCR反応は、20〜40ngのcDNA、Universal Mastermix(Applied Biosystems社)、300nMのフォワードおよびリバースプライマー、および200nMのプローブを最終容量15μlに含んだ(プライマーおよびプローブ配列は、表1、3に列挙した)。プライマーおよびプローブは、FileBuilderソフトウェア(Applied Biosystems社)を用いて設計した。これらはS−ASペアに対して鎖特異的であり、センスプローブは、ゲノムDNA増幅の可能性を排除するためにエクソン境界をカバーしている。全ての遺伝子のPCR条件は、以下のとおりであった:2分間50℃および10分間95℃、次いで15秒95℃および1分間60℃を40サイクル。結果はサイクル閾値(Ct値)に基づいている。被験遺伝子および参照遺伝子(18s rRNA)のCt値の差は、ΔΔCtとして計算した。
【0292】
細胞培養およびトランスフェクション:SH−SY5Y細胞は、10%のFBS、1%のNEAA、1%のL−グルタミン酸塩および1%の重炭酸ナトリウム(培地)が添加されたMEMとF12との混合液(培養培地)中で培養された。対数増殖期の細胞を、メーカーの指示(Invitrogen社)に従い、0.2%のLipofectamine 2000を用いて20nMのsiRNAでトランスフェクトした。細胞は、さらなる使用の前に48時間インキュベートした。ニューロン様分化の誘導のために、細胞を2週間、20μMのレチノイン酸(Sigma社)に暴露した。ストレス誘導のために、細胞を、30mMのKClを含む培地中に5分間またはAβ1−42ペプチド(Tocris Co. California, USA)を含む培地中に2時間懸濁し、次いで下記の分画のために処理した。救済実験のために、細胞をPBSで洗浄し、培養培地に1時間、37℃で再懸濁した。対照試料を同様に処理し、並行した細胞分画法およびRNA抽出に用いた。親CHO細胞およびCHO−7PA2細胞は、10%のFBSを含むDMEMで増殖させた。馴化のために、CHO−7PA2細胞を血清を含まない培地で維持し、上清の培地を24時間後に回収した。SH−SY5Y細胞は、分画の24時間前に、馴化培地に暴露した。対照細胞は、親CHO細胞からの同様の馴化培地で処理した。
【0293】
ノーザンブロット:全RNAをTrizol試薬を用いて単離し、1レーンあたり10μgの全RNAを1%のアガロースゲル上に負荷した。次いでRNAをHybondメンブレン(Ambion社)に転写し、Ultrahybrid(Ambion社)で6時間ブロッキングした。ブロッキングしたメンブレンを、マウスBACE−1およびBACE−1−ASのオーバーラップ領域をまたぐ放射性標識S−ASプローブで、一晩ハイブリダイズした。プローブは、32P標識dCTPヌクレオチドおよびAmersham社のランダムプライミングキットを用いたオーバーラップDNAのランダムプライミングによって作製した。メンブレンは低ストリンジェンシーバッファーで1回、高ストリンジェンシーバッファーで2回、それぞれ10分間ずつ洗浄し、シグナルを蛍光画像装置で検出した。
【0294】
細胞抽出物の調製および分画:細胞質抽出物をSH−SY5Y細胞から調製した。細胞を回収し、1000gで5分間、4℃にて遠心分離した。細胞ペレットを氷冷PBS、pH7.2で一回洗浄し、氷上で10分間、細胞容積の3倍量の溶解バッファー(20mMのTris-HCl、pH7.4、200mMのNaCl、14mMのMgCl
2、20単位のSuprasinおよび0.1%の(v/v)のTriton X-100)中で溶解した。核を、500gで10分間、4℃にて遠心分離することにより単離した。上清は細胞質抽出物を含んでおり、これを直ちにRNA抽出に用いた。核抽出物は、ペレットを細胞溶解バッファーで1回洗浄して調製した。次いで、核RNAをRNAeasyミニキットを用いて回収した。
【0295】
RNAプルダウンおよび質量分析:高MgCl
2濃度の低張分画バッファーを、細胞破砕のためのDounce型ホモジナイザーによるホモジナイゼーションに用いた。SH−SY5Y細胞溶解液を、直ちにBACE−1およびBACE−1−ASについての鎖特異的ビオチン標識RNAプローブとハイブリダイズさせ、次いで、ストレプトアビジンビーズとともに15分間インキュベートした。精製タンパク質を、ポリアクリルアミドゲル電気泳動(PAGE)により分離した。質量分析を、RNA転写物とともに精製されたタンパク質の検出に用いた。ヒトゲノムにマッチしないPrltkを標的とするRNAのプローブを対照として用いた。
