特許第5715151号(P5715151)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニング インコーポレイテッドの特許一覧

特許5715151光ファイバオーバークラッド形成のためのスート圧縮
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5715151
(24)【登録日】2015年3月20日
(45)【発行日】2015年5月7日
(54)【発明の名称】光ファイバオーバークラッド形成のためのスート圧縮
(51)【国際特許分類】
   C03B 37/014 20060101AFI20150416BHJP
   C03B 37/012 20060101ALI20150416BHJP
   G02B 6/024 20060101ALI20150416BHJP
【FI】
   C03B37/014 Z
   C03B37/012 C
   G02B6/024 301
【請求項の数】11
【全頁数】40
(21)【出願番号】特願2012-542207(P2012-542207)
(86)(22)【出願日】2010年12月3日
(65)【公表番号】特表2013-512851(P2013-512851A)
(43)【公表日】2013年4月18日
(86)【国際出願番号】US2010058816
(87)【国際公開番号】WO2011069026
(87)【国際公開日】20110609
【審査請求日】2013年12月3日
(31)【優先権主張番号】61/266,311
(32)【優先日】2009年12月3日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】397068274
【氏名又は名称】コーニング インコーポレイテッド
(74)【代理人】
【識別番号】100073184
【弁理士】
【氏名又は名称】柳田 征史
(74)【代理人】
【識別番号】100090468
【弁理士】
【氏名又は名称】佐久間 剛
(72)【発明者】
【氏名】タンドン,プシュカー
(72)【発明者】
【氏名】ワン,ジー
(72)【発明者】
【氏名】リー,ミンジュン
(72)【発明者】
【氏名】ドーズ,スティーヴン ビー
(72)【発明者】
【氏名】フィリッポフ,アンドレイ ヴィー
(72)【発明者】
【氏名】ジェニングズ,ダグラス エイチ
(72)【発明者】
【氏名】コズロフ,ヴァレリー エイ
【審査官】 山崎 直也
(56)【参考文献】
【文献】 特開平09−071431(JP,A)
【文献】 特開平05−208837(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C03B 37/00−37/16
(57)【特許請求の範囲】
【請求項1】
光ファイバプリフォームを作製する方法において、
装置の金型キャビティ内に複数本のロッドを配置する工程、
前記金型キャビティ内の前記ロッドと内壁の間に微粒ガラス材料を装填する工程、及び
前記微粒ガラス材料を前記複数本のロッドに対して圧縮するために前記微粒ガラス材料に対してゲージ圧で25psi(1.72×10Pa)から250psi(1.72×10Pa)の圧力を印加して、スート成形体を形成する工程、
を含むことを特徴とする光ファイバプリフォームを作製する方法。
【請求項2】
前記複数本のロッドが、(i)少なくとも1本のガラスロッド及び少なくとも1本の鋳型ロッド、あるいは(ii)少なくとも2本のガラスロッドを含み、前記圧力が軸方向及び/または径方向に印加されることを特徴とする請求項1に記載の光ファイバプリフォームを作製する方法。
【請求項3】
前記装置が外壁及び内壁を有し、前記外壁が前記内壁を囲み、前記内壁が前記金型キャビティを囲み、前記圧力が、前記微粒ガラス材料を前記ロッドに対して圧縮するために前記微粒ガラス材料に対して、少なくとも径方向に内向きに印加されことを特徴とする請求項1または2に記載の光ファイバプリフォームを作製する方法。
【請求項4】
径方向に内向きの圧力を印加する前記工程が、前記外壁と前記内壁の間に加圧流体を供給する工程を含むことを特徴とする請求項3に記載の光ファイバプリフォームを作製する方法。
【請求項5】
前記微粒ガラス材料がCVD堆積工程からの廃スートであることを特徴とする請求項1に記載の光ファイバプリフォームを作製する方法。
【請求項6】
前記プリフォームが、前記プリフォームの軸長に沿って最大直径及び最小直径を有し、前記最小直径が前記最大直径の少なくとも90%であることを特徴とする請求項1に記載の光ファイバプリフォームを作製する方法。
【請求項7】
請求項1または2に記載の方法にしたがって作製された光ファイバプリフォームにおいて、前記微粒ガラス材料が、前記ロッドに対して圧縮され、0.6〜1.2g/cmの密度を有し、前記プリフォームが、前記プリフォームの軸長に沿って最大直径及び最小直径を有し、前記最小直径が前記最大直径の少なくとも90%であることを特徴とする光ファイバプリフォーム。
【請求項8】
前記最小直径が前記最大直径の少なくとも95%であることを特徴とする請求項7に記載の光ファイバプリフォーム。
【請求項9】
請求項1または2に記載の方法において、
(i)前記ロッドの内の1本が固結ガラスロッドである、及び/または
(ii)前記ガラスロッドの内の少なくとも1本が多孔質スートクラッド層で囲まれた固結コアケーンを含み、前記コアケーンが前記金型キャビティの軸心に沿って配置される、
ことを特徴とする方法。
【請求項10】
請求項1または2に記載の方法において、
(i)前記ロッドが複数本のコアケーンである、及び/または
(ii)前記ロッドが前記金型キャビティ内で同一直線上に配列される、
ことを特徴とする方法。
【請求項11】
前記スート成形体を形成するために、前記微粒ガラス材料が軸方向に圧縮され、
前記スート成形体が、少なくとも0.6g/cmの密度を有し、前記光ファイバプリフォームのクラッド部を構成することを特徴とする請求項1に記載の光ファイバプリフォームを作製する方法。
【発明の詳細な説明】
【関連出願の説明】
【0001】
本出願は、米国特許法第119条e項の下に、2009年12月3日に出願された米国仮特許出願第61/266311号の優先権の恩典を主張する。
【技術分野】
【0002】
本明は、全般的には、光ファイバオーバークラッド形成のためにスート圧縮を用いる、複数の穴または応力ロッドを有する光ファイバを作製する方法及び装置に関し、特に、光ファイバプリフォームを作製する方法及び装置に関する。
【背景技術】
【0003】
光ファイバプリフォームの作製のための、外付け(OVD)プロセス及び軸付け(VAD)プロセスのような、従来の化学的気相成長(CVD)プロセスでは、CVDプロセスの堆積効率における限界により出発原材料の一部しか利用されないことが多い。したがって、結果として生じる「廃」シリカスートを使用すれば、原材料費をかなり節減できるであろう。
【0004】
したがって、従来方法では光ファイバプリフォームの製造において利用されないシリカスートを利用するための様々な方法が案出されている。これらの方法は、高価、複雑及び/または時間のかかるプロセス条件及び装置を含む様々な欠点をかかえ、この結果得られる性能は、プリフォームの密度及び形状寸法に関する許容できない変動のように、望ましい特性より劣ることになり得る。
【0005】
所望の光特性を達成するためにクラッドに複数の穴または応力ロッドが用いられる、多くのタイプの光ファイバがある。これらのタイプには、単一偏波ファイバ、偏波保存ファイバ、高屈曲ファイバ、フォトニック結晶ファイバ、高開口数ファイバ、及び無限単一モードファイバがある。
【0006】
単一偏波ファイバ及び偏波保存ファイバは一般に、中心コア及び、クラッド内のファイバコア近くに配置された、複数の空気穴またはホウ素ドープ応力ロッド(図1)を有する。そのようなファイバは、例えばオクタメチルテトラシロキサンの熱分解により、シリカクラッドガラスがガラスコアケーン上に堆積される、外付け(OVD)プロセスによって作製されることが多い。OVDプロセスは、高度に最適化された、高収率の作製プロセスである。しかし、クラッド層の形成は光ファイバ生産量の最大化における律速工程であることが多い。さらに、光ファイバプリフォームのクラッド部の堆積中にガラスコアケーン上にはオクタメチルテトラシロキサン供給原料の熱分解生成物の僅か50%しか堆積しないと推定される。次いでシリカクラッドスート層は焼結されて、シリカコア/クラッドガラスブランクが形成される。単一偏波ファイバ及び偏波保存ファイバは通常、これらのコア/クラッドブランクの内部に精確な穴をドリル加工/機械加工することで、また応力ロッドが用いられる場合には応力ロッドをその穴に挿入することで、作製される。得られた集成体は、シリカチューブに挿入するかまたはオーバークラッドして焼結し、次いで線引きして、単一偏波光ファイバまたは偏波保存光ファイバにすることができる。しかし、良好な光性能を得るには、ドリル穴の寸法が極めて精確でなければならず、またかなりの量の後処理が必要であり、この結果、これらのファイバのプロセスコストが増大する。
【0007】
別の一群のファイバタイプにおいては、複数の穴がクラッドに存在する。そのような構造はフォトニック結晶ファイバまたは高屈曲ファイバに適している。これらのファイバは一般に、スタック/線引きプロセスを用いて、またはプリフォームにドリルで穴を開けることで、作製される。
【発明の概要】
【発明が解決しようとする課題】
【0008】
光ファイバ生産量をさらに向上させ、原材料コスト及びその他の製造コストをさらに低減するためには、クラッドに複数の穴または応力ロッドをもつ光ファイバの別の作製方法が望まれる。
【課題を解決するための手段】
【0009】
本発明の一態様は光ファイバプリフォームを作製する方法である。本方法は、
(i) 装置の金型キャビティ内に複数本のガラスロッドを配置する工程、
(ii) 金型キャビティ内のロッドと内壁の間に微粒ガラス材料を装填する工程、及び
(iii)微粒ガラス材料を複数本のロッドに対して圧縮するため、微粒ガラス材料に圧力を印加する工程、
を含む。
【0010】
いくつかの実施形態において、複数本のロッドは、(i)少なくとも1本のガラスロッド及び少なくとも1本の鋳型ロッド、あるいは(ii)少なくとも2本のガラスロッドを含む。いくつかの実施形態にしたがえば、複数本のガラスロッドの内の1本以上はコアロッドである。いくつかの実施形態にしたがえば、複数本のガラスロッドは複数本のコアケーンまたは複数本の応力ロッドである。ロッドは相互に同一直線上に配列されることが好ましい。いくつかの実施形態にしたがえば、好ましくは、圧力は軸方向及び/または径方向に印加される。いくつかの実施形態にしたがえば、圧力は金型キャビティの少なくとも一方の側から印加される。いくつかの実施形態にしたがえば、金型キャビティの断面は円形である。いくつかの実施形態にしたがえば、金型キャビティの断面は円対称性をもたない。
【0011】
いくつかの実施形態にしたがえば、装置は外壁及び内壁を有し、外壁は内壁を囲み、内壁は内部キャビティを囲み、圧力は、微粒ガラス材料を複数本のロッドに圧縮するために少なくとも径方向に内向きに印加され、微粒ガラス材料に対してゲージ圧で、25psi(1.72×10Pa)から250psi(1.72×10Pa)である。
【0012】
他の実施形態において、圧力は軸方向に印加される。例えば、ガラスコアの周りに、少なくとも0.5g/cm,さらに好ましくは少なくとも0.65g/cm,さらに一層好ましくは少なくとも0.75g/cm(例えば、0.75g/cm〜1.2g/cmまたは0.8g/cm〜1.1g/cm)、の密度を有するスート成形体を形成するため、石英ガラススートを軸方向に圧縮することができる。
【0013】
他の実施形態において、圧力は軸方向にも、径方向に内向きにもm印加され、それぞれの印加は同時であってもなくても差し支えない。圧力は、例えば、微粒ガラス材料を少なくとも0.5g/cm,好ましくは少なくとも0.65g/cm,さらに好ましくは少なくとも0.75g/cm(例えば、0.75g/cm〜1.2g/cmまたは0.8g/cm〜1.1g/cm)の密度に圧縮するため、微粒ガラス材料に対してゲージ圧で25psiから250psiとすることができる。
【0014】
他の実施形態において、金型キャビティは長方形の断面を有し、圧力は長方形キャビティの1つ以上の側壁に印加され、それぞれの印加は同時であってもなくても差し支えない。圧力は、例えば、微粒ガラス材料を少なくとも0.5g/cm,好ましくは少なくとも0.65g/cm,さらに好ましくは少なくとも0.75g/cm(例えば、0.75g/cm〜1.2g/cmまたは0.8g/cm〜1.1g/cm)の密度に圧縮するため、微粒ガラス材料に対してゲージ圧で25psiから250psiとすることができる。
【0015】
別の実施形態において、内壁は食違い櫛形歯をもつ巻締シートを有する。食違い櫛形歯を相反方向に引っ張って巻締シートの直径を減じることにより、径方向に内向きの力が印加される。
【0016】
本発明のさらなる特徴及び利点は以下の詳細な説明に述べられ、ある程度は、当業者にはその説明から容易に明らかであろうし、以下の詳細な説明及び添付される特許請求の範囲を含み、添付図面も含む、本明細書に説明されるように本発明を実施することによって認められるであろう。
【0017】
上述の全般的説明及び以下の詳細な説明がいずれも、本発明の実施形態を提示し、特許請求されるような本発明の本質及び特質の理解のための概要または枠組みの提供が目的とされていることは当然である。添付図面は本発明のさらに深い理解を提供するために含められ、本明細書に組み入れられて本明細書の一部をなす。図面は本発明の様々な実施形態を示し、記述とともに、本発明の原理及び動作の説明に役立つ。
【図面の簡単な説明】
【0018】
図1図1は、本明細書に示され、説明される1つ以上の実施形態にしたがう、光ファイバプリフォームを形成するための金型装置の略図である。
図2図2は、本明細書に示され、説明される1つ以上の実施形態にしたがう、光ファイバプリフォームを形成するための組立金型本体を簡略に示す。
図3図3は、本明細書に示され、説明される1つ以上の実施形態にしたがう、超音波源に結合された金型装置を簡略に示す。
図4図4は、本明細書に示され、説明される1つ以上の実施形態にしたがう、未圧縮石英ガラススートが装填された金型装置の断面及び超音波源を簡略に示す。
図5A図5Aは、本明細書に示され、説明される1つ以上の実施形態にしたがう、石英ガラススートが装填されている金型装置の断面及び超音波源を簡略に示す。
図5B図5Bは、本明細書に示され、説明される1つ以上の実施形態にしたがう、石英ガラススートが装填されている金型装置の断面及び超音波源を簡略に示す。
図6図6は、本明細書に示され、説明される1つ以上の実施形態にしたがう、ガラスコアケーンの周りにスート成形体を形成するために用いられる金型装置の断面及び超音波源を簡略に示す。
