【実施例】
【0020】
以下、実施例に基いて本発明を説明する。
[1.材料]
(1)セメント:普通ポルトランドセメント(太平洋セメント社製)
(2)粗骨材:石灰石砕石(以下、石灰石と略す。)及び硬質砂岩砕石A〜E(以下、砂岩A〜Eと略す。)の計6種の粗骨材
(3)細骨材:硬質砂岩砕砂と山砂を容積比6:4で混合してなる細骨材
(4)収縮低減剤:テトラガードAS21(商品名;太平洋マテリアル社製)
(5)水:水道水
【0021】
[2.コンクリートの調製]
(a)石灰石を含むコンクリートの調製
セメント100質量部と、石灰石290質量部と、細骨材239質量部を、強制パン形ミキサ(容量:55リットル)を用いて20秒間練り混ぜた後、水セメント比が50質量%となる量の水と、所定の量(無添加、3kg/m
3、6kg/m
3、または9kg/m
3)の収縮低減剤を加えて、更に60秒間練り混ぜ、次いで、掻落しを行い、その後、60秒間練り混ぜることによって、収縮低減剤の添加量の異なる4種類のコンクリートを調製した。
(b)砂岩Aを含むコンクリートの調製
石灰石290質量部、細骨材239質量部に代えて、砂岩Aを271質量部、細骨材254質量部を用いた以外は、前記(a)の「石灰石を含むコンクリートの調製」と同様にして、収縮低減剤の添加量の異なる4種類のコンクリートを調製した。
(c)砂岩Bを含むコンクリートの調製
石灰石290質量部、細骨材239質量部に代えて、砂岩Bを267質量部、細骨材252質量部を用いた以外は、前記(a)の「石灰石を含むコンクリートの調製」と同様にして、収縮低減剤の添加量の異なる4種類のコンクリートを調製した。
(d)砂岩Cを含むコンクリートの調製
石灰石290質量部、細骨材239質量部に代えて、砂岩Cを282質量部、細骨材243質量部を用い、かつ、収縮低減剤の添加量を無添加または6kg/m
3に定めた以外は、前記(a)の「石灰石を含むコンクリートの調製」と同様にして、収縮低減剤の配合量の異なる2種類のコンクリートを調製した。
(e)砂岩Dを含むコンクリートの調製
石灰石290質量部、細骨材239質量部に代えて、砂岩Dを275質量部、細骨材256質量部を用い、かつ、収縮低減剤の添加量を無添加または6kg/m
3に定めた以外は、前記(a)の「石灰石を含むコンクリートの調製」と同様にして、収縮低減剤の配合量の異なる2種類のコンクリートを調製した。
(f)砂岩Eを含むコンクリートの調製
石灰石290質量部、細骨材239質量部に代えて、砂岩Eを268質量部、細骨材263質量部を用い、かつ、収縮低減剤の添加量を無添加または6kg/m
3に定めた以外は、前記(a)の「石灰石を含むコンクリートの調製」と同様にして、収縮低減剤の配合量の異なる2種類のコンクリートを調製した。
【0022】
[3.乾燥収縮ひずみの測定]
調製されたコンクリートの各々について、型枠を用いて、100×100×400mmの供試体を作製した。この供試体を用い、材齢7日まで20±1℃の水中で養生した後に基長をとり、その後、温度20±3℃、相対湿度60±5%の気中雰囲気下(乾燥雰囲気下)で6か月保存した。石灰石及び砂岩Bについては、乾燥期間が28日(4週)、56日(8週)、91日(13週)、182日(26週;本明細書中、6か月ともいう。)の各時点において、また、砂岩A、C〜Eについては、乾燥期間が182日(26週;6か月)の時点において、JIS A 1129に規定する長さ変化試験を行ない、前記の各時点における乾燥収縮ひずみを得た。
図1に、乾燥期間が182日(26週;6か月)である場合の粗骨材毎の乾燥収縮ひずみを示す。
図1から、粗骨材の種類によって、乾燥収縮ひずみの値が大きく異なることがわかる。なお、
図1中、粗骨材の各種類について、左から右に向かって、収縮低減剤の量として、「無添加」、「3kg/m
3」、「6kg/m
3」、「9kg/m
3」を表す。
また、
図2に、石灰石及び砂岩Bを用いた各場合における、乾燥期間と乾燥収縮ひずみの関係を示す。