【0296】
安定性およびα−アマニチン処理:HEK−293T細胞を24穴プレートにプレーティングした。24時間後に、細胞を5μg/mlのα−アマニチンで処理し、7PA2またはCHO対照細胞からの馴化培地でインキュベートした。細胞をRNA精製およびRT−PCRのために、処理の6、12および24時間後に採取した。3つの独立した試料を各々のデータポイントで採取し、全ての試料はRNA精製およびデータ分析のための無処理および非トランスフェクト対応試料を有した。
【0297】
統計分析:全ての実験は、6〜20の生物学的反復および3〜6の技術的反復を伴って行った。データは、2要因分散分析(ANOVA)における主効果を用いた処理要因の事後検定の後、対照処理群との比較としてグラフに示した。各々の処理の有意性p値として計算され、各グラフ中に表示され、p<0.05を有意性ありとみなした。
【0298】
RNA蛍光in situハイブリダイゼーション(RNA−FISH):SH−SY5Y細胞をシランコートスライド上で一晩増殖させ、4%のパラホルムアルデヒド(pH7.4)で4分間固定した。細胞を、0.2%のTriton-Xで4分間、室温にて透過処理した。スライドを風乾した後、付着細胞のプレハイブリダイゼーションバッファー(50%のホルムアミド、5×SCC、50μg/mlのサケ精液DNAおよび0.1%のTween-20)による65℃、1時間の処理を容易にするためにチャンバーを用いた。Prltk mRNA(陰性対照として)ならびにBACE−1およびBACE−1−ASの非オーバーラップ部分に対するビオチン化プローブは、T7プロモーターおよびBiotinUTPをMEGAScriptキット(Ambion社)とともに用いて、クローニングされたS−AS RNAのin vitro転写により作製した。次いで、プローブをハイブリダイゼーションバッファー(2.5μg/ml)に加え、65℃で6時間インキュベートした。その後、スライドを3回、PBSにより65℃で、それぞれ10分間洗浄した。
【0299】
ウエスタンブロット:HEK−SW細胞を、20nMのBACE−1センス、BACE−1−ASまたは両方の転写物のsiRNAでトランスフェクトした。トランスフェクションの48時間後に、細胞を、350mMのDTTを含むBioRadからのLaemmliサンプルバッファー200μlで溶解した。次いで、20μlの細胞溶解液を、10%のSDSPAGE上で分離し、一晩ニトロセルロースメンブレンに転写した。メンブレンをBACE−1(Abcam社からのもの)に対する一次抗体、および、HRPに結合した二次抗体とともにインキュベートした。HRP基質の添加後、化学発光シグナルを、X線フィルムで検出した。同じメンブレンをはぎ取り、ローディングコントロールとしてのβ−アクチンの検出に再利用した。
【0300】
ELISAおよびHTRFアッセイ:人工的にAPPスウェーデン変異を過剰発現させたHEK−SW細胞を、6穴プレート上に播種し、24時間後に、BACE−1センス、BACE1−アンチセンスまたは両方の転写物に対する20nMのsiRNAでトランスフェクトした。培養細胞からの培地を、Aβ1−42抗体を用いたサンドイッチELISAのためにトランスフェクションの48時間後に回収した。捕獲抗体(アミロイドAβに対するマウスモノクローナル抗体、Abcam社)を、Maxisorb 96透明プレート内、炭酸バッファーの存在下、4℃で一晩インキュベートした。回収した培地をプレートに加え、一次抗体(Abcam社からのAβ1−42)およびヤギ抗ウサギIgG二次抗体とともにインキュベートした。HRP基質の添加後、SpectraMaxプレートリーダーを用いて発光を検出した。3回の反復実験の405nmでの平均吸光度をバックグラウンドから減じ、陰性対照siRNA試料に対して正規化した。時間分解蛍光(HTRF)アッセイ(Cisbio社)を、Aβ1−42の検出のために用いた。Aβ1−42に対する2つの特異的モノクローナル抗体をフルオロフォアで標識し、同時にAβペプチドに結合すると、これらの間の距離に基づいて、第1のフルオロフォアの発光が第2のフルオロフォアを励起する。HTRF反応は、製品のプロトコルに従い、単一のチューブ内で、APPtgおよび野生型マウスからの精製されたタンパク質を用いて、洗浄工程なしで行い、これによりペプチドの直接測定を可能にした。
【0301】