図7図7は、本明細書に示され、説明される1つ以上の実施形態にしたがう、ガラスコアケーンの周りに形成されたスート成形体を有する修正光ファイバプリフォームを簡略に示す。
図8A図8Aは、本明細書に示され、説明される1つ以上の実施形態にしたがって作製された、光ファイバプリフォームを簡略に示す。
図8B図8Bは、本明細書に示され、説明される1つ以上の実施形態にしたがって作製された、別の光ファイバプリフォームを簡略に示す。
図8C図8C図8Aに示される光ファイバプリフォームから作製された光ファイバを簡略に示す。
図9図9は、本発明の好ましい方法にしたがって用いることができる装置の部分側断面図を簡略に示し、装置の可撓内壁のそれぞれの側にかかる圧力はほぼ等しい。
図10図10は、本発明の好ましい方法にしたがって用いることができる装置の部分側断面図を簡略に示し、装置の可撓内壁と硬質外壁の間の空気がほとんど取り除かれている。
図11図11は、本発明の好ましい方法にしたがって用いることができる装置の部分側断面図を簡略に示し、装置の内部キャビティ内の中心にガラスロッドが配置されている。
図12図12は、本発明の好ましい方法にしたがって用いることができる装置の部分側断面図を簡略に示し、ガラスロッドと可撓内壁の間の内側キャビティにガラススートが装填されている。
図13図13は、本発明の好ましい方法にしたがって用いることができる装置の部分側断面図を簡略に示し、硬質外壁と可撓内壁の間に加圧流体を供給することによってガラススートが圧縮されている。
図14図14は、本発明の好ましい方法にしたがって用いることができる装置の部分側断面図を簡略に示し、硬質外壁と可撓内壁の間の加圧流体はほとんど取り除かれている。
図15図15は、装置から取り出された、清浄化及び固化の用意ができている、スート成形体/ケーン集成体の部分側断面図を簡略に示す。
図16A図16Aは本発明の好ましい方法にしたがって用いることができる食違い櫛形歯をもつシートの側面図を示し、シートはほどかれている位置にある。
図16B図16Bは本発明の好ましい方法にしたがって用いることができる食違い櫛形歯をもつシートの側面図を示し、シートは巻かれた位置にある。
図17A図17Aは、本明細書に示され、説明される1つ以上の実施形態にしたがう、光ファイバプリフォームを形成するための金型装置の別の例の略図である。
図17B図17Bは、本明細書に示され、説明される1つ以上の実施形態にしたがう、光ファイバプリフォームを形成するための金型装置のまた別の例の略図である。
図17C図17Cは、本明細書に示され、説明される1つ以上の実施形態にしたがう、光ファイバプリフォームを形成するための金型装置のまた別の例の略図である。
【発明を実施するための形態】
【0019】
本発明の、それらの例が添付図面に示される、現在好ましい実施形態を詳細に参照する。可能であれば必ず、全図面にわたり、同じ参照数字が同じかまたは同様の要素を指して用いられる。
【0020】
本発明の一実施形態は、複数本のロッドの周りに、ガラススートのような、微粒ガラス材料を装填して圧縮する工程を含む、光ファイバプリフォームを作製する方法及び装置に関する。複数本のロッドは、例えば、複数本の鋳型ロッド及び/または複数本のガラスロッドとすることができる。例えば、ガラスロッドには1本のコアケーン及び少なくとも1本の応力ロッドを含めることができる。別の実施形態例において、例えば、ガラスロッドには複数本のコアケーンを含めることができる。ロッドは円形断面を有することが好ましいが、他の断面を有するロッドを用いることもできる。ロッドは同じ寸法を有することができ、あるいは相異なる寸法とすることができる。本例の方法及び装置は光ファイバプリフォームの作製に適し、クラッドに複数の穴または複数本の応力ロッドを有する光ファイバの作製に用いることができ、光ファイバの作製時にスート圧縮を用いる。本例の作製方法を用いて作製することができる光ファイバの実施形態には、単一偏波ファイバ、偏波保存ファイバ、高屈曲ファイバ、複数コアファイバ、複数コアファイバリボン、及びフォトニック結晶ファイバがある。
【0021】
コアケーンは、少なくともコアケーンを用いるプリフォームから最終的に線引きされるであろう光ファイバのコアガラス部分を含む、固結ガラスロッドを意味する。コアケーンは、コアケーンを用いるプリフォームから最終的に線引きされるであろう光ファイバのクラッドガラスの少なくとも一部を含むことができる。あるいは、コアケーンは多孔質スートクラッド層で囲むことができる。
【0022】
応力ロッドは、クラッドガラスの屈折率及び/または熱膨張係数(CTE)とは異なる屈折率及び/または異なるCTEを有する固結ガラスロッドを意味する。応力ロッドはプリフォーム内で軸外に配置されることが好ましく、例えば、ホウ素ドープシリカ(すなわち固結Bドープシリカロッド)またはホウ素及びフッ素がともにドープされたシリカとすることができる。応力ロッドは、例えば、純シリカのオーバーコートを有することができ、あるいはシリカチューブ内に配置することができる。
【0023】
いくつかの実施形態にしたがえば、集成光ファイバプリフォームのクラッド部を形成する方法は、金型装置の金型キャビティ内にガラスコアケーン及び別のガラスロッド(例えば、応力ロッド)を配置する工程を含む。微粒ガラス材料、例えば石英ガラススートを、ガラスコアケーン及び応力ロッドが石英ガラススートのような微粒ガラス材料によって囲まれるように、金型キャビティ内に装填することができる。金型キャビティ内の石英ガラススートのような微粒ガラス材料は、ロッドの周りに、例えば、ガラスコアケーン及び、応力ロッドのような、別のガラスロッドの周りに、スート成形体が形成されるように、軸方向及び/または径方向に圧縮することができる。応力ロッド及び/またはコアケーンの周りに圧縮された微粒ガラス材料(例えばスート成形体)は、少なくとも0.5g/cmの密度を有することができる。例えば、圧縮微粒ガラス材料の密度は、0.6g/cm,0.7g/cm,0.75g/cm,0.8g/cm,0.9g/cm,1g/cm,1.1g/cmまたは1.2g/cmになり得る。金型キャビティは、コアケーン、ガラスロッド(例えば、応力ロッド)及び外側のスート成形体の間に所望の形状寸法が形成されるように、構成することができる。金型キャビティの断面形状は、円形または楕円形、あるいは、ブランクへの固結後及び光ファイバへのブランクの線引き後に、相異なるガラスロッド間の特定の形状寸法関係を達成するに必要であるような、その他の形状とすることができる。詳細な形状には、軸方向に配置されたガラスロッドの周りのスートの非等方性収縮を補償するため、経験的修正が必要になり得る。
【0024】
あるいは、本発明の別の実施形態にしたがえば、(好ましくは円柱形の)鋳型ロッドの周りに、及び、コアケーンが用いられる場合には、コアケーンの周りにも、ガラススートのような微粒ガラス材料を堆積して圧縮する工程を含む、光ファイバプリフォームを作製する方法及び装置が提供される。
【0025】
例えば、得られるプリフォームに空気穴を形成するため、応力ロッドの代わりに鋳型ロッドを用いることができる。さらに詳しくは、(プリフォームのクラッド部に対応する)圧縮微粒ガラスまたはスート成形体から鋳型ロッドが取り出されて、プリフォームのスート成形体層に空孔が残る。このプリフォームを空孔が中に残るように固結することができ、得られたスートプリフォームを次いで線引きして光ファイバにすることができる。上述したように、金型キャビティ内の石英ガラススートは、(鋳型ロッドが取り除かれる前に)鋳型ロッドの周りに、及び/またはガラスコアケーンの周りに、スート成形体が形成されるように、軸方向及び/または径方向に圧縮することができる。金型キャビティの断面形状は、円形または楕円形、あるいは、ブランクへの固結後及び光ファイバへのブランクの線引き後に、相異なるガラスロッド及び鋳型ロッド素子の間の特定の形状寸法関係を達成するに必要であるような、その他の形状とすることができる。
【0026】
別の実施形態にしたがえば、光ファイバプリフォームを作製する方法は、上述したように、コアケーンの周り及び/または(好ましくは円柱形の)鋳型ロッドの周りに、ガラススートのような、微粒ガラス材料を装填して圧縮する工程を含む。得られた集成体は、1〜3時間の700℃と1100℃の間の温度における処理により、ある程度焼結(予備焼結)され、個々の微粒間のガラスネックの形成によって強化された多孔質スートプリフォームが形成される。予備焼結工程後は、多孔質スートプリフォームをより容易に取り扱うことができる。予備焼結されたプリフォームは、次いで技術上周知の方法を用いて完全に焼結してガラスファイバプリフォームにするか、あるいは機械加工で所望の形状にしてから焼結することができる。
【0027】
さらに、本実施形態及び他の実施形態において、例えば金型キャビティの中心に、コアケーンの代わりにコア鋳型ロッドを配置することができる。別の鋳型ロッド及び/またはガラスロッドも金型キャビティ内に置き、次いで微粒ガラスを圧縮して、圧縮微粒ガラス(スート成形体)を形成する。次いで、焼結の前に、(コア)鋳型ロッドが取り出されてその場所にコアケーンが挿入される。
【0028】
同様に、複数本のコアケーンの代わりに複数本の鋳型ロッドを用い、次いで微粒ガラスを圧縮して鋳型ロッドの周りにスート成形体を形成することができる。次いで、焼結の前に、(コア)鋳型ロッドが取り出されてそれぞれの場所にコアケーンが挿入される。
【0029】
また別の実施形態において、光ファイバを作製する方法は、コアケーン及び複数本の鋳型ロッドの周りに、ガラススートのような、微粒ガラス材料を堆積して圧縮する工程を含む。すなわち、応力ロッドの代わりに鋳型ロッドを用いて、得られるプリフォームに複数の空気穴を形成することができる。さらに詳しくは、圧縮された微粒ガラス(例えば、プリフォームのクラッド部に対応するスート成形体)から鋳型ロッドが取り出されて、得られるプリフォームの圧縮層に空孔が残される。空孔の数は5より多く、例えば50より多く、あるいは100より多く、200より多くさえ、することができる。プリフォームは複数の空孔が中に残るように固結することができ、得られるスートプリフォームは次いで線引きして、複数の空孔を含む領域を有する光ファイバ、例えば低曲げ損失ファイバまたはフォトニック結晶ファイバにすることができる。上述したように、金型キャビティ内の石英ガラススートは、ガラスコアケーン及び鋳型ロッドの周りにスート成形体が形成されるように、軸方向及び/または径方向に圧縮することができる。空孔を有する領域はクラッドの一部だけをなすことができる。例えば、クラッドは複数の空孔を含む内側領域を有するが、外側領域は無空孔とすることができる。この場合、クラッドの残りを作製するため、追加のガラス/スート装填工程が必要になり得る。
【0030】
本発明のまた別の実施形態にしたがえば、(i)コアケーン及び(好ましくは円柱形の)鋳型ロッドの周りに、ガラススートのような、微粒ガラス材料を堆積して圧縮する工程、及び(ii)鋳型ロッドを取り出して得られる空孔(穴)に別の材料を配する工程を含む、光ファイバプリフォームを作製する方法及び装置が提供される。すなわち、上述したように、応力ロッドの代わりに鋳型ロッドを用いて、得られるプリフォームに空気穴を形成することができる。さらに詳しくは、(プリフォームのクラッド部に対応する)圧縮された微粒ガラスまたはスート成形体から鋳型ロッドが取り足されて、得られるプリフォームの圧縮層に穴または穴が残され、これらの穴が別の材料で満たされる。
【0031】
本実施形態の一例において、これらの穴は次いで、(例えば、ホウ素ドープ応力ロッドを形成するために)ホウ素ドープシリカスートのような、第2の微粒ガラス組成物で満たされる。コアケーン、ホウ素ドープスート及び圧縮されたオーバークラッド材料(スート成形体)を含む集成プリフォームは、オーバークラッド材料及びホウ素ドープスートに完璧な緻密化を与えるために、焼結される。得られた固結プリフォームは次いで、光ファイバを作製するために線引きされる。
【0032】
本実施形態の別の例において、いくつかの用途では、(穴を満たすために用いられるであろう)ホウ素ドープスートのようなガラス粉末がガラススートと反応し過ぎて、固結後に所望の応力効果を保持することができない。反応を避けるため、1つ以上の穴を有して作製されたプリフォームを薄い壁を有するシリカチューブで埋めることができ、次いでシリカチューブ自体がガラス粉末(例えば、ホウ素ドープシリカ粉末)で満たされる。緻密シリカチューブが隣り合う大表面積スート間の反応を阻止し、プリフォーム固結後のホウ素ドープスート粉末による所望の物理的属性の提供を可能にする。
【0033】
本実施形態の第3の例において、穴を有して作製されたプリフォームは固結させて直接ガラスにすることができ、得られた固結ガラスブランクはコアケーンに対して幾何学的に揃えられた穴を有する。穴は、ガラスのロッドまたは粉末、金属のロッド、ワイアまたは粉末、及び半導体のロッドまたは粉末を含む、数多くの材料で満たすことができる。第2の相で満たされたブランクは再固結させ、再線引きしてより小径のケーンにするか、または線引きしてファイバにすることができる。
【0034】
微粒ガラス材料はアンドープシリカとすることができ、または微粒ガラス材料はドープすることができる。考え得るドーパントには、少なくとも、F,B,Ge,Er,Ti,Al,Li,K,Rb,Cs,Cl,Br,Na,Nd,Bi,Sb,Yb及びこれらの組合せがある。微粒ガラス材料は、スプレイ余りスートまたは、そうでなければ、OVDプロセスからの残余スート(OVD廃スート)またはVADプロセスからの残余スート(VAD廃スート)のような、CVDプロセスからの残余スート(CVD廃スート)、または、砂のような、他のいずれかのシリカ源からのガラススート、または様々なタイプのガラススートの混合物、あるいは砂とガラススートの混合物とすることができる。
【0035】
微粒ガラス材料は、無処理(例えば、凝固剤または溶媒が全く添加されていない、シリカスートまたはCVD廃スート)とすることができ、または、水または有機溶媒のような、1つ以上の凝固剤または溶剤で処理することができる。好ましい実施形態において、微粒ガラス材料は無処理である。微粒ガラス材料は、0.1〜1.0g/cmであることが好ましく、0.3〜0.5g/cmのような、0.2〜0.7g/cmであることがさらに好ましい、例えば約0.38g/cmの、平均タップ密度を有する。
【0036】
鋳型ロッドは、炭素、テフロン(登録商標)、アルミニウム、鋼、酸窒化ケイ素アルミニウム、炭化ケイ素、またはその他の機械的に強固な材料のような、硬質で非弾性的な材料を有することができる。
【0037】
ホウ素ドープシリカは、偏波保存ファイバ構造に有用であるに十分な応力場を与えるため、5〜25%の酸化ホウ素を含有することが好ましく、15〜25%の酸化ホウ素を含有することがさらに好ましい。ホウ素ドープシリカ粉末は0.4〜1.0g/cmのタップ密度を有することが好ましく、0.1g/cm以内の最終圧縮シリカスート体密度を有することが好ましい。