図2から、粗骨材の種類によって異なるものの、概ね、乾燥期間が13〜26週程度であれば、乾燥収縮ひずみの増大が頭打ちになることがわかる。
【0023】
[4.回帰式の作成1]
図1に基いて、粗骨材の種類毎に、収縮低減剤の各添加量における、収縮低減剤を含まない基準コンクリートの乾燥収縮ひずみに対する収縮低減剤を含むコンクリートの乾燥収縮ひずみの収縮比(%)を算出した。そして、収縮低減剤の添加量(kg/m
3)を横軸にし、得られた収縮比(%)を縦軸にして、
図3に示すグラフを作成した。その後、グラフ上にプロットされた各点のすべてに対して、大きな収縮比(%)(グラフの中では上方)になるとともに、乖離の程度がなるべく小さくなるように、回帰式を定めた。
【0024】
その結果、回帰式として、下記の式(3)が得られた。
収縮比(%)=100−SRA/(0.34+0.02・SRA)(式中、SRAは、収縮低減剤の添加量(kg/m
3)を表す。) ・・・(3)
式(3)中の「収縮比(%)」は、前述のとおり、「ε
2×100/ε
1」(ただし、ε
2は、収縮低減剤を含むコンクリートの乾燥収縮ひずみの目標値を表し、ε
1は、収縮低減剤を含まない基準コンクリートの乾燥収縮ひずみの実測値を表す。)を表す。
コンクリート施工者等は、収縮低減剤を含まない基準コンクリートの乾燥収縮ひずみを、6か月の乾燥期間の経過時に測定して、上記のε
1を定めるだけで、上記式(3)によって、目標とする乾燥収縮ひずみ(ε
2)を得るための収縮低減剤の適正な配合量(SRA)を算出することができる。
【0025】
[5.回帰式の作成2]
図1に基いて、粗骨材の種類毎に、収縮低減剤の各添加量における、収縮低減剤を含まない基準コンクリートの乾燥収縮ひずみに対する収縮低減剤を含むコンクリートの乾燥収縮ひずみの収縮比(%)を算出した。そして、収縮低減剤の添加量(kg/m
3)を横軸にし、得られた収縮比(%)を縦軸にして、
図4に示すグラフを作成した。その後、グラフ中の収縮低減剤の配合量毎にプロットされている複数の点の平均値を通る曲線として、回帰式を定めた。
【0026】
その結果、回帰式として、下記の式(4)が得られた。
収縮比(%)=100−SRA/(0.25+0.02・SRA)(式中、SRAは、収縮低減剤の添加量(kg/m
3)を表す。) ・・・(4)
式(4)中の「収縮比(%)」は、前述のとおり、「ε
2×100/ε
1」(ただし、ε
2は、収縮低減剤を含むコンクリートの乾燥収縮ひずみの予測値を表し、ε
1は、収縮低減剤を含まない基準コンクリートの乾燥収縮ひずみの実測値を表す。)を表す。
コンクリート施工者等は、収縮低減剤を含まない基準コンクリートの乾燥収縮ひずみを、6か月の乾燥期間の経過時に測定して、上記のε
1を定めるだけで、上記式(4)によって、収縮低減剤の配合量(SRA)に応じた乾燥収縮ひずみ(ε
2)の予測値を算出することができる。
【0027】
[6.乾燥収縮ひずみの予測]
上記式(4)を用いて、以下の2種類のコンクリートの乾燥収縮ひずみを予測した。
(a)セメント100質量部、水50質量部、砕石(斑レイ岩)320質量部、細骨材239質量部、収縮低減剤4kg/m
3を含むコンクリート
なお、収縮低減剤を含まない以外は該コンクリートと同様の材料組成を有する基準コンクリートの乾燥収縮ひずみは、−517×10
−6であった。
(b)セメント100質量部、水50質量部、川砂利277質量部、細骨材231質量部、収縮低減剤8kg/m
3を含むコンクリート
なお、収縮低減剤を含まない以外は該コンクリートと同様の材料組成を有する基準コンクリートの乾燥収縮ひずみは、−837×10
−6であった。
上記式(4)を用いて算出した乾燥収縮ひずみの予測値と実測値の関係を
図5に示す。
図5に示すように、本発明の方法では、収縮低減剤を含むコンクリートの乾燥収縮ひずみを精度良く予測できることが分かる。