動物実験:The Scripps Research Instituteでの動物実験についてのIACUC認可の後、18頭の6ヵ月齢の雄マウスをin vivo実験に用いた。マウスは6頭ずつの3群に分け、浸透圧ミニポンプ(Alzet社)を、第三脳室背側中の慢性留置カニューレとともに外科的に移植した。浸透圧ミニポンプは、BACE−1(グループ1)、BACE−1−AS(グループ2)、または、対照siRNA(ヒトおよびマウス遺伝子全体に効果がないことが事前に知られているもの、グループ3)に対するsiRNAの、0.4mg/日の用量での、連続的な注入(0.25μl/時)をもたらす。14日間の持続的なsiRNA点滴の後に、マウスを安楽死させ、脳を取り出した。RNAの定量測定のために、各々のマウスからの5つの組織を摘出した:背側海馬、腹側海馬、背内側(dorso-medial)前頭前皮質、背側線条体および小脳。組織を切除し、氷冷PBSでリンスし、RNAを、ホモジナイゼーションの後、Trizol試薬(Invitrogen社)中に、メーカーのプロトコルに従って抽出した。抽出したRNA試料をQiagen RNeasyカラムに通し、DNA混入物の除去のために、オンカラムDNAse処理に供した。RNA試料の濃度を分光測光法で決定し、各々の試料の800ngを、40μl最終容量で、ランダムヘキサマーおよび逆転写酵素(Applied Biosystems)を用いた第一鎖cDNA合成に用いた。リアルタイムPCR(RT−PCR)測定は、上記のとおりに行った。先に述べたように行われた。対照マウスと比較した個々の組織のRNAレベルのパーセンタイル変化を、各々のグラフにプロットした。
【0302】
別の実験では、全て6週齢で雄の4頭のAPP−tgマウス(Tg 19959)および4頭の対照同腹子を屠殺した。脳組織を、RNA測定およびHTRFによるAβ1−42検出のために用いた。
【0303】
BACE−1非コード天然アンチセンス転写物の同定:ヒトBACE−1遺伝子座のゲノム構造を
図12Aに図解した。我々のプライマー、プローブおよびsiRNA配列の位置を
図12Bに示し、また、表5に列挙した。BACE−1−AS転写物は、種を越えて、高度に保存されている(
図12Bを参照)。
【0304】
ヒトBACE−1(NM_012104)、マウスBACE−1(NM_011792)、ヒトBACE−1−AS(CB960709)およびマウスBACE−1−AS(AK074428およびAK078885)に関する配列情報は、UCSC Genome Bioinformaticsウェブサイト(genome.ucsc.edu/cgi-bin/hgGateway)から読み出した。BACE−1−ASのゲノム構造を完全に機構を特性化すべく、我々は、NATの5’および3’末端からの有向(directional)シーケンシングのために、cDNA末端の迅速増幅(RACE)実験を行った。ヒトBACE−1−ASについて、RACEは、
図12Cに示したその境界における追加のヌクレオチドを除き、UCSCデータベース(CB960709)からの発現配列タグ(EST)とほとんど同一の配列を明らかにした。2つのスプライス変異体がヒトおよびマウスBACE−1−ASについて同定され、これらは、両方の種において、BACE−1センス転写物とオーバーラップしていた。マウスBACE−1−ASについて、2つの別々のESTがまた見出され、これらは、マウスBACE−1遺伝子のエクソン5および6をカバーする単一のコンティグ配列に一致した。(
図12D)。ポリAテールおよびキャップ構造がヒトおよびマウスの両方のアンチセンス配列について見出され、これは、BACE−1−ASがRNAポリメラーゼIIの産物であり、完全にプロセシングされたRNA転写物であることを示唆するものである。しかしながら、オープンリーディングフレームがなかったことから、BACE−1−ASがncRNAであることが示唆された。また、ゲノム配列との複数のミスマッチがヒトおよびマウスBACE−1−ASの両方で検出され、これは、「AからI」への編集がセンス転写物による核内二重鎖形成に起因するようであることを意味する(Kawahara and Nishikura, 2006 FEBS Lett 580, 2301-2305)。この後者の知見は、以下に詳細に解説されるように、BACE−1−ASの核内保留パターンに関係している可能性がある。ヒトのおよびマウスBACE−1−ASの全ての新規配列は、追加のデータセクションにも示されている。
【0305】