【0038】
固結プリフォームの穴に挿入し、次いで中心コアケーンの周りに幾何学的に配列されたアレイにするために利用できる金属には、Cu,Ag,Au,W及びGaを含めることができる。固結プリフォームの穴に挿入され、次いで中心コアケーンの周りに幾何学的に配列されたアレイにすることができる材料には、例えばSi及びSi/SiCのような材料がある。
【0039】
それぞれの例が添付図面に示される、様々な実施形態例をここで詳細に参照する。可能であれば必ず、図面及び説明を通して同じ参照数字が同じかまたは同様の要素を指して用いられる。光ファイバプリフォームの作製方法の一実施形態が図6に示される。図示される実施形態において、ガラスコアケーン、ガラスロッド及び/または鋳型ロッドが円筒形金型キャビティ内に配置され、石英ガラススートが金型キャビティ内に装填される。石英ガラススートを圧縮し、ガラスコアケーン及び他のロッドを囲む緻密化スート成形体を形成するため、石英ガラススートに振動エネルギー及び圧力が印加される。スート成形体は集成光ファイバプリフォームのクラッド部を形成し、ガラスコアケーンは集成光ファイバプリフォームのコア部を形成する。ガラスロッドが金型キャビティの中心を外れて配置されていれば、それらのガラスロッドは集成光ファイバプリフォームの応力ロッド部を形成することができる。その後、集成光ファイバプリフォームは固化されて光ファイバプリフォームになることができる。集成光ファイバプリフォームの形成方法及び集成光ファイバプリフォームを形成するために用いられる装置が、本明細書でさらに詳細に説明される。
【0040】
図1を参照すれば、集成光ファイバプリフォームを形成するための一例の金型装置100は、金型本体102,下部ラム104及び上部ラム106を備える。金型本体102は、金型本体102の軸線114上に中心がおかれ、軸線114に沿って延びる、金型キャビティを定める。金型キャビティ108は、直径がDで長さがLの、円筒形とすることができる。金型本体102は、炭素、アルミニウム、鋼、酸窒化ケイ素アルミニウム、炭化シリコン、またはその他の機械的に強固な材料でつくることができる。一実施形態において、金型本体102は、図1に示されるように、単一体として形成することができる。断面が非円形の金型装置も用い得ることに注意されたい。例えば、金型キャビティ108は断面を長方形または楕円とすることができる。
【0041】
次に図2を参照すれば、金型本体の別の実施形態が示される。本実施形態において、金型本体は、軸方向に沿って伸びる複数の金型セグメント132,134から形成される、組立金型本体130である。図示される実施形態において、セグメント132,134は、金型セグメント132のエッジに沿って配置された締結具穴136を通して、金型セグメント134のエッジに沿って配置された対応するねじ付穴138に締結具を挿入することで、結合させることができる。しかし、様々なその他の締結具及び/または締結手法を用いて金型セグメントを結合させ得ることは当然である。例えば、組み立てられたセグメントの周を囲んで延び、よって金型セグメント132を金型セグメント134に確実に固定する、1本以上のバンド(図示せず)を用いて、金型セグメント132を金型セグメント134に結合させることができる。
【0042】
1つ以上の実施形態にしたがえば、金型本体102は、金型本体102の軸線114上に中心があり、軸線114に沿って長さLにわたって延びる金型キャビティ108を定める。金型キャビティ108の断面形状は円形または非円形(例えば、楕円形、六角形、異形(例えばD字形))あるいは、光ファイバの所望の最終形状寸法を得るためのその他の構造形状とすることができる。金型キャビティ108は単一体に形成することができ、あるいは分割構成を有することができる。
【0043】
図2をまだ参照すれば、組立金型本体130は、組立金型本体130の内表面が実質的に連続であるように、材料(図示せず)で内張りすることができる。一実施形態において、内張材料には、ポリテトラフルオロエチレン(PTFE)または同様の材料のような低摩擦高分子材を含めることができる。別の実施形態において、内張材料には、カーボンシートまたは同様の材料のような非高分子低摩擦材料を含めることができる。内張材料には、金型キャビティ108の壁に配された内張材料シートまたは金型キャビティ108に施されたコーティングを含めることができる。内張材料は、ある程度圧縮されたプリフォームへの径方向圧力の印加を可能にするため、その仕様に関して後に説明される金型キャビティの内壁のための材料に相当することもできる。内張材料は、キャビティ内の最大正規動作圧力にさらされたときに塑性変形をおこさずに、径方向に内側に、十分に弾性変形するに足る弾性及び降伏強さを有するいずれかの材料、例えばラテックス材料でつくられたチューブで作製することができる。しかし、内張材料は内壁に相当することができ、このことは本明細書でさらに詳細に論じられる。内壁は金型装置100の内部キャビティ(金型キャビティ)の壁を形成する。そのような金型キャビティでは、同じ金型装置100を用いて径方向圧力及び軸方向圧力のいずれも与えることができる。
【0044】
図2は2つの金型セグメント132,134を有するとして組み立て金型本体130を示すが、組立金型本体130は、結合されると、一般に円筒形金型キャビティを定める、3個以上の金型セグメントを有し得ることは当然である。
【0045】
金型キャビティ108の直径D及び金型キャティ108の長さLは一般に、本明細書に説明されるスート圧縮法にしたがって作製される、十分に固結された光ファイバプリフォームが所望の最終寸法に達するように選ばれる。実験目的のため(例えば、実験室規模の光ファイバプリフォームを形成するため)、直径が44mm、48mm及び89mmで長さが61cmの金型キャビティを用いて、固結後の外径が(44mm径金型キャビティを用いた場合の)約3.3cmから(89mm径金型キャビティを用いた場合の)約7cm未満の実験室規模光ファイバプリフォームを形成した。しかし、光ファイバの商業生産に用いるためのより大きな光ファイバプリフォームを作製するため、金型本体102及び金型キャビティ108の諸元を拡大し得ることは当然である。例えば、より大きな、そのまま生産に用いられ得る光ファイバプリフォームを作製するため、金型本体102の金型キャビティ108の直径を20cmとし、これで固結後の外径が15cm程度の光ファイバプリフォームを得ることができる。さらに、金型キャビティの長さを2m程度ないしさらに大きくすることができる。所望の光ファイバプリフォーム寸法を達成するためにモールド金型の直径を選ぶための規準は、本明細書でさらに論じられる。
【0046】
図1を再度参照すれば、下部ラム104及び上部ラム106は一般に円板形につくられ、外径Dを有する。ラム104,106の外径Dは、ラム104,106を金型キャビティ108内に配置することができ、金型本体102の軸線114に沿って互いに対して滑動可能な態様で配置できるように、金型キャビティ108の直径Dと実質的に同じとすることができる。ラム104,106は、アルミニウムまたは鋼のような金属、あるは適する耐久性を有するプラスチックまたはその他のいずれかの材料で作製することができる。下部ラム104及び上部ラム106はそれぞれ(コア)内腔112,110を有し、内腔112,110は、ラム104,106が金型キャビティ108内に配置されたときに、内腔112,110の中心が金型102の軸線114に合わせられるように、ラムの中心に沿って延びる。内腔112,110はそれぞれ、本明細書でさらに詳細に説明される、集成光ファイバプリフォームを作製するために用いられるガラスコアケーン115の直径に一般に対応する、直径Dを有することができる。下部ラム104及び上部ラム106はそれぞれ、ラム104,106が金型キャビティ108内に配置されたときに、内腔112A,110Aが金型本体102の軸線114に対して軸外に配置されるように、ラムを貫通する1つ以上の内腔112A,110Aを有することもできる。内腔112A,110Aのそれぞれは、本明細書でさらに詳細に説明される、集成光ファイバプリフォームを作製するために用いられる応力ロッド115A及び/または鋳型ロッド115Bの直径に概ね相当する直径D'を有することができる。しかし、いくつかの別の実施形態においては、内腔112,110及び/または112A,110Aが円形断面を有していない。そのような別の実施形態において、下部ラム104の内腔104Aの形状及び寸法と後部ラム106の内腔110Aの形状及び寸法が、また内腔112Aのそれぞれの形状及び寸法と内腔110Aのそれぞれの形状及び寸法が、同じであることが好ましい。例えば、長円形内腔は、応力ロッド及び/または鋳型ロッドの印加圧力の下での移動を、そのような移動が望ましければ(例えば、径方向圧力及び軸方向圧力のいずれもが微粒ガラスに印加されれば)、可能にし得る。さらに、いくつかの実施形態において、応力ロッドまたは鋳型ロッドが円形断面を有していないことがある。
【0047】
図1に示されるように、ラム104,106はそれぞれ、内表面116,118を有する。内表面116,118は、ラム116,118が金型キャビティ108内に配置されたときに互いに対向する。図1に示される実施形態において、ラム104,106の内表面116,118は概ね平坦である。しかし、ラム104,106の内表面116,118が他の表面形状をとり得ることは当然である。例えば、ラム104,106の内表面116,118は、焼結時のスート成形体の形状保持を向上させるために金型キャビティ108内のラム104,16の間で石英ガラススートを圧縮することで形成されるスート成形体の端部を整形するため、円錐形にテーパを付けるかまたは放物面形状にすることができる。さらに、ラム104,106の内表面116,118は、金型本体102を介して金型キャビティ108に導入される振動エネルギーの反射及び/または放散を最適化するため、放物面形状を有することができる。
【0048】
次に図3を参照すれば、超音波源150に結合された、金型装置100の金型本体102が示される。超音波源150は金型本体102に振動エネルギーを印加するために用いることができ、振動エネルギーは続いて金型キャビティ内に伝搬する。振動エネルギーは金型キャビティ108内に入れられた石英ガラススートを流動化し、よって隣り合う石英ガラススート間の抗力または摩擦及び石英ガラススートと金型の間の摩擦を低減して、振動エネルギーを印加しない場合よりも、一様で高い密度までの、金型の長さLに沿う石英ガラススートの圧縮を容易にする。(ガラスコアケーン及び応力ロッド及び/または鋳型ロッドの周りに配される)スート成形体の形成中の振動エネルギーの印加によってつくられるスート成形体の密度がより一様で高くなることで、固結して光ファイバプリフォームにしたときに、プリフォームの末端からプリフォームの中心まで極めて僅かにしかテーパがかかっていない集成光ファイバプリフォームが作製される。すなわち、スート成形体から形成されるガラスの密度は光ファイバプリフォームの軸長に沿って実質的に一様である。本明細書に用いられるように、語句「集成光ファイバプリフォーム」が、固結すると、少なくとも、(i)応力ロッドのようなガラスロッド、及び/または鋳型ロッド取出し後に残される穴、及び(ii)スート成形体に対応するガラスクラッド部を有する光ファイバプリフォームを形成する、複数本のロッド及び/または穴をもつスート成形体を指すことは当然である。一般に、集成光ファイバプリフォームは、固結すると、プリフォームのコア部分を形成する、スート成形体に埋め込まれたガラスコアケーンも有するであろう。
【0049】
いくつかの実施形態において、コアケーンの代わりに、キャビティの中心に中心配置鋳型ロッドが挿入され得ることに注意されたい。圧縮完了後、焼結の前に、鋳型ロッドによって残された空孔にコアケーン115を挿入することができる。
【0050】
超音波源150は導波路152及び取付けカラー154によって金型本体102に結合される。図示される実施形態において、取付けカラー154は第1のカラー部156及び対応する第2のカラー部158を含む。第1のカラー部156及び第2のカラー部158は、金型本体102を囲んで配置し、取付けカラー154が金型本体102に確実に取り付けられるように相互に締結することができる。第1のカラー部156は第1のカラー部156を貫通するチャネル160を有することができる。導波路152を、導波路152が金型本体102に近接して配置されるが、金型本体に直接に接触はしないように、チャネル160内に配置することができる。超音波源150は、超音波源150で発生される振動エネルギーが導波路152に沿って伝搬し、取付けカラー154に入り、その後金型本体102に伝搬することができるように、金型本体102とは逆の側の導波路152の末端に結合される。
【0051】
超音波源150は電気ケーブル162を介して制御ユニット(図示せず)に接続することができる。制御ユニットは信号発生器及び5kW電力増幅器を有することができる。信号発生器は、制御ユニットが電気ケーブル162を介して超音波源150に電気波形を送る前に電力増幅器によって増幅される様々な低電圧(例えば5〜10ボルトの)電気波形をつくるように動作することができる。超音波源150内の変換器が電気波形を、導波路152に沿って金型キャビティ102に伝えられ、よって金型本体102及び金型キャビティ108の中身を機械的に振動させる、振動エネルギーに変換する。信号発生器で発生されて超音波源150に送られる電気波形は、正弦波、方形波、鋸歯状波、三角波等を含むがこれらには限定されない、様々な波形をとることができる。一実施形態において、超音波源150は、制御ユニットから電気波形を受け取り、受け取った電気波形に基づいて、約15kHz〜約50kHz(例えば、音響または可聴周波数から超音波周波数まで広がる周波数範囲)、さらに好ましくは約17kHz〜約25kHz、の周波数を有する高周波振動を発生する。別の実施形態において、超音波源150は、約1kHz〜約15kHz(例えば、超音波範囲外)、さらに好ましくは約1kHz〜約5kHzの、可調または音響範囲の、高周波数/低振幅振動を発生するように動作することができる。超音波源150により発生される振動エネルギーの強度または振幅は、制御ユニットによって発生される電気波形の振幅または強度(例えば、電力)を調節することで制御することができる。一実施形態において、制御ユニットは、金型キャビティ内の定在波の確立を避けるため、多重周波数モードを有する電気波形を発生し、ある範囲の周波数にわたってそのようなモードを掃引するように動作することができる。制御ユニットは、発生される電磁波形の振幅を周期的に変えるように動作することもできる。別の実施形態において、制御ユニットは、金型キャビティ内に装填された石英ガラススートの圧縮を阻止し得る金型キャビティ108内の振動エネルギーの定在波の確立を避けるため、発生される電気波形に多重周波数掃引を周期的に施すように動作することができる。一実施形態において、制御ユニットによって発生される電気波形をつくるために用いられる電源の電力は5kW電源の約50%〜約60%とすることができ、周波数掃引は±30Hzの周波数範囲にわたって実施することができる。
【0052】
次に図4を参照すれば、金型本体102の断面が示される。本実施形態においては、集成光ファイバプリフォームを形成するため、初めに、ガラスコアケーン115(あるいは、代わりにコア鋳型ロッド)が、次いで応力ロッド115A及び/または鋳型ロッド115Bが金型キャビティ105内に配置され、次いでコアケーン(またはコア鋳型ロッド)及び1本以上のロッド(すなわち、鋳型ロッド及び/または応力ロッド)の周りに石英ガラススート190が装填されて、圧縮または加圧される。十分に固結された光ファイバの所望の寸法によって、金型キャビティの精確な寸法及び圧縮作業によってつくられるスート成形体の最終密度が決定される。代表的な実験室規模の、中心に1本のコアロッドを有する、光ファイバプリフォームの例では、プリフォームの例示的な所望のコア/クラッド比は、光ファイバプリフォームのコア部がプリフォーム直径の6.9%であることを意味する、0.069である。すなわち、直径が19mmのガラスコアケーンがあって、コア直径がケーン直径の23%すなわち4.18mmであれば、所望の0.069のコア/クラッド比を達成するには、固結後のファイバプリフォームの外径を約61mmとすべきである。したがって、所望の寸法を有する光ファイバプリフォームを得るに必要な金型の寸法は、圧縮石英ガラススートの与えられた密度に対する収縮率を用いて決定することができる。収縮率は、非圧縮性軸方向ロッドの存在がスートの異方性収縮を生じさせ得るから、与えられたタイプに対して経験的に決定される必要があり得る。例えば、密度が0.81g/cmで、中心の19mmガラスコアケーンロッドを囲んでいる、89mm径石英ガラススート成形体の例では、ガラスへの固化後、軸方向収縮が約21%で径方向収縮が約32%である。したがって、外径が61mmの固結光ファイバプリフォームを得るためには、金型キャビティの直径は約89mmでなければならない。一般に、所望の光ファイバプリフォーム寸法を得るに必要な金型直径を決定するには、圧縮スート密度、与えられたスート密度に対する固結時の軸方向及び径方向の収縮についての実験的に得られた値、及びガラスコアケーンのコア/クラッド比が必要である。
【0053】
スート成形体クラッド部によって囲まれ、スート成形体クラッド部と同軸の、ガラスコアケーン115を有する集成光ファイバプリフォームを形成するため、ガラスコアケーン115,1本以上の応力ロッド115A及び/または1本以上の鋳型ロッド115Bを金型キャビティ108内に配置することができる。さらに詳しくは、いくつかの実施形態にしたがえば、ガラスコアケーン115は、ガラスコアケーン115の中心が実質的に金型本体102の長軸上に置かれるように、下部ラム104の内腔に配置される。ガラス応力ロッド115A及び/または鋳型ロッド115Bは、それぞれが金型本体102の長軸に対して軸外に配置されるように、下部ラム104の内腔に配置される。ガラスコアケーン115には、少なくとも純石英ガラスコアまたはドープト石英ガラスコアを有する円柱シリカベースコアケーンを含めることができる。ガラスコアケーンは、内側クラッド層等のような、コアを囲む付加ガラス層を有することもでき、そのような付加層は、ガラス層がガラス層の屈折率とは異なる屈折率を有するようなドーパントを含有することができる。ガラス応力ロッド115はホウ素ドープ石英ガラスからなることができ、円柱形とすることができる。
【0054】
図4に示されるように、ガラスコアケーン115,応力ロッド115A及び/または鋳型ロッド115B,及び/または追加のコアケーン115は、下部ラム104を通って、下部ラムエクステンション170の誘導チャネルに延び込むことができる。下部ラムエクステンション170及び(図6に示され、本明細書でさらに論じられる)上部ラムエクステンション174は、プレス(図示せず)のプレスアーム(図示せず)からの圧力をラム104,106に伝え、よってラム104,106を金型本体102の軸方向に沿って互いに向けて駆動する。
【0055】
ガラスコアケーン115,応力ロッド115A及び/または鋳型ロッド115B,または追加のコアケーン115が金型キャビティ108に配置された後、金型キャビティ108に微粒ガラス材料、例えば石英ガラススート190が装填される。石英ガラススート190は市販の石英ガラススートまたは石英ガラス粒子を含むことができる。あるいは、石英ガラススートは、化学的気相成長工程の熱分解から、例えば、他のシリカベース光ファイバプリフォームのオーバークラッド部のオクタメチルテトラシロキサンを用いる外付け(OVD)堆積工程から回収されたスート(例えば、光ファイバプリフォーム製造工程から再生使用される石英ガラススート)とすることができる。シリカスートは、石英ガラスの屈折率を高めるかまたは低めるドーパントのような、ドーパントを有することができ、あるいはスートは実質的に純粋な石英ガラススートとすることができる。一実施形態において、金型キャビティ内に充填されるガラススートは結合剤を全く含んでいない。一実施形態において、石英ガラススートは、約250m/gと約5m/gの間、さらに好ましくは約100m/gと約10m/gの間、最も好ましくは50m/gと10m/gの間の表面積を有することができる。これらの範囲は一般に、約10nm〜約500nm、さらに好ましくは約30nm〜約250nm、最も好ましくは60nm〜約250nmの粒径に、それぞれ相当する。
【0056】
金型キャビティ108内に装填される石英ガラススート190の量は、金型キャビティ108の直径、応力ロッド115Aまたはコアケーン115または鋳型ロッド115Bの寸法、固化光ファイバプリフォームの所望の長さ、及び固化光ファイバプリフォームに対する所望のコア/クラッド比に依存する。これらの要件に基づき、キャビティに加えられる石英ガラススート109の量は、光ファイバプリフォームのクラッド部を形成するために用いられるスート成形体198に対する目標スート密度が、約0.5g/cm〜約1.2g/cm,さらに好ましくは約0.7/cm〜約1.1/cm,最も好ましくは約0.8/cm〜約1.0/cmになり得るように、選ばれる。
【0057】
一実施形態において、図4に示されるように、石英ガラススート190は一工程で金型キャビティ108内に装填される。本実施形態において、石英ガラススート190が金型キャビティ108内に装填されている間、スートを金型キャビティ108内に均等に分布させるため、ガラスコアケーン115のたるみを用いてガラススートを撹拌することができる。さらにまたはあるいは、石英ガラススート190が金型キャビティ108内に装填されている間、金型キャビティ108内の石英ガラススートの一様充填を促進するため、超音波源を用いて金型本体102を軽く叩く、及び/または振動させることができる。例えば、超音波源150を用いて金型キャビティに振動エネルギーを印加し、よって石英ガラススートを流動化し、隣り合う石英ガラススート粒子間の摩擦を低減させ、石英ガラスシート粒子と金型キャビティの内表面の間の摩擦を低減することができる。振動エネルギーの印加によって石英ガラススートが流動化されると、キャビティ内に装填された石英ガラススートの密度は、機械的圧力を印加しなくとも、高くなり得る。さらに、振動エネルギーの印加は金型本体102の長さにわたる石英ガラススートの密度の一様性を高める。一実施形態において、石英ガラススートが金型キャビティ内に装填されている間、金型本体102の振動エネルギーを印加すると、石英ガラススートの密度は、石英ガラススートに機械的圧力を加えずに、少なくとも約0.35g/cmに,さらに好ましくは約0.37g/cmより高い密度に、達することができる。
【0058】
別の実施形態において、金型を真空引きしながら石英ガラススートを金型キャビティ108内に装填することができる。例えば、一実施形態において、真空装置(図示せず)を下部ラム104の近くで金型キャビティ108に連結することができる。これは、流体が通じる態様で金型キャビティが真空装置に連結されるように、真空装置に動作可能な態様で連結された真空ベース(図示せず)に金型本体102を配置することによって達成することができる。石英ガラススートが金型キャビティ108に装填されている間、金型キャビティ108から(空気中の水分を含む)空気を引き出し、したがって圧密前の石英ガラススートの密度を高めるために、真空装置が用いられる。金型本体102が多孔質材料で構成されている場合のような、別の実施形態においては、スートが金型キャビティ108内に装填されている間、金型本体102を外側から真空引きし、よって金型本体102を通して空気及び/または水分を引き出すことができる。シリカスートの真空補助装填は振動エネルギーの印加とともに行うことができる。
【0059】
次に図5A〜5Bを参照すれば、別の実施形態において、金型本体102の長さに沿う石英ガラススートの密度の一様性を向上させるため、個々の領域毎に石英ガラススートが金型キャビティ108内に装填され、それぞれの領域の石英ガラススートを、次の領域の石英ガラススートがモールドキャビティ108に加えられる前に、圧縮することができる。例えば、図5Aを参照すれば、2つの領域192,194に石英ガラススートが装填されている金型キャビティ108が示される。図5Aに図式表示されるように、第1の領域192の石英ガラススートは、第1の領域192が第2の領域194より高い密度を有するように、第2の領域194の石英ガラススートが加えられる前に圧縮されている。第2の領域194の石英ガラススートは、金型キャビティ108内の第1の領域192の石英ガラススートの上面上に装填した後に、圧縮することができる。
【0060】
一実施形態において、金型キャビティ内に装填されたそれぞれの領域の微粒ガラス材料(本実施形態においては石英ガラススート)の圧縮工程は、微粒ガラス材料の手作業による圧縮工程を含むことができる。石英ガラススートの手作業による圧縮工程は、石英ガラススートに圧力を印加し、よって石英ガラスシートを圧縮するために突き棒または同様の道具を使用する工程を含むことができる。石英ガラススートの手作業による圧縮工程は、上部ラム106を金型キャビティに配置し、(図6に示される)上部ラムエクステンションのような、エクステンションを用いて上部ラム106に圧力を印加することによる石英ガラススートの圧縮工程も含むことができる。
【0061】
別の実施形態において、それぞれの領域の(例えば、石英ガラススートのような)微粒ガラス材料の圧縮工程は、圧縮されるべき領域の石英ガラススートに重ねて上部ラム106が配されるように、金型キャビティ106に上部ラム106を配置する工程を含むことができる。その後、油圧プレスまたは機械プレスのような、プレスを用いて上部ラム106に機械的圧力を印加し、よって微粒ガラス材料(例えば、石英ガラススート)を圧縮することができる。
【0062】
それぞれの領域の石英ガラススートの密度を最大化するため、それぞれの領域の石英ガラススートが金型キャビティ108内に装填されている間、超音波源150を用いて金型本体102に振動エネルギーを印加することができる。同様に、それぞれの領域の石英ガラススートが圧縮されている間、金型本体102に振動エネルギーを印加することもできる。
【0063】
図5Bを参照すれば、第2の領域194の石英ガラススートの圧縮後、図5Bに示されるように、第2の領域194の圧縮された石英ガラススートに直接に接して、第3の(及び、必要に応じて、第4,第5,等々の)領域の石英ガラススートを金型キャビティ108に加えることができる。次いで第3の領域196の石英ガラススートを圧縮することができ、所望の量の石英ガラススートが金型キャビティ108内に装填されるまで、装填/圧縮工程が反復される。
【0064】
次に図6を参照すれば、所望の量の、石英ガラススートのような、微粒ガラス材料が金型キャビティ108内に装填された後に、ガラスコアケーン115,応力ロッド115A及び/または鋳型ロッド115Bの周りにスート成形体を形成するため、微粒ガラス材料(例えば、石英ガラススート)が軸方向に圧縮される。石英ガラススートを軸方向に圧縮するため、ガラスコアケーン115,応力ロッド115A及び/または鋳型ロッド115Bが上部ラム106の内腔を通して挿入され、充填された微粒ガラス材料(例えば、石英ガラススート)に上部ラム106が直接に接触するように、上部ラム106を金型キャビティ108内に配置することができる。次いで金型装置がプレス内に置かれ、プレスのプレスアーム(図示せず)に結合させることができる、上部ラムエクステンション174が、ガラスコアケーン115,応力ロッド115A及び/または鋳型ロッド115Bが上部ラムエクステンション174(及び/またはラム106)のそれぞれの誘導チャネル176,176A及び/または176B内に配置されるように、上部ラム106に対して配置される。一実施形態において、プレスの支持プレート(図示せず)上に下部ラムエクステンション170を置くことができる。別の実施形態において、下部ラムエクステンションは誘導チャネル172を有することができ、第2のプレスアーム(図示せず)上に下部ラムエクステンションを配置することができる。
【0065】
一実施形態において、金型装置100をプレスに置いた後、ラム104,106に軸方向圧力を印加する前に金型本体102に振動エネルギーを印加するため、超音波源150を用いることができる。圧力印加工程中に圧縮石英ガラススートの密度を高めるため及び得られるスート成形体の密度の一様性を向上させるため、圧力印加工程を通して振動エネルギーを金型本体に印加することができる。スート圧縮工程中に金型本体102に振動エネルギーを印加すると、金型本体102の振動エネルギーが印加されない場合のスート圧縮工程におけるスート成形体の密度と同じかまたはそれより高い密度を達成するに必要な圧力が低くなることが分かった。
【0066】
別の実施形態において、組立金型を(石英ガラススートに対する)摩擦が小さい内張材料とともに用いた場合には、スート圧縮工程中に金型本体102に振動エネルギーを印加しなくとも、内張がない一体金型本体で達成される圧密量と同じ圧密量に達する。これは、石英ガラススート粒子と内張材料の間の摩擦が、金型キャビティ108の内張材料に接している石英ガラススート粒子が容易に圧縮され(例えば、石英ガラススートが金型壁に引っかからず)、よって金型壁に沿う石英ガラススートの流動化を生じさせるに必要な振動エネルギーを減じるかまたは無くすに十分に低いからである。
【0067】
また別の実施形態において、圧力印加工程中に金型から空気をパージし、よって、スート成形体内の空気を排除し、所望の密度のスート成形体を得るに必要な総圧縮時間を短縮するため、真空装置を用いることができる。
【0068】