発現プロファイリング:RT−PCRを用いて、我々はマウス脳および肝臓の種々の領域における、BACE−1(センス)およびBACE−1−AS(アンチセンス)RNA転写物の相対的な発現を測定した。いずれの転写物も、脳の種々の領域において、肝臓と比較して2〜5倍豊富だった。大脳皮質および扁桃体は、サンプリングした脳領域の中で、両方の転写物の最も高い発現を示した(
図10A)。ノーザンブロット分析により、マウス脳組織におけるBACE−1およびBACE−1−ASの発現が確認された(
図10A、10B)。BACE−1およびBACE−1−AS転写物はまた、未分化のおよび分化したヒト神経芽細胞腫SH−SY5Y細胞で発現された。ヒト神経芽細胞腫SH−SY5Y細胞の分化の誘導は、約50%のBACE−1−AS転写物発現の減少、および、約20%のBACE−1転写物の減少を伴い(図−10B)、これは、センスおよびNAT転写物の両方の発現が一致的であることを示唆するものである。
【0306】
BACE−1−ASノックダウンは、in vitroでBACE−1センス転写物を一致的に低減した:我々は次に、BACE−1−ASの、そのセンスパートナー(BACE−1 mRNA)の発現の、siRNAノックダウンを介した制御における役割を調査した。
図13Aは、ヒトSH−SY5Y細胞において、BACE−1−AS転写物を〜60%ノックダウンした、3つの異なるsiRNA配列を示す。3つ全てのsiRNA配列は、アンチセンス転写物を標的としており(しかし、BACE−1 mRNAは標的としていない)、また、センス転写物を、一致的かつ同時的に、アンチセンス転写物と同程度にノックダウンするのに非常に有効である。アンチセンス転写物(BACE−1−AS)を標的とする3つの異なったsiRNA分子がBACE−1の一致的ノックダウンをもたらしているため、siRNAが非特異的(または「的外れ」)メカニズムによって間接的にBACE−1転写物をノックダウンした可能性は低い。我々はしたがって、ヒトSH−SY5Y神経芽腫細胞において、非コードアンチセンス転写物がBACE−1 mRNAの発現に制御作用を及ぼすこと、および、BACE−1転写物自体を標的化することなくBACE−1−ASをノックダウンすることによってBACE−1の発現に影響を及ぼすことが可能であることを示唆する。
【0307】
BACE−1 mRNAをノックダウンした影響もまた評価した。
図13Aは、SH−SY5Y細胞においてBACE−1 mRNAを70%ノックダウンしたセンス標的化siRNA(S−a)を示す。BACE−1 mRNAを標的とする2つの他のsiRNA配列、SbおよびSc(
図12Bに示す)は、同様にBACE−1 mRNAをノックダウンした。S−aはBACE−1センス転写物の非BACE−1−ASオーバーラップ部分を標的としており、siRNAの適用の48時間後に、BACE−1−ASの発現を変化させなかった。このように、SH−SY5Y細胞では、BACE−1 mRNAのノックダウンは、BACE−1−ASの発現を調節しない。
【0308】
BACE−1−ASのノックダウンは、BACE−1タンパク質およびAβ1−42の産生を低減した:BACE−1−ASをノックダウンすることによるBACE−1 mRNA発現への一致的効果は、ウエスタンブロットにより決定したところ、BACE−1タンパク質レベルもまた、NAT特異的siRNAの投与により減少したことから、mRNAレベルに制限されていなかった(
図11)。さらにまた、我々は、ELISA法を用いてsiRNA処理後のAβ1−42のレベルを測定した。Aβ1−42は、APPのBACE−1による酵素切断産物であり、いわゆるスウェーデン変異を有するAPPを含むHEK−SW細胞系で検出可能である。Aβ1−42のレベルは、BACE−1−ASに対するsiRNAによるHEK−SW細胞系の処理により顕著に減少した(
図13B)。
【0309】
BACE−1センスおよびアンチセンス転写物の組み合わせた標的化は相乗効果を示した:我々は次に、HEK−SW細胞におけるBACE1およびBACE−1−AS転写物の同時標的化により相乗効果を達成することができるかを調査した。BACE−1センスおよびアンチセンス転写物に対するsiRNAの同時適用は、Aβペプチドを、センスまたはアンチセンス転写物のいずれかのノックダウンによって誘導されるよりも大きな程度で減少させた(P<0.001)。