金型装置がプレスに置かれると、ラム104,106の間で石英ガラススートが圧縮されるように、プレスによりラムエクステンション170,174を介して上部ラム106及び下部ラム104に圧力Pが印加される、一実施形態において、圧力は、上部ラム106に圧力を印加し、よって上部ラム106を下部ラム104に向けて前進させるために用いられる。上部ラム106は、約0.1mm/秒〜約10mm/秒、さらに好ましくは0.1mm/秒〜約2.0mm/秒の速度で前進することができる。圧力印加工程中、上部ラム及び下部ラムのいずれもが金型の中央に向けて移動するように、金型本体102が支持されて、上部ラム106が前進する速度の約1/2の速度で(図6に矢印Sで示される)軸方向に滑動することが可能にされる。金型本体の活動を可能にすることで、スート成形体198の中心の周りの圧縮力の対称性が維持され、振動エネルギーが印加される場合には、圧力印加工程を通してスート成形体198の中心部への超音波源の配置が維持される。
【0069】
一実施形態において、石英ガラススートが圧縮されている間、金型本体102に対するラム104,106のそれぞれの軸方向位置がモニタされる。ラム104,106のそれぞれの軸方向位置の測定は、超音波センサ、近接センサまたは光学センサ等のような、センサ(図示せず)を金型本体102の上及び/または下の固定点に配置し、ラムが金型本体102の軸に沿って前進している間、センサを用いてセンサとラムの間の距離を測定することによって達成することができる。別の実施形態において、金型本体102内のラムの軸方向位置は、ラム及び/または金型本体102に動作可能な態様で結合された、ノギスまたは同様の測定器(図示せず)によるように、直接測定することができる。金型本体内のラムの位置を検出するためのセンサまたは測定器の使用により、金型本体内のラムの位置、金型本体の諸元、ラムの諸元及び金型本体108に入れられたシリカスートの重量に基づく、圧縮された石英ガラススートの平均密度の実時間計算が可能になる。シート密度の実時間測定値は、スート圧縮プロセスに対するプロセス制御変数として用いることができる。さらに詳しくは、石英ガラススートが目標密度まで圧縮されたことが実時間測定から決定されると、ラム104,106への機械的圧力の印加をその時点で停止することができる。
【0070】
別の実施形態において、プレスが油圧作動プレスである場合、油圧プレスの油圧ライン圧力がモニタされ、スート圧縮プロセスを制御するために用いられる。プレスの油圧ラインの圧力は、石英ガラススートが圧縮されている間の油圧プレスアームが受ける抵抗の指標となることができる。したがって、スートの密度が圧縮によって高まると、油圧ラインの圧力も高まる。したがって、与えられた金型諸元及び金型キャビティ108内に装填された石英ガラススートの重量に対し、油圧ライン圧力はスート圧縮工程中のスートの密度の指標になり得る。したがって、油圧ライン圧力は、圧縮されたスートが目標密度に達した時点を判定するために用いることができる。
【0071】
スート密度または油圧ライン圧力の実時間測定値はスート圧縮プロセスに対するプロセス制御変数として用いることができるが、いずれもスート圧縮プロセス中にシートの密度を決定するために用い得ることは当然である。
【0072】
別の実施形態において、金型キャビティ内に装填された石英ガラススートに印加される実圧縮圧力を測定するため、ロードセルを下部ラム104に取り付けることができる。ロードセルから得られたデータ、金型キャビティ内のラムの実変位、スートの重量及び金型諸元を、システムの適切な動作及び得られるスート成形体の密度の一様性を保証するために用いることができ、したがって品質制御目的のために用いることができる。
【0073】
上述したように、石英ガラススートは得られるスート成形体198に対する目標密度に達するまで圧縮される。光ファイバプリフォームのクラッド部を形成するために用いられるスート成形体198に対する目標スート密度は約0.5g/cm〜約1.2g/cm,さらに好ましくは約0.7g/cm〜約1.1g/cm,最も好ましくは約0.8g/cm〜約1.0g/cm,とすることができる。一実施形態において、目標スート密度に近づくと、振動エネルギーの印加が停止される。例えば、スート成形体の密度計算値が目標密度から0.01g/cmの範囲内になると、振動エネルギーの印加を停止することができる。目標密度に達すると、目標密度においてラムにかけられていた圧力が、スート成形体の圧力下における緩和を可能にするためにあらかじめ定められた時間、静負荷として維持される。一実施形態において、緩和時間は約1分〜約10分である。
【0074】
緩和時間に続いて、スート成形体198にかかる圧力が解放され、上部ラム106及び下部ラム104が金型キャビティ108から取り外されて、ガラスコアケーン115が埋め込まれ、応力ロッド115A(及び/または鋳型ロッド115B)が埋め込まれている、スート成形体198が金型キャビティ108内に残される。図7に示されるように、スート成形体及び埋め込まれたガラスコアケーン115及び応力ロッド115Aが集成光ファイバプリフォーム200を形成する。スート成形体198は集成光ファイバプリフォーム200のクラッド部を形成する。ガラスコアケーン115は集成光ファイブプリフォーム200のコア部を形成し、応力ロッド115Aは、集成光ファイバプリフォーム200の、偏波保存ファイバまたは単一偏波ファイバの応力誘起領域に対応する部分を形成する。
【0075】
応力ロッド115Aの代わりに、追加のコアケーン115を用い得ることに注意されたい。この場合、複数本のガラスコアケーンが、得られる光ファイバの複数のコアに対応する。少なくともいくつかの実施形態にしたがえば、コアケーンは金型内で同一直線上に配列され、圧縮されたスートプリフォーム内で同一直線上に(例えば、同じ直径に沿って)配置される。
【0076】
集成光ファイバプリフォームをさらに処理して光ファイバプリフォームにするためには、集成光ファイバプロフォーム200を金型キャビティ108から取り外さなければならない。一実施形態において、金型キャビティ108から集成光ファイバプリフォームを取り外すため、金型装置をプレスから取り出して、金型本体102の長軸が実質的に垂直になるようにエクステンションロッド上に配置する。次いで金型本体102に振動エネルギーを印加し、金型本体をスート成形体198から押し離して、集成光ファイバプリフォームをエクステンションロッド上に残す。いくつかの実施形態例にしたがえば、応力ロッド115Aの代わりに鋳型ロッド115Bが用いられる場合、鋳型ロッドの取外し後、集成光ファイバプリフォーム200は応力ロッド115Aの代わりに穴(空孔115B')を有するであろう。いくつかの実施形態においては、複数の空孔が複数本の鋳型ロッドを用いてクラッドに形成される。これらの実施形態におけるそのような空孔の数は、好ましくは5より多く、さらに好ましくは50より多く、さらに一層好ましくは100より多く、最も好ましくは200より多い。空孔数が5より多い光ファイバは、例えば、高屈曲ファイバ、フォトニック結晶ファイバ、高開口数ファイバ、または無限単一モードタイプとして、用いることができる。また別の実施形態において、複数の空孔はクラッドの一部だけに形成され、クラッドの残り部分に空孔はない。
【0077】
別の実施形態において、スート成形体198を形成するために組立金型が用いられる場合、金型キャビティ108から集成光ファイバプリフォームを取り外すことができるまで、金型本体の個々のセグメントが集成光ファイバプリフォームの周りから取り外される。この実施形態において、金型キャビティ108から集成光ファイバプリフォームが取り外された後、集成光ファイバプリフォームがさらに処理され得るように、スート成形体198を囲む円筒スリーブがスート成形体198の周りから取り外される。
【0078】
また別の実施形態において、集成光ファイバプリフォーム200は、集成光ファイバプリフォームのスート成形体198を予備焼結することによって、金型キャビティ108から取り外すことができる。予備焼結はスート成形体の寸法を縮小させ、よってスート成形体198を金型キャビティ108から容易に取り外すことができる。予備焼結は固結前のスート成形体の機械的耐久性を高め、ある程度焼結されたスート成形体と応力ロッドの間の結合も向上させる。集成光ファイバプリフォーム200に穴を形成するために鋳型ロッド115Bが用いられる場合、好ましくは、鋳型ロッド115Bは、予備焼結工程による予備焼結されたスートの鋳型ロッドへの結合がおこる前に、及び/または鋳型ロッドが熱環境による損傷を受ける前に、スート成形体から取り外されるべきである。予備焼結工程は、予備焼結中の十分に高温の熱処理後に鋳型ロッドが取り外されることになっていれば、鋳型ロッド115Bに対するいくつかの材料(例えば、「テフロン」またはアルミニウム)の選択を規定し得る。スート成形体198を予備焼結または再焼結する工程は、スート成形体を乾燥させる工程を含むこともできる。例えば、スート成形体198を乾燥させるため、スート成形体を含む金型を管状炉の高温域でシリカマッフル内に載せることができる。マッフルの両端に蓋をし、炉の温度を300℃まで上げながら、真空引きする。真空下300℃で17時間、プリフォームを保持する。スート成形体を予備焼結するため、1気圧(1013hPa)に戻るまでマッフルにヘリウムを満たし、排気し、さらに時間を使って1気圧になるまで再びヘリウムで満たす。次いで管状炉の温度を900℃まで漸次高め、ヘリウムを流しながら4時間保持する。次いで管状炉を冷却する。管状炉が室温に達すると、ヘリウム流を止めて、蓋をしたマッフルから金型を取り出す。予備焼結スート成形体は、スート成形体の直径が予備焼結中に縮小しているから、金型から取り出すことができる。保持時間の変更及び900℃予備焼結前の400℃〜700℃の温度への漸次上昇の追加がガラス品質を最高にするために望ましいことがあり得る。別の実施形態において、スート成形体198は集成光ファイバプリフォームが入っている金型本体102を管状炉内に置くことで予備焼結される。炉の雰囲気はヘリウムでパージすることができ、炉の温度はヘリウム流の雰囲気内で約800℃と1200℃の間まで高めることができる。炉は所望の予備焼結温度で約2時間保持される。冷却すると、金型本体102から予備焼結スート成形体198を容易に取り外すことができる。密度がより低い成形体、または直径がより小さい金型に対しては、1000℃より高い温度でスート成形体を焼結することが必要であるかまたは望ましい。しかし、そのような温度に達する前に、焼結された石英ガラス内の望ましくないクリストバライト相の形成を避けるため、そのような高温における焼結に先立ち、スート成形体を乾燥させることが必要になり得る。一実施形態において、スート成形体を乾燥させるため、金型及び集成光ファイバプリフォームが入れられた炉を、ヘリウムガス/5%塩素混合を流しながら1000℃まで加熱する。炉の温度を予備焼結温度まで加熱する前に、炉を1000℃に約2時間保持する。乾燥プロセス中に金型本体102は塩素蒸気にさらされるから、スート成形体198が金型キャビティ108内で、900℃をこえ、好ましくは1000℃をこえる温度で、例えば0.5〜5時間焼結されるであろうと考えられる場合には、カーボンのような塩素ガスと反応しない材料を金型本体102に用いるべきである。予備焼結は、スート成形体のある程度の緻密化を与えるため、1250〜1400℃の温度で、例えば、十分な時間(例えば、0.5〜5時間または1〜3時間)をかけて行うことができる。
【0079】
さらに、上述した予備焼結プロセスは、内径Dが44mm及び89mmの金型で形成されたスート成形体を処理するために用いた、諸元が異なるスートコンパクトに対して、予備焼結プロセスをスケーリングでき、最適化できることは当然である。
【0080】
次に図7を参照すれば、本明細書に説明されるスート圧縮プロセスにより、集成光ファイバプリフォーム200のクラッド部を形成するスート成形体198,及び集成光ファイバプリフォーム200のコア部を形成するガラスコアケーンを有する、集成光ファイバプリフォーム200が得られる。金型から集成光ファイバプリフォーム200が取り外された後、集成光ファイバプリフォーム200は、スート成形体198を固結/焼結させて、例えば図8Aの焼結光ファイバプリフォーム210に示されるように、例えばガラスコアケーン115の周り及び応力ロッド115Aの周りに緻密石英ガラスクラッド部212を形成することができる。また、スート成形体198の固結はクラッド部212をガラスコアケーン115及び(応力ロッドが用いられていれば)応力ロッド115Aに結合させ、よって光ファイバプリフォーム210を形成する。あるいは、応力ロッドの代わりに追加のコアケーンが用いられていれば、集成光ファイバプリフォーム200がスート成形体198の固結/焼結時に、複数本のガラスコアケーン115の周りに緻密石英ガラスクラッド部212が形成される。また、スート成形体198の固結はクラッド部212をガラスコアケーン115に結合させて、複数本のコアケーンを有する光ファイバプリフォーム210を形成する。あるいはまた、鋳型ロッド115Bが用いられていれば、得られる光ファイバプリフォーム210は、先に取り外された鋳型ロッドの場所に対応する場所に空孔または穴115B'を有することができる(図8Bを見よ)。また別の実施形態例において、ある程度の固結後、穴または空孔の場所にホウ素ドープスートが入れられ、次いで、コアケーン115と(ある程度焼結されたスート成形体198に対応する)ある程度焼結されたスートが、ある程度焼結されたスート成形体198の内側の穴に入れられたホウ素ドープスートともに焼結されて、完全緻密化が達成される。
【0081】
スート成形体が純シリカ(スート)粉末でつくられていて、ホウ素ドープスートが(与えられた用途の目的には)固結中のシリカ粉末との反応性が高すぎることが分かった場合には、スート成形体内の空孔の内径より僅かに小さい外径を有する薄壁シリカチューブをスート成形体の(円筒形)空孔に挿入することができ、次いでチューブ自体の内側をホウ素ドープシリカスート粉末で満たすことができる。
【0082】
一実施形態において、集成光ファイバプリフォーム200は、ガラスコアケーン115にハンドルを取り付けて、集成光ファイバプリフォームを固結炉上に石英投込ロッドから吊り下げることで、固結されて光ファイバプリフォーム210にされる。固結炉には一般に、乾燥域及び固結域を有する石英マッフルを備える管状炉を含めることができる。乾燥域は約1000℃の温度に保持することができ、固結域は固結域にかけて約1000℃から約1450℃の温度勾配を有する。固結炉の固結域にはヘリウムを流し続けておくことができる。集成光ファイバプリフォームは固結炉の乾燥域に保持され、集成光ファイバプリフォームを乾燥させ、炭素、水及び遷移金属不純物を除去するため、連続する2つの等温保持期間においてそれぞれヘリウム/酸素流及びヘリウム/塩素流にさらされる。乾燥処理後、管状炉内の雰囲気がヘリウム流に切り換えられ、集成光ファイバプリフォームが固結域を通して下降させられて、石英ガラスの温度を高めて完全に固結したガラスを形成するに十分な流動溶融ガラスがつくられる。固結に続いて、固結された集成光ファイバプリフォーム(今では光ファイバプリフォーム)は固結炉から引き出され、試料のガス抜き及びアニールのため、1000℃保持オーブン内に少なくとも6時間は置かれる。