図13Bを参照。この所見は、siRNA分子のいくつかまたは多くは、意図せずに、これらが同時にシスセンス/アンチセンスペアを標的とするように設計されている可能性を提起する。例えば、BACE−1をin vivoでsiRNAにより標的化することによりAPPトランスジェニックマウスにおいてAD様神経病理学的症状および行動障害が改善されることが最近示された(Singer et al., (2005). Nat Neurosci 8, 1343-1349)。この研究で最も有効であったsiRNA分子は、BACE−1センス/アンチセンス遺伝子座のオーバーラップ領域を標的としており、これは、センスおよびアンチセンスBACE−1転写物の両方のノックダウンが全体的な有効性に寄与する可能性を提起するものである。
【0310】
BACE−1センスまたはアンチセンス転写物を標的とするsiRNAのin vivoでの投与:上記所見は、BACE−1−ASの攪乱がin vitroにおいてBACE−1 mRNAの下方調節をもたらすことを証明するものである。次に我々は、同様の関係がin vivoにおいてマウス脳に存在するか否かを評価した。この疑問を解明するために、第三脳室背側に慢性留置カニューレを有するマウスを用意した。マウスにはまた、BACE−1(グループ1)、BACE−1−AS(グループ2)、または、対照siRNA(ヒトおよびマウス遺伝子全体に効果がないことが事前に知られているもの、グループ3)に対するsiRNAの、0.4mg/日の用量での、連続的な注入(0.25μl/時)を2週間もたらす浸透圧ミニポンプを皮下移植した(Thakker et al., (2004). Proc Natl Acad Sci U S A 101, 17270-17275、Thakker, D. R., et al. (2005). Mol Psychiatry 10, 782-789, 714)。siRNAが脳に直接送達されるように、チューブを浸透圧ミニポンプの出口に接続し、留置カニューレまで皮下をトンネルした。14日間の持続的なsiRNA注入の後に、マウスを安楽死させ、脳を取り出した。BACE−1およびBACE−1−ASの発現レベルを、背側海馬、腹側海馬、背内側前頭前皮質および背側線状体で評価した。
【0311】
とりわけ、BACE−1濃度は、BACE−1またはBACE−1−ASのいずれかに選択的に向けられたsiRNAの投与により、4つの脳領域の全てで減少した(
図14A〜14d)。センスまたはアンチセンス転写物のいずれかに向けられたsiRNAは、対照処置群と比較して、BACE−1およびBACE−1−ASレベルの同時的な減少をもたらした。さらに、我々は対照組織として小脳におけるS−AS転写物を測定し(
図14E)、BACE−1およびBACE−1−ASのレベルが不変であることを見出した。これは、第三脳室の脳脊髄液に直接接触していない組織について期待された結果である。総じて、これらのin vivoの知見は、BACE−1−ASによるBACE−1 mRNAの一致的制御を示唆する我々のin vitroの所見を再現するものである。
【0312】
BACE−1−AS転写物は、細胞核に蓄積する:BACE−1およびBACE−1−ASの細胞内分布を検討するために、我々はSH−SY5Y細胞の溶解液を細胞質および核分画に分離し、RT−PCR分析のためにRNAを抽出した。BACE−1−ASは、細胞質画分と比較して、核画分で豊富であった(
図15A)。BACE−1−ASの核内保留は、SH−SY5Y細胞のRNA蛍光in situハイブリダイゼーション(RNA−FISH)画像によって確認された(
図15A−15D挿入図)。BACE−1−ASは、細胞質より核において約30倍豊富であるが、BACE−1センス転写物(および、対照β−アクチンmRNA)は核および細胞質の間でほぼ等しく分布していた。
【0313】
我々はまた、センスおよびアンチセンス転写物の細胞内局在を視覚化するために、多色蛍光プローブを用いたRNA−FISH実験を設計した。ストレッサーへの細胞の暴露は、BACE−1−AS FISHシグナルの移行をもたらした(
図15A−15D挿入図)。我々は、陰性対照プローブとして、ヒトゲノムにマッチしないPrltkルシフェラーゼに由来するRNAプローブを利用した。
図15Aの顕微鏡像に見られるように、アンチセンス転写物BACE−1−ASは、主に核で検出可能であった。対照的に、センスBACE−1転写物は、細胞全体により散在的に分布していた。
【0314】
質量分析によるRNA−タンパク相互作用のプロファイリング:非コードアンチセンス転写物の核内保留および/または輸送に関与し得るタンパク質を同定するために、我々はRNAを取り出し、RNAと相互作用しているタンパク質をプロファイリングした。本方法の高MgCl2および非変性特性により、実験操作中のRNA−タンパク相互作用の維持が容易となる。表4は、BACE−1およびBACE−1−AS転写物と会合したタンパク質を列挙する。翻訳過程に関与するタンパク質は、BACE−1 mRNAとともに選択的に共精製された。対照的に、核存在量の多いタンパク質は、BACE−1−AS転写物と会合した。これらの知見は、アンチセンス転写物の非コード性と一致しており、その核内保留の概念を支持する。
【0315】
シクロフィリン−60(Cyp60)とBACE−1−AS:BACE−1の発現および機能が制御されるメカニズムは、現在ほとんど知られていない。しかしながら、最近の大規模なsiRNAスクリーニング研究により、Cyp60のノックダウンがBACE−1 mRNAおよびタンパク質レベルを減少させることが明らかとなった(Espeseth et al., (2006) Mol. Cell Neurosci. 33, 227-235)。シクロフィリン−60(Cyp60)は、ペプチジルプロリルイソメラーゼのシクロフィリンファミリーのメンバーである。シクロフィリンは高度に保存されたタンパク質ファミリーを形成しており、そのメンバーはタンパク質の折畳み、シクロスポリンAによる免疫抑制およびHIV−1ビリオンの感染に重要な役割を果たす。Cyp60タンパク質はプロテイナーゼ阻害剤エグリンcと相互作用し、核に局所している。Cyp60はまた、CD147(別名細胞外マトリックスメタロプロテアーゼ誘導因子としても知られる)の細胞表面発現に関与していることが報告されており、Cyp60がCD147の細胞表面への移行に関与することが示唆される。
【0316】
BACE−1−ASのBACE−1発現制御における提案された役割、およびCyp60がBACE−1 mRNA発現を制御するという以前に発表された所見に鑑み、我々はCyp60もまた、BACE−1−ASの制御に関与している可能性があると仮定した。この仮説を検証するために、我々はBACE−1およびBACE−1−AS発現に対するCyp60ノックダウンの影響を検討した。まず我々は、Cyp60のsiRNA媒介性ノックダウンがヒト胎児腎臓細胞(HEK293T)におけるBACE−1 mRNAレベルを減少させたことを示すことによって、Cyp60のBACE−1 mRNA発現の制御における役割を確認した。しかしながら、BACE−1−AS転写物もまた、Cyp60 siRNAへの暴露によって減少した(
図16A)。BACE1 mRNAのCyp60ノックダウン媒介性の減少と比較した場合、BACE−1−AS転写物の減少の程度はより大きく、より早い時点で起こった(
図16B)。Cyp60はほとんど核にのみ保持されており(Wang et al., (1996) Biochem J. 314 ( Pt 1), 313-319)、核にはBACE−1−ASもまた局在しているため、Cyp60がBACE−1−ASに選択的に作用し、BACE−1 mRNAの発現を制御している可能性が示唆される。この仮説と一致して、Cyp60ノックダウンは、BACE−1−AS転写物の核内保留パターンを顕著に変化させた(
図16C)。
【0317】
ここに示すヒトBACE−1−AS配列は、5’,3’RACEクローニングおよびシーケンスの結果に基づいており、UCSCからのEST配列(cDNA CB960709)と比較してある。
【0318】
ヒトBACE−1−AS主要変異体(10クローン)配列番号64:
【表5】
【0319】
ヒトBACE−1−AS短鎖変異体(6クローン)配列番号65:
【表6】
【0320】
ここに示すマウスBACE1−AS配列は、3’RACEクローニングおよびシーケンスの結果に基づいており、UCSCからのEST配列(cDNA AK077428.1およびcDNA AK078885.1)と比較してある。
【0321】
マウスBACE−1−AS主要変異体(10クローン)配列番号66:
【表7】
【0322】
マウスBACE−1−AS長鎖変異体(2クローン)配列番号67:
【表8】
【0323】