【0083】
本明細書に説明されるスート圧縮プロセスは、スート成形体の密度の一様性を向上させ、よって固結光ファイバプリフォームの形状寸法の変動を低減するために最適化することができるが、スート圧縮プロセスによって形成された光ファイバは、固結後にいくらかの寸法変動を有し得る。例えば、光ファイバプリフォームのクラッド部212の直径は、固結光ファイバプリフォームの末端において光ファイバプリフォームの中間より大きくなり、よって光ファイバプリフォームの直径に末端から中間にかけてテーパがつくことがあり得る。一実施形態において、光ファイバプリフォームは、光ファイバプリフォームの軸長に沿ういかなる寸法変動も排除するため、予備焼結後に機械加工することができる。例えば、光ファイバプリフォームを旋盤に取り付けて、光ファイバプリフォームの軸長に沿うクラッド部のある領域の直径を選択的に減じるために機械加工し、よって直径が一様な光ファイバプリフォームを形成することができる。
【実施例】
【0084】
本発明は以下の実施例によってさらに明解になるであろう。
【0085】
実施例1
本実施例においては、金型キャビティに石英ガラススートを一工程で装填することにより、2つの集成光ファイバプリフォームを作製した。集成光ファイバプリフォームを形成するため、直径が1.9cmのガラスコアケーン及び2本の直径が約24mmの応力ロッドを直径が89mmで長さが610mmの金型キャビティを有するカーボン製金型内に配置した。本実施形態におけるガラスコアケーンの長さは金型の長さと同じである。
【0086】
金型キャビティの下部に配置したラムの内腔にガラスコアケーンの末端を挿入することにより、ガラスコアケーンを金型キャビティ内に配置した。金型キャビティの下部に配置したラムの(軸外)内腔にそれぞれの応力ロッドの末端を挿入することにより、応力ロッドも金型キャビティ内に配置した。約930gの石英ガラススートを、ガラスコアケーンが石英ガラススートの中心に配置され、応力ロッドが軸外でコアロッドの比較的近くに配置されるように、金型キャビティに装填した。特定の光ファイバ構造を達成するため、金型の出発時構成におけるコアケーンの位置に対する応力ロッドの正確な位置は、固化中のスートの収縮率の測定値を用い、所望のファイバ構造から帰納的に計算することで決定することができる(すなわち、所望の構造から出発し、既知の収縮率を計算に入れることで、出発時の構造を決定する)。軸方向ロッドの存在が軸方向収縮を径方向収縮に対して抑制し得るから、軸方向スート−ガラス収縮及び径方向スート−ガラス収縮を測定することが必要になり得る。ロッドが1つのファイバ直径に沿って配列されていれば、直交する2つの径方向ファイバ寸法に沿う収縮率も異なるであろう。計算を完了するに必要な可調パラメータは、スートタップ密度、最終圧縮スート密度及び金型直径である。石英ガラススートを金型キャビティ内に装填した後、石英ガラススートの圧縮前密度を最大化するため、振動エネルギーを印加した。上部ラムをガラスコアケーン及び応力ロッドにかけて配置して金型キャビティに挿入した。本実施例においては、金型キャビティ内のガラスコアケーン及び応力ロッドの周りにラムエクステンションを挿入し、金型及びエクステンションを油圧プレス内に置いた。油圧プレスのプレスアームを上部ラムエクステンションに合わせて取付け、下部ラムエクステンションを油圧プレスの支持プレート上に置いた。約17〜19kHzの周波数で5kW増幅器のパワーの51%の振動エネルギーを金型に印加した。好ましい正確な共振周波数は、超音波変換器、導波路、クランプ及び金型の詳細に依存し、それぞれの仕様要素セットについて独立に最適化しなければならない。金型キャビティ内の定在波の確立を避けるため、40Hzの多重周波数掃引を0.026秒周期で振動エネルギーに適用した。
【0087】
スートを圧縮するため、プレスの上部ラムを下部ラムに向けて4.8mm/秒の速度で前進させた。金型をスート成形体に対して約2.4mm/秒の速度で滑らせ、よってスート成形体の中心に超音波源を維持することができた。スートの密度は、金型キャビティ内の上部ラムの位置の測定値、金型の諸元及びスートの重量に基づいて、圧縮工程を通して実時間で計算することができる。スートの密度の計算値が目標密度(本実施例においては0.8g/cm)から0.01g/cmの範囲に入ったときに、振動エネルギーを停止した。スートの密度の計算値が0.8g/cmの目標密度に達したときに油圧プレスのプレスアームの運動を停止させ、209ポンド(94.8kg)の静負荷だけをプレスの油圧ラインに残した。10分経過後に、静負荷を解放した。その後、集成光ファイバプリフォームを管状炉内に置き、ヘリウム/5%塩素を流して1000℃で一時間乾燥した。次いで集成光ファイバプリフォームを1200℃で1時間の予備焼結を行い、次いで、上述したように、固結させた。試料の直径変動は、固結光ファイバプリフォームの最小直径の約±10%未満であると推定される。
【0088】
実施例2
本実施例においては、金型キャビティ内の個別の領域に石英ガラススートを装填し、それぞれの領域を次の領域への装填の前に圧縮することで、集成光ファイバプリフォームを作製した。集成光ファイバを形成するため、直径が1.9cmのガラスコアケーン及び2本の直径が24mmの応力ロッドを直径が89mmで長さが610mmの金型キャビティを有するアルミニウム製組立金型内に配置した。組立金型は、それぞれが金型の周囲長の1/3づつをなす3つのパネルで構成され、金型材料の外周に機械加工でつくり込まれたボルトによって結合される。0.5mm厚の「テフロン」シートで金型キャビティを密着内張りした。本実施例におけるガラスコアケーン及び応力ロッドの長さは金型の長さと同じである。金型キャビティの下部に配置したラムの内腔にガラスコアケーンの末端及び応力ロッドの末端を挿入することにより、ガラスコアケーン及び応力ロッドを金型キャビティ内に配置した。
【0089】
総計で1375gの石英ガラススートを以下の態様で金型(金型キャビティ)内に装填した。第1の領域の、275gの石英ガラススートを金型キャビティ内に装填し、手作業で0.55g/cmの密度まで圧縮して、金型の中央に配置した。第2の領域の、275gの石英ガラススートを金型キャビティの一端に装填し、第3の領域の、275gの石英ガラスシートを金型キャビティの他端に装填した。両端にラムを嵌め込み、手作業で0.47g/cmの密度まで圧縮して、金型キャビティの長さに沿って中央に寄せた。第4の領域の、275gの石英ガラススートを金型キャビティの一端に装填し、第5の領域の、275gの石英ガラスシートを金型キャビティの他端に装填した。両端にラムを嵌め込み、手作業で0.40g/cmの密度まで圧縮した。したがって、装填したスートは、第1の領域が、一方の側の第2の領域及び第4の領域と他方の側の第2の領域と第5の領域の間に配されるように、金型キャビティ内に配置される。
【0090】
その後、ガラスコアケーン及び応力ロッドにかけてラムを配置し、金型キャビティに挿入した。金型キャビティ内のガラスコアケーン及び応力ロッドの周りにラムエクステンションを挿入し、金型及びエクステンションを油圧プレス内に置いた。油圧プレスのプレスアームを上部ラムエクステンションに合わせて取付け、下部ラムエクステンションを油圧プレスの支持プレート上に置いた。
【0091】
スートを圧縮するため、プレスの上部ラムを下部ラムに向けて1.6mm/秒の速度で前進させた。金型をスート成形体に対して約0.8mm/秒の速度で滑らせ、よってスート成形体の中心に超音波源を維持することができた。スートの密度を、金型キャビティ内の上部ラムの位置の測定値、金型の諸元及びスートの重量に基づいて、圧縮工程を通して実時間で計算した。スートの密度の計算値が0.8g/cmの目標密度に達したときに油圧プレスのプレスアームの運動を停止させ、1300ポンド(589.7kg)の静負荷だけをプレスの油圧ラインに残した。60分経過後に、静負荷を解放した。次いで組立金型を分解し、得られた圧縮プリフォームを金型及び「テフロン」内張りから外した。次いでプリフォームをヘリウム雰囲気内で900℃まで漸次温度を上昇させて1〜3時間熱処理し、ある程度焼結されたプリフォームにした。次いで、上述したように、集成光ファイバプリフォームを固結させた。
【0092】
実施例3
図8Cに示される構造と同様の構造を有する単一偏波ファイバ及び/または偏波保存ファイバのような、光ファイバを作製するための光ファイバプリフォームを作製するため、金型装置内の3本のガラスロッド(コアロッド及び2本の応力ロッド)の位置を初めに計算した。本実施例においては、光ファイバを作製するため、タップ密度が0.6g/cmのスートから始めた。従前の実験では、スート密度が0.85g/cmの圧縮プリフォームは、軸方向に19%収縮し、径方向に29%収縮して固結することが示された。楕円形の金型キャビティ及びラムの構成で、ガラスロッドの非円対称な位置を(すなわち、楕円の一方の軸に沿い、他方の軸には沿わずに、配置されたロッドの位置を)補償することができる。得られる焼結プリフォームにおいて、コアケーン及び2本の応力ロッドを含む軸に沿っては、径方向プロファイルの35%だけが圧縮スートからのガラスであり、直交する直径ではガラスの89%が圧縮スートからのガラスである。(コア及び2本の応力ロッドがそれに沿って配置される)短軸が89mmであり、長軸が106mmの楕円形断面を有する金型キャビティに、固結中に0.85g/cmのスート密度までの圧縮後、及び29%の直線(径方向)収縮後、得られるプリフォームのそれぞれの軸が78mm直径まで収縮されて、得られるプリフォームの断面が円形になるように、それぞれの軸に沿ってガラススートが入れられるであろう。収縮率及び構造が変われば、最適な形状寸法を得るため、金型及びラムの構造の修正が必要になり得ることは当然である。
【0093】
本実施例の集成光ファイバプリフォームを形成するため、直径が8.7mmのガラスコアケーン及び2本の直径が約21mmの応力ロッドを、(短軸)径が89mmの断面が楕円形のアルミニウム製組立金型内に配置した。組立金型は、それぞれが金型の周囲長の1/3ずつをなす3つのパネルで構成され、金型材料の外周に機械加工でつくり込まれたボルトによって結合される。0.5mm厚の「テフロン」シートで金型キャビティを密着内張りした。本実施例におけるガラスコアケーン及び応力ロッドの長さは金型の長さと同じである。金型キャビティの下部に配置したラムの内腔にガラスコアケーンの末端及び応力ロッドの末端を挿入することにより、ガラスコアケーン及び応力ロッドを金型キャビティ内に配置した。組立金型は、それぞれが金型の周囲長の1/3ずつをなす3つのパネルで構成され、金型材料の外周に機械加工でつくり込まれたボルトによって結合される。0.5mm厚の「テフロン」シートで金型キャビティを密着内張りした。本実施例におけるガラスコアケーン及び鋳型ロッドの長さは金型の長さと同じである。2つのラムは、楕円の中心にコアケーンのための開口または穴(例えば、内腔110,112)を有し、また楕円の短軸に沿う径上に鋳型ロッドのための21mm径の開口または穴(例えば、内腔110A,110B)も有する。金型キャビティの下部に配置されたラムの内腔にガラスコアケーンの末端及び応力ロッドの末端を挿入することによって、ガラスコアケーン及び応力ロッドを金型キャビティ内に配置した。
【0094】
タップ密度が0.6g/cmの石英ガラススートを、総計で2037g、金型に装填し、金型キャビティを約51cmの高さまで満たした。その後、ガラスコアケーン及び応力ロッドにかけてラムを配置し、金型キャビティに挿入した。金型キャビティ内のガラスコアケーン及び応力ロッドの周りにラムエクステンションを挿入し、金型及びエクステンションを油圧プレス内に置いた。油圧プレスのプレスアームを上部ラムエクステンションに合わせて取付け、下部ラムエクステンションを油圧プレスの支持プレート上に置いた。
【0095】
スートを圧縮するため、プレスの上部ラムを下部ラムに向けて1.6mm/秒の速度で前進させた。金型をスート成形体に対して約0.8mm/秒の速度で滑らせ、よってスート成形体の中心に超音波源を維持することができた。スートの密度を、金型キャビティ内の上部ラムの位置の測定値、金型の諸元及びスートの重量に基づいて、圧縮工程を通して実時間で計算した。スートの密度の計算値が0.85g/cmの目標密度に達したときに油圧プレスのプレスアームの運動を停止させた。60分経過後に、静負荷を解放した。次いで組立金型を分解し、得られた圧縮プリフォームを金型及び「テフロン」内張りから外した。次いでプリフォームをヘリウム雰囲気内で900℃まで漸次温度を上昇させて1〜3時間熱処理し、ある程度焼結されたプリフォームにした。次いで、上述したように、集成光ファイバプリフォームを固結させた。
【0096】
実施例4
本実施例においては、中心に置かれたコアケーン、及び2本の鋳型ロッドが入っている金型キャビティにシリカガラススートを装填することによって、集成光ファイバプリフォームを作製した。鋳型ロッドは、円筒形空孔を有する圧縮スートを得るため、圧縮工程後に取り外されることになっている。圧縮スートは次いで、円筒形穴を有する集成プリフォームを形成するため、固結される。さらに詳しくは、本実施形態の集成光ファイバプリフォームを形成するため、直径が19mmのガラスコアケーン及び2本の直径が24mmの「テフロン」でつくられた鋳型ロッドを直径が89mmで長さが610mmの金型キャビティを有するアルミニウム製組立金型内に配置した。組立金型は、それぞれが金型の周囲長の1/3ずつをなす3つのパネルで構成され、金型材料の外周に機械加工でつくり込まれたボルトによって結合される。0.5mm厚の「テフロン」シートで金型キャビティを密着内張りした。本実施例におけるガラスコアケーン及び鋳型ロッドの長さは金型の長さと同じである。金型キャビティの下部に配置したラムの内腔にガラスコアケーンの末端及び鋳型ロッドの末端を挿入することにより、ガラスコアケーン及び鋳型ロッドを金型キャビティ内に配置した。
【0097】
総計で1540gの石英ガラススート(タップ密度=0.6g/cm)を金型に装填した。集成体に合わせてラム及びラムエクステンションを取付け、金型及びエクステンションを油圧プレス内に置いた。油圧プレスのプレスアームを上部ラムエクステンションに合わせて取付け、下部ラムエクステンションを油圧プレスの支持プレート上に置いた。
【0098】