BACE−1−AS核内保留パターンの細胞ストレス誘導性変化:低酸素症、再酸素化、酸化ストレスおよび一部のプロアポトーシス因子などの種々の細胞ストレッサーは、以前からADの発病に関係があるとされてきた。これらのストレッサーは、BACE−1活性およびAβの生成を増強する(Tong et al., (2005) Neural Transm 112, 455-469)。上述のBACE−1−ASの核内保留は、Prasanthらによって最近報告されたCTN−RNAの区画による分離を思い起こさせる(Prasanth et al., (2005) Cell 123, 249-263)。この非コードRNA転写物は、BACE−1−ASと同様に主に核に局在しており、その核内保留に関与する重要なメカニズムであるアデニンからイノシンへの編集のためのエレメントを含んでいるCTN−RNAは、細胞ストレスの下で切断され、タンパク質コード転写物mCAT2 mRNAを生成することが示されている。これらの所見に基づいて、我々は細胞ストレスがBACE−1−ASを核から放出し、それによってBACE−1 mRNAの発現を調節し得ると推測した。細胞ストレスは、ADの病因に寄与し得る重要なトリガーと考えられている(Xue et al., (2006) Neurosci Lett 405, 231-235)。
【0324】
細胞ストレスがBACE−1−ASの核内保留を変化させるかどうかを調査するために、我々はSH−SY5Y細胞を、既知の高浸透圧細胞ストレッサーである脱分極濃度のKCl(30mMを5分間連続して)に暴露した。この細胞ストレスは、核で保持されるBACE−1−ASの割合を劇的に低下させた(
図15B)。これは、細胞ストレスがBACE−1−ASを細胞質に放出することを意味する。KCl処理後のBACE−1−ASの核内保留のこのシフトが、非特異的な中毒現象および/または核膜の破壊に関連したものである可能性を除外するために、我々は細胞をKClで処理し、次いで通常培地での60分間の回復期間に供した。アンチセンス転写物濃度の核から細胞質への比例パターンは、ベースラインに戻った。
【0325】
Aβ1−42が強力な細胞ストレッサー効果を有するという顕著な証拠がある。実際、Aβ1−42はBACE−1 mRNAおよびタンパク質活性を増強し、それによって、種々の細胞ストレス関連メカニズムを介して神経細胞に障害を与える(Tamagno et al., (2006) Free Radic Biol Med 41, 202-212)。また、精製Aβペプチドのネズミ脳への直接注入が、タンパク質の酸化および神経細胞の障害をもたらすことが示されている(Boyd-Kimball et al., 2005 Neuroscience 132, 313-324)。上記所見に基づき、我々はAβ1−42が、BACE−1タンパク質発現を増大させ、それによって、Aβ1−42合成を促進することが知られている濃度(Tamagno et al., 2006)で、BACE−1−ASの核放出をも誘導し得ると仮定した。
【0326】
上記所見に一致して、合成Aβ1−42ペプチド(1μMで2時間)はBACE−1−ASを核から放出し、SH−SY5Y細胞におけるその細胞質濃度を可逆的に上昇させた(
図15C)。さらに、APPを過剰発現させ、有意なレベルのAβ1−42ダイマーおよびオリゴマーを含むCHO−7PA2細胞からの馴化培地(Walsh et al., 2005 Biochem Soc Trans 33, 1087-1090)へのSH−SY5Y細胞の2時間の暴露はまた、BACE−1−AS転写物の核から細胞質への同様の移行を誘発した。対照として、親CHO細胞に由来する模擬馴化培地は、何らの移行も誘発しなかった(
図15D)。これらの所見に基づき、我々は、細胞ストレスおよび/またはAβ1−42がBACE−1−ASを核から放出することを提唱する。BACE−1−ASおよびBACE−1 mRNAの発現が一致的に制御されることを考慮すると、増加した細胞質BACE−1−ASは、BACE−1 mRNAの安定性を増大させ、さらなるAβ1−42産生に寄与し、フィードフォーワードループをもたらすことが予想される(
図17)。かかるメカニズムは、アルツハイマー病進行の1つの説明を提供し得る。
【0327】
BACE−1センスおよびBACE−1−ASアンチセンス転写物の安定性:BACE−1−ASおよびBACE−1 mRNAの一致的な関係を考慮すると、細胞ストレスまたはAβ1−42への暴露に関連するBACE−1−ASの増加した細胞質濃度は、BACE−1の安定性を増大させ、それによってAβ1−42産生を増大させると考えられる。この仮説を検証し、BACE−1−ASの増加した細胞質濃度がBACE−1発現および機能を増強させ得る潜在的メカニズムを評価するために、我々はBACE−1−ASがBACE−1 mRNAの安定性および寿命を増大させるかどうかを検討した。センス−アンチセンス転写物の安定性を測定するため、我々はα−アマニチン(5μg/ml)により新たなRNAの合成をブロックし、4種のRNA(18s rRNA、β−アクチン、BACE−1およびBACE−1−AS)のレベルの変化を24時間にわたって測定した。BACE−1−ASは、BACE−1 mRNAより短い基礎半減期を有し、この所見はその制御的特性と一致するものである(
図16D)。さらに、α−アマニチンによりRNA合成をブロックすることにより、BACE−1−ASがRNAポリメラーゼIIの産物であることが確認され、上述の我々のRACEデータがさらに実証された。実際、RNAポリメラーゼIIIの産物である18sリボソームRNAは、α−アマニチン処理に影響されなかった。興味深いことに、RNAポリメラーゼIIのα−アマニチン媒介性の遮断の間、BACE−1−AS RNAのAβ1−42媒介性の移行は、BACE−1の安定性を有意に増大させる(
図16E)。総合すると、これらの所見は、NATの細胞内区画化/放出、ならびに結果として生じるセンス転写物の安定性および寿命の調節を介した、非コードNATによるBACE−1 mRNAの制御モデルを示唆するものである(
図17)。
【0328】
APPトランスジェニックマウスの脳におけるBACE−1−ASの増加したレベル:我々は、BACE−1−ASの増加したレベルがBACE−1 mRNAを安定化し、それによってBACE−1の発現および機能を増大させ、これが増大したAβ1−42産生に寄与し、それによってADに関連する病態生理学の進行を促進し得ると仮定している。これが実際にそうであるならば、Aβ1−42の増加したレベルを有する、APPを過剰発現するマウスは、BACE−1−ASの増加した細胞質濃度を示すはずである。我々は次に、APP過剰発現マウス(Li et al., (2004a) J. Neurochem 89, 1308-1312)における増加したAβ1−42レベルが、BACE−1センスまたはアンチセンス転写物の発現を変化させるか否かを調査した。全脳、小脳および肝臓を、6週齢の4頭の雄APPマウスおよび4頭の対応する野生型マウスから摘出し、タンパク質およびRNA抽出に用いた。予想通り、均一時間分解蛍光(HTRF)アッセイが示すところによると、APPマウスは、野生型マウスと比較して顕著に増大した(〜300倍)レベルのAβ1−42を有した(図−15E)。より重要なことに、APPマウスの脳においては、対照に比べ、BACE−1−AS転写物が約45%上方調節されており、BACE−1 mRNAが約25%増加していた(
図15F)。これらの所見は、以下の仮説と一致している:i)BACE−1−ASおよびBACE−1 mRNAが、一致的に制御されていること、ii)Aβ1−42の上昇したレベルが、BACE−1−ASの増加した細胞質濃度と関連していること、および、iii)BACE−1−ASの増加したレベルが、BACE−1の増加したレベル、および同時にAβ1−42の増加したレベルと関連していること。最後に、AD脳におけるAβ1−42の蓄積は慢性的な過程であり、小さなポジティブフィードバックループおよびBACE−1発現の上昇でさえ、経時的なアミロイド沈着の顕著な増加を導き得ることに留意すべきである(Li et al., (2006) Faseb J 20, 285-292)。
【0329】
結論:我々はBACE−1についての、高度に保存された核内保留非コードシスアンチセンス転写物を特徴化し、これがin vitroおよびin vivoにおいて、対応するセンスBACE−1 mRNAを一致的に制御することを示した。BACE−1 mRNAレベルが、この天然アンチセンス転写物によって一致的に制御されるという考えを支持する一連の複数の証拠が提示された。我々はまた、Aβ1−42への暴露を含む細胞ストレッサーがこの天然アンチセンス転写物を核から放出し、それによってBACE−1活性およびAβ1−42の産生を増大させる、アルツハイマー病進行のフィードフォーワードモデルを裏付ける証拠を提供する。これは、我々の知る限りでは、非コードRNAをβ−アミロイド経路に直接関係づけた最初の報告である。
【0332】
他の態様
本発明をその詳細な説明とともに解説したが、上記説明が本発明の範囲を限定するのではなく、例示することを意図していることを理解すべきである。他の側面、利点および改変は、特許請求の範囲およびその法的等価物の範囲内である。
本明細書は多くの具体的態様を含むが、これらは本発明の範囲に対する制限ではなく、むしろその好ましい態様の例として解釈すべきである。多くの他のバリエーションが可能である。本明細書に引用したの全ての参考文献は、参照により本明細書に組み込まれる。