スートを圧縮するため、プレスの上部ラムを下部ラムに向けて1.6mm/秒の速度で前進させた。金型をスート成形体に対して約0.8mm/秒の速度で滑らせ、よってスート成形体の中心に超音波源を維持することができた。スートの密度を、金型キャビティ内の上部ラムの位置の測定値、金型の諸元及びスートの重量に基づいて、圧縮工程を通して実時間で計算した。スートの密度の計算値が0.8g/cmの目標密度に達したときに油圧プレスのプレスアームの運動を停止させ、1300ポンド(589.7kg)の静負荷だけをプレスの油圧ラインに残した。60分経過後に、静負荷を解放した。次いで組立金型を分解し、得られた圧縮プリフォームを金型及び「テフロン」内張りから外した。スート成形体から鋳型ロッドを手作業で滑り出させることで、集成プリフォームから鋳型ロッドを静かに取り外すことができる。次いで、円筒形空孔を有するプリフォームをヘリウム雰囲気内で900℃まで漸次温度を上昇させて1〜3時間熱処理し、ある程度焼結されたプリフォームにした。最終構成の1つにおいて、円筒形空孔を有する光ファイバプリフォームを固結させて、円筒形空孔を有するガラス品にすることができる。
【0099】
実施例5
本実施例においては、金型キャビティに石英ガラススートを一工程で装填することにより、集成光ファイバプリフォームを作製した。集成光ファイバプリフォームを形成するため、直径が1.06cmのガラスコアケーン及びそれぞれの直径が1.5mmの6本の「テフロン」鋳型ロッドを直径が89mmで長さが610mmの金型キャビティを有するカーボン製金型内に配置した。ガラス質炭素コーティングで金型キャビティを内張りした。本実施形態におけるガラスコアケーンの長さは金型の長さと同じである。
【0100】
金型キャビティの下部に配置したラムの内腔にガラスコアケーンの末端を挿入することによって、ガラスコアケーンを金型キャビティ内に配置した。金型キャビティの下部に配置したラムの内腔にそれぞれの鋳型ロッドの末端を挿入することによって、6本の鋳型ロッドを金型キャビティ内に配置した。それぞれの鋳型ロッドのための穴は、上部ラム及び下部ラムのそれぞれを通るそれぞれの鋳型ロッドの自由な運動を可能にすべきである。鋳型ロッドの配置はラムにある、本実施例においては、(コアケーンの中心から測られた半径をもつ)円の周に沿って中心間隔が等しく1.5mmの、パターンによって固定される。タップ密度が0.6g/cmの石英ガラススートを約1470g、コアケーン及び6本の鋳型ロッドの垂直性を維持しながら、金型キャビティに装填した。石英ガラススートを金型キャビティ内に装填した後、石英ガラススートの圧縮前密度を最大化するため、金型本体に振動エネルギーを印加した。下部ラムと位置を合わせ、ロッドにねじれを全く与えないように注意しながら、ガラスコアケーン及び鋳型ロッドにかけて上部ラムを配置した。金型キャビティ内のガラスコアケーン及び鋳型ロッドの周りにラムエクステンションを挿入し、金型及びエクステンションを油圧プレス内に置いた。油圧プレスのプレスアームを上部ラムエクステンションに合わせて取付け、下部ラムエクステンションを油圧プレスの支持プレート上に置いた。約20kHzの周波数で5kW増幅器のパワーの51%の振動エネルギーを金型に印加した。金型キャビティ内の定在波の確立を避けるため、40Hzの多重周波数掃引を0.026秒周期で振動エネルギーに適用した。
【0101】
スートを圧縮するため、プレスの上部ラムを下部ラムに向けて1.6mm/秒の速度で前進させた。金型をスート成形体に対して約0.8mm/秒の速度で滑らせ、よってスート成形体の中心に超音波源を維持することができた。スートの密度は、金型キャビティ内の上部ラムの位置の測定値、金型の諸元及びスートの重量に基づいて、圧縮工程を通して実時間で計算することができる。スートの密度の計算値が目標密度(本実施例においては0.83g/cm)から0.01g/cmの範囲に入ったときに、振動エネルギーを停止した。スートの密度の計算値が0.83g/cmの目標密度に達したときに油圧プレスのプレスアームの運動を停止させ、209ポンド(94.8kg)の静負荷だけをプレスの油圧ラインに残した。10分経過後に、静負荷を解放した。必要であれば印加超音波エネルギーの助けを借りて、鋳型ロッドをスート成形体から引き出して、コアケーンを囲んで配列された、6つの穴を圧縮スートに残すことができる。その後、集成光ファイバプリフォームを管状炉内に置き、ヘリウム/5%塩素を流して1000℃で一時間乾燥した。次いで集成スートプリフォームをカーボン製金型から取り外すことができ、集成スートプリフォームは中心コアケーンに密着していた。次いでプリフォームを線引きして光ファイバにした。穴の配置は、穴の寸法及び数の様々な組合せを包含することができる。いくつかの実施形態において穴の総数は10より多く、また別の実施形態においては50より多く、また別の実施形態においては100より多い。このような構成をもって作製された光ファイバは、高屈曲ファイバ、フォトニック結晶ファイバ、高開口数ファイバ、無限単一モードファイバ、等を含む、様々なタイプに有用になり得るであろう。
【0102】
本発明にしたがう方法及び装置の別の実施形態例を示す、図9〜14を次に参照する。図9は、本発明のいくつかの実施形態にしたがって用いることができる装置(金型装置100)の部分側断面図を示す。本実施形態の金型装置100は硬質外壁102A及び可撓内壁102Bを有しており、可撓内壁102Bは装置の内部キャビティ108(すなわち金型キャビティ)を囲み、硬質外壁102と可撓内壁102Bの間の領域は環形キャビティ108Aを定める。本明細書において、「硬質」は可撓内壁102Bに比較すると剛性が高いことを意味し、「可撓」は硬質外壁102Aに比較すると撓み易いことを意味する。金型装置100の硬質外壁102Aは円筒形金型を形成するために円形断面を有することができ、あるいは断面は、特定の光ファイバ構造を達成するため、楕円形または六角形に、あるいは不整形にさえすることができる。図9に示される実施形態において、可撓内壁102Bの両側の圧力はほぼ等しい。すなわち、環形キャビティ108A内の圧力は金型キャビティ(内部キャビティ)108内の圧力とほぼ等しい。本実施形態の装置100はさらに、下端(または下部)エンドキャップまたはラム104A及び上端(または上部)エンドキャップまたはラム106Aを有する。下端(または下部)エンドキャップ104A及び上端(または上部)エンドキャップ106Aはそれぞれ、(i)ガラスロッド(ガラスコアケーン)を受け入れて中心に配置するための、内腔112,110(図示せず)のような中心線穴、及び(ii)応力ロッド115A及び/または鋳型ロッド115Bを受け入れるための、少なくとも1つの、別の、中心を外して配置された穴(例えば,110A、112A)を有することが好ましい。上端エンドキャップ106A及び下端エンドキャップ104Aの軸外に配置された穴は、径方向圧縮(径方向加圧)中のガラスロッドまたは鋳型ロッドのコアロッドに向かう動き(例えば図11を見よ)を可能にするように、半径に沿って長寸の方位が定められた、細長(例えば、楕円形の)スロットの形態にあることができる。例えば、楕円形スロットは、設計出発時配置における軸外ロッドの外径または寸法(例えば、応力ロッドまたは鋳型ロッドの直径)に対応する外半径(短寸)を有することができ、さらにロッドの曲りを防止するに十分な長さにエンドキャップの中心に向かって延びることができる。上端エンドキャップ106A及び下端エンドキャップ104Aはそれぞれ環形キャビティ108Aの上端及び下端において圧力封止を与えることが好ましく、それぞれが中心線穴及び/またはその他の穴を介する内部キャビティ108内の過分の空気の抜け出しを可能にすることも好ましい。エンドキャップに好ましい材料には、アルミニウムのような金属またはプラスチックがある。
【0103】
図9〜14の実施形態の円筒形硬質外壁102Aは、環形キャビティ108A内の最大正規動作圧力に、認め得る変形をおこさずに、耐えるための機械的強度を有するいずれかの材料で作製することができる。好ましい実施形態において、円筒形硬質外壁102Aはアルミニウムでつくられる。円筒形硬質外壁102Aに好ましい他の材料には、例えば、他の金属またはプラスチックがある。好ましい実施形態において、円筒形硬質外壁102Aはその軸長に沿って実質的に一様な直径を有する。別の実施形態において、円筒形硬質外壁102Aは、金型装置(装置100)の上端及び下端に存在し得る圧力差を打ち消すため、その軸長に沿って若干変化する直径を有する。円筒形硬質外壁102Aは一様円筒体で構成することができ、あるいは、端と端で結合された、2つ以上の円筒形セグメントで構成することができる。
【0104】
可撓内壁102Bは、環形キャビティ108A内の最大正規動作圧力にさらされたときに、塑性変形の問題をおこさずに径方向に内側に十分に弾性変形するに十分な弾性及び降伏強度を有するいずれかの材料で作製することができる。好ましい実施形態において、可撓内壁102Bは、Piercan USA, Inc.から入手できる標準エラストマー性ラテックスチューブのような、ラテックスでつくられたチューブである。可撓内壁102Bに好ましい他の材料には、例えば、ネオプレン、ブナ-N、ポリウレタンまたはシリコーンゴムがある。可撓内壁102Bは95〜7000psi(6.55×10〜4.83×10Pa)の引張り強さ及び200%〜800%の伸びを有することが好ましい。好ましい実施形態において、可撓内壁102Bは円筒形硬質外壁102Aに封止される。封止は、例えば、フラップ(図示せず)を円筒形硬質外壁102Aの外表面上に押し付けることによるか、あるいは接着剤で固定することによって、達成することができる。そのような実施形態においては、環形キャビティ108Aを加圧及び減圧するため、圧力印加ポイント及びバルブ(図示せず)を設けることができる。別の実施形態において、可撓内壁102Bは、円筒形硬質外壁102Aに嵌め込まれたコイル型袋で構成することができる。そのような実施形態において、コイル型袋と円筒形硬質外壁102Aの間の封止は必要ではない。
【0105】
図10に示されるように、環形キャビティ108Aは、空気またはその他の流体が環形キャビティ108Aからほとんど、またはほぼ完全に、除去されているように、減圧することができる。そのような減圧の結果、可撓内壁102Bは、図10に示されるように、可撓内壁102Bの最大外径が硬質外壁102Aの内径にほぼ等しくなるように径方向に外側に弾性変形する。その間、環形キャビティ108Aの容積は減少し、内部キャビティ108の容積は増大する。
【0106】
図11に示されるように、固結ガラスロッド(ガラスコアケーン115)を装置100の内に、中心を合わせて、配置することができる。1本以上の固結ガラスロッド(応力ロッド115A)及び/または1本以上の鋳型ロッド115Bの内部キャビティ108内に(軸外)配置することができる。図11に示されるように、環形キャビティ108Aは図10及び11におけるように減圧される。ガラスロッド115(ガラスコアケーン)は、内部キャビティを貫通し、ガラスロッド115の上端及び下端が装置100から延び出すように、下端エンドキャップ104Aの中心線穴(図示せず)も貫通することができる。同様に、ガラスロッド115Aまたは鋳型ロッド115Bは、ロッド115A及び/または115Bの上端及び下端が装置100から延び出すように、内部キャビティを貫通し、下端エンドキャップ104Aも貫通することができる。必要に応じて、例えばフォームラバーでつくられた、プラグ117を金型キャビティ(本例では内部キャビティ108)の下端に配置することができる。プラグ117は、ガラスロッド115を受け入れる中心線穴117"及びガラスロッド115A及び/または、鋳型ロッド115Bを受け入れる、軸外穴112A"を有する。プラグ117が内部キャビティ108の下端に及びガラスロッド115の周りにきちんと嵌るように、プラグ117は硬質外壁102Aの内径とほぼ同じ直径を有することが好ましく、プラグの中心線穴117"はガラスロッド115のほぼ直径と同じかまたはそれより若干小さい直径を有することが好ましい。同様に、プラグ117が内部キャビティの底でガラスロッド115A及び/または鋳型ロッド115Bの周りにきちんと嵌るように、プラグ117の軸外穴112A"はガラスロッド115Aまたは鋳型ロッド115Bの直径より(少なくとも1つの断面において)ほぼ同じかまたはそれより若干小さい直径を有することが好ましい。プラグ117は、装置の底を通る、ばらのスートの抜け出しを防止するためにはたらくことができ、さらに圧縮スート体に丸められているかまたはテーパが付けられた末端を与えるためにはたらくことができる。例えば、図11に示される実施形態は、径方向圧縮中のコアロッド115に向かうガラスロッド115Aの動きに備えるために、必要に応じて細長くされた穴110A、112Aをもつエンドキャップまたはラムを有する。
【0107】
図12に示されるように、キャビティ108内の、ガラスロッド115,応力ロッド115A(及び/または鋳型ロッド115B)と可撓内壁102Bの間に装置100の上端を通して(ガラススート190のような)微粒ガラス材料を装填するかまたは注ぎ込むことができる。図12に示されるように、環形キャビティ108Aは図11におけるように減圧される。図12はガラススート190でほぼ半分満たされた内部キャビティ108を示すが、好ましい実施形態において、ガラススートは内部キャビティ108がほぼ満たされるまで内部キャビティ内に装填されるかまたは注ぎ込まれる。内部キャビティ108内へのガラススート190の装填または注ぎ込みに続いて、内部キャビティ108の上端の近くの、ガラススート190の上方で、ロッド115,115A及び/115Bの周りに、別のプラグ(図示せず)が配置される。内部キャビティ108は、内部キャビティ内へのガラススート190の装填に続いて減圧されることが好ましい。
【0108】
図13に示されるように、内部キャビティ108内に装填されたガラススート190は、硬質外壁102と可撓内壁102Bの間の環形キャビティ108Aに加圧流体を供給することによって圧縮される。好ましい実施形態において、上端エンドキャップ106Aが所定の位置に配置され、ねじ付ロッドを用いて下端エンドキャップ104と連結される。次に、環形キャビティ内の圧力が大気圧に比較して負圧から正圧に徐々に高くなるように、流体を環形キャビティ108Aに徐々に導入することができる。環形キャビティ108A内の圧力は、好ましくは50psi/分(3.45×10Pa/分)未満のレートで、さらに一層好ましくは、2〜20psi/分(1.38×10〜1.38×10Pa/分)のような、さらには5〜15psi/分(3.45×10〜1.03×10Pa/分)のような、20psi/分(1.38×10Pa/分)未満のレートで、高められる。環形キャビティ108A内の加圧流体の圧力が益々高いゲージ圧に徐々に高まるにつれて、可撓内壁102Bがガラススート190に対して径方向の内側に弾性変形し(環形キャビティ108Aの容積を徐々に増大させ、内部キャビティ108の容積を徐々に減少させ)、ガラススート190はロッド115に向けて、またロッド115A、115Bの周りに、径方向に内側に圧縮される。環形キャビティ108A内の加圧流体の圧力は、あらかじめ定められた最高値に達するまで高められる。圧力はあらかじめ定められた時間この値に保持されることもされないこともあり得る。あらかじめ定められた時間保持される場合、圧力は、例えば、約5分間を含む、1分間〜10分間のような、少なくとも1分間保持され得る。
【0109】
好ましい実施形態において、ガラススート圧縮工程中、加圧流体は、ゲージ圧で、50〜200psi(3.45×10〜1.38×10Pa)、さらには75〜150psi(5.17×10〜1.03×10Pa)のような、25psi(1.72×10Pa)から250psi(1.72×10Pa)までの最高圧力を有する。加圧流体の例には、空気、不活性気体(例えば、窒素)、水及び油がある。特に好ましい加圧流体は空気である。好ましい実施形態において、ガラススート圧縮工程中、内部キャビティ108の温度は、20℃から40℃のような、50℃未満であり、さらに一層好ましくは室温(すなわち、20℃と25℃の間)である。
【0110】
スートが十分に圧縮された後、図14に示されるように、環形キャビティ108Aが図10におけるように減圧されるように(環形キャビティ108A内の圧力が内部キャビティ108内の圧力より低くなるように)環形キャビティ108A内の加圧流体を放出することができる。環形キャビティ108A内の圧力は、好ましくは50psi/分(3.45×10Pa/分)未満のレートで、さらに一層好ましくは2〜20psi/分(1.38×10〜1.38×10Pa/分)のような、さらには5〜15psi/分(3.45×10〜1.03×10Pa/分)のような、20psi/分(1.38×10Pa/分)未満のレートで、減じられる。環形キャビティ108A内の圧力が徐々に低下するにつれて、圧縮されたガラススート190の外径と可撓内壁102Bの間に環形空隙122が存在するように、可撓内壁102Bは圧縮されたガラススート190から離れて径方向に外側に変形する(環形キャビティ108Aの容積を徐々に減少させ、内部キャビティ108の容積を徐々に増大させる)。
【0111】
環形キャビティ108Aの減圧に続いて、その一例が図15に示される、集成圧縮スート/ケーン、すなわち多孔質プリフォーム200を、線上及び固結のために、装置から容易に取り外すことができる。
【0112】
別の実施形態において、径方向に内側に向かう圧力は、円筒形態に巻かれた食違い櫛形歯を有するシートを内壁として用いることにより、微粒ガラススートに対して印加することができる。そのようなシートの一例が図16A及び16Bに示され、図16Aにおいてシートはほどかれた位置で示され、図16Bにおいてシートは巻かれた位置で示される。シート180は、図16Aに示されるように、それぞれの縁辺に複数の食違い櫛形歯182及び複数のスロット184を有する。巻かれた位置において、図16Bに示されるように、シートのそれぞれの端辺からの食違い櫛形歯182はシート180の対向する端辺のスロット184に延び込み、よってシートの対向する端辺からの食違い櫛形歯182は対向方向に延びる。次いで、心出しチャック(図示せず)の心出し穴に中心を合わせることができるガラスロッド115の周りを取り囲んで、巻かれたシートを配置することができる。次いで、巻かれたシート150とロッド115,115A及び/または115Bの間の環形キャビティ内に微粒ガラススートを装填するかまたは注ぎ込むことができ、その後、巻かれたシートの直径を減少させて微粒ガラススートに対して径方向に内向きの圧力を印加するため、対向方向に延びる食違い櫛形歯のそれぞれをそれぞれ対向する方向に引っ張ることができる。
【0113】
好ましい実施形態において、ガラスロッド115はコアケーンである。別の好ましい実施形態において、ガラスロッド115は多孔質スートクラッド層で囲まれたコアケーンである。
【0114】
好ましい実施形態において、ガラスロッドに対して圧縮された微粒ガラス材料の密度が、少なくとも0.5g/cm,例えば0.6〜1.2g/cm,あるいは0.8〜1.0g/cm,例えば約0.9g/cmである、多孔質プリフォームが提供され得る。ガラスロッドに対して圧縮された微粒ガラス材料の密度は主として微粒ガラス材料圧縮工程中に印加される最高圧力の関数である。一般に、微粒ガラス材料圧縮工程中に印加される最高圧力が高くなるほど、材料の密度が高くなり、したがって多孔質プリフォームの総合密度が高くなる。本明細書に開示される方法を用いれば、例えば、密度が少なくとも0.6g/cmの多孔質プリフォームを、ゲージ圧で、少なくとも50psi(3.45×10Pa)の最高圧力を用いて作製することができ、密度が少なくとも0.7g/cmの多孔質プリフォームを。ゲージ圧で、少なくとも100psi(6.89×10Pa)の最高圧力を用いて作製することができ、密度が少なくとも0.8g/cmの多孔質プリフォームを、ゲージ圧で、少なくとも150psi(1.03×10Pa)の最高圧力を用いて作製することができ、密度が少なくとも0.9g/cmの多孔質プリフォームを、ゲージ圧で、少なくとも200psi(1.38×10Pa)の最高圧力を用いて作製できる。
【0115】
好ましい実施形態において、多孔質プリフォームは軸方向に実質的に一様な直径を有する。プリフォームの軸長に沿う最小直径はプリフォームの軸長に沿う最大直径の少なくとも90%であることが好ましい。プリフォームの軸長に沿う最小直径はプリフォームの軸長に沿う最大直径の少なくとも95%であることがさらに一層好ましい。
【0116】
本明細書に開示される実施形態にしたがって作製された多孔質プリフォームは、標準の固結装置及びプロセスを用いて固結してガラスブランク(すなわち、固結ガラスプリフォーム)にすることができ、次いで標準の線引き装置及びプロセスを用いて線引きして光ファイバにすることができる。多孔質プリフォームのケーンを囲む圧縮スートは、多孔質プリフォームが、固結され、線引きされて光ファイバにされると、オーバークラッドの総重量の少なくとも35%が、さらには少なくとも40%が、さらには少なくとも50%さえもが圧縮スートを基にするような、オーバークラッドを最終的に形成するであろう。固結されてガラスブランクにされると、本明細書に開示される実施形態のいくつかにしたがって作製された多孔質プリフォームは、ブランクの軸長に沿う、クラッドの外径に対するコアの外径の最小比(すなわち、最小コア/クラッド比)がクラッドの外径に対するコアの外径の最大比(すなわち、最大コア/クラッド比)の少なくとも98%であるような、固結ブランクになることができる。
【0117】
コアケーン115及び/またはロッド115A、115Bへのスートの密着強さは、装置をスートで満たす前に、(例えば絹布でこすることによって)コアケーン及び/またはロッド上に静電荷を生じさせることで向上させることができる。コアケーンの下端は、必要に応じて、圧縮スートからコアケーンへの密着強度が比較的低い場合に圧縮スートがコアケーンをすり抜けることを防止するため、コアケーンの残り部分よりも直径が若干大きくなるようにすることができる。例えば、コアケーンの上端がケーンの下端より約1%小さい直径を有するような大きさのテーパを、ケーンの長さに沿う勾配を一様にして、かけることができる。ガラスケーンと圧縮スート体の間の密着が弱い場合、テーパがブランクに対する支持を与え、縦ハンドリングを可能にする。同様にして、(コアケーンの大径端とは逆に)上端に大径端が配されたテーパ付ロッドを与えることにより、応力ロッドをスート体に一層良く取り付けることができる。ケーンの表面は、研削またはエッチングによるか、あるいはOVD(外付けプロセス)により薄いスート層を施すことで、粗くすることができるであろう。
【0118】
以下の実施例は光ファイバプリフォームのクラッド部を作製するために微粒ガラス材料を圧縮するため、金型キャビティの中心方向に内側に向けられる、径方向圧力を用いる方法及び装置を説明する。
【0119】
実施例6
硬質円筒外壁及び可撓内壁を有する装置を用いて光ファイバプリフォームを作製した。硬質円筒外壁は、内径4インチ(101.6mm)、長さ18インチ(457.2mm)、壁厚1/4インチ(6.35mm)のアルミニウムで作製した。可撓内壁は力が印加されていない状態で直径が約2.5インチ(63.5mm)のラテックスゴムチューブである。アルミニウム円筒の上端及び下端をラテックスゴムチューブの上端及び下端で覆い包んだ。装置はさらにアルミニウム製の上端エンドキャップ及び下端エンドキャップを有し、それぞれのエンドキャップは約1インチ(25.4mm)の厚さを有し、(i)コアケーンを受け入れるための中心穴、(ii)2本の応力ロッド115Aを受け入れるための2つの軸外穴及び(iii)ねじ付ロッドを受け入れるための4つの周辺穴を有する。
【0120】
可撓内壁と硬質外壁の間の空気は、可撓内壁の外径が硬質外壁の内径と本質的に同じになるように、実質的に除去される。次いで、外径が硬質円筒の内径とほぼ同じ、1インチ(25.4mm)厚の連続気泡シリコーンフォームラバー製プラグが、円筒の底と共面になるように、キャビティに挿入される。次いで、円筒の底がアルミニウム製エンドキャップ及びバイトン製Oリングで封止される。(軸外配置)応力ロッドの動きを受容するため、本例の装置のアルミニウム製エンドキャップはスロット(細長)穴を有する。これらの細長穴(例えば、内腔110A,112A)はガラスロッドが嵌り得るに十分な幅を有し、金型キャビティの中心に向けて径方向に(長軸が)合わせられる。細長穴の目的は、スート充填工程中の、ガラスロッド(例えば、コアケーン、応力ロッド)の、スロットの外端への配置及び、次いで、スートが径方向に圧縮されている間の中心線に向かう横移動を可能にすることである。本実施例において、スロット穴または細長穴は幅が2.1cmであり、その外端は金型キャビティの中心から4.2cmにあり、スロット穴の内端は金型キャビティの中心から1.7cmにある(これにより、直径が2.1cmの応力ロッドについて、スート圧縮中に金型の中心に向かう4mmの移動が可能になる)。直径10mmの石英ガラスコアケーンを、下端プラグの中心にある穴に下端を挿入して、金型キャビティ内に配置した。例えば既知の心出し具/機構または方法を利用することによって、例えばPTFEでつくられた一次ディスク(すなわち、スートの全てがキャビティ内に入ると、ディスクは外される)を用いることによって、コアケーンの上端を中心に保つことができる。次いで、2本の直径が21mmのホウ素ドープ石英ガラスロッドを、下端プラグの軸外配置スロット穴にそれぞれの下端を挿入して、キャビティ内部に配置した。ホウ素ドープ石英ガラス応力ロッドはスロット穴の外端に隣接させてある。応力ロッドの上端は既知の心出し具/機構または方法のいずれかを用いることによって適切な位置に保たれる。OVDプロセスからの、タップ密度が0.6g/cmの、廃シリカスートを、スートの安定した圧縮を保証するため硬質円筒の側面を時折軽く叩きながら、キャビティ内に装填した。円筒の上端から下に約1インチ(25.4mm)のレベルにスートが達したときに、心合わせ治具を取り外し、第2のシリコーンフォームラバー製プラグを所定の場所に滑り込ませた。円筒の上端を、例えば、第1のアルミニウム製エンドキャップ及びバイトン製Oリングで封止した。上部アルミニウム製エンドキャップは下端エンドキャップと同じスロット及び穴の配置を有し、圧縮(または圧力印加)工程を通して、軸外配置ガラスロッドの径方向移動が中心に配置されたガラスコアケーンとの平行を維持するように、下部プレートと位置を慎重に合わせて嵌め込まれることが好ましい。上端及び下端のエンドキャップは、ねじ付ロッドでそれぞれを相互に連結し、蝶ナットで締め付けることによって、円筒の両端上に確実に固定した。次いで、可撓壁と硬質壁の間の空間を、圧縮空気シリンダーを用い、10分かけて、ゲージ圧で、150psi(1.03×10Pa)まで加圧することができた。圧力をほぼ5分間、150psiのゲージ圧に維持した。次いで内部キャビティを大気圧に戻した。次いで円筒の側面上のバルブを通し、10分かけて環形キャビティから圧気を流し出した。次いで上端エンドキャップを取り外し、上端のフォームラバー製プラグ及びスートプリフォームを取り外すに十分に可撓壁の直径が大きくなるように、環形キャビティ内の空気をポンプで排出した。得られたスートプリフォームの直径は約89mmで、密度は約0.8g/cmであった。
【0121】
スートプリフォームを管状炉内で、5℃/分のレートで、初めに、有機汚染物を除去するために500sccm(標準状態流量:500cm/分)の酸素流内で室温から800℃まであげて加熱し、次いで、金属汚染物を除去するために500sccmのヘリウム/5%塩素混合気流内で800℃から1200℃まで上げて加熱した。清浄化されたプリフォームを次いで縦型降下炉内で固結した。例えば、炉は、1000℃において、10%酸素で1時間パージし、次いで5%塩素で1時間パージすることができ、その後、プリフォームを、ヘリウム内で10mm/分で移動させながら温度を1000℃から1430℃まで上げ、次いで1.5mm/分で移動させながら1430℃から1466℃のピーク温度まで上げ、次いで1430℃まで戻すことによって、完全に焼結することができた。
【0122】
実施例7
本実施例は実施例6と同様であるが、2本の固結ホウ素ドープガラスロッドの代わりに2本の直径が21mmのアルミニウム製鋳型ロッドを、それぞれの下端を下端プラグの軸外配置穴に挿入して、キャビティ内部に配置した。鋳型ロッドの上端は、例えばPTFEでつくられた一次ディスクを用いて、中心を合わせておくことができる(すなわち、ロッドの中心を結ぶ直線がコアロッドの中心と交差するように、ロッドが適切な場所に維持される)。次いで上端エンドキャップを取り外し、上端のフォームラバー製プラグ及びスートプリフォームを取り外すに十分に可撓壁の直径が大きくなるように環形キャビティ内の空気をポンプで排出した。得られたスートプリフォームの直径は約89mmであった。2本の鋳型ロッドを圧縮スート(スート成形体)から慎重に引き出して、スート内に2つの直径が21mmの空気穴を残すことができ、スート密度は約0.8g/cmであった。
【0123】
スートプリフォームを管状炉内で、5℃/分のレートで、初めに、有機汚染物を除去するために500sccmの酸素流内で室温から800℃まで上げて加熱し、次いで、金属汚染物を除去するために500sccmのヘリウム/5%塩素混合気流内で800℃から1200℃まで上げて加熱した。清浄化されたプリフォームを次いで縦型降下炉内で固結した。例えば、炉は、1000℃において、10%酸素で1時間パージし、次いで5%塩素で1時間パージすることができ、その後、プリフォームを、ヘリウム内で10mm/分で移動させながら温度を1000℃から1430℃まで上げ、次いで1.5mm/分で移動させながら1430℃から1466℃のピーク温度まで上げ、次いで1430℃まで戻すことによって、完全に焼結し、中央コアケーンの周りに2つの円筒形空気穴が配置された固結ガラス品(プリフォーム)を得ることができた。円筒形空気穴をホウ素ドームシリカ粉末またはホウ素ドープガラスロッドで埋めることで、このプリフォームをさらに改変することができる。ホウ素ドープシリカ粉末またはホウ素ドープシリカ(応力)ロッドを有する焼結プリフォームを、ホウ素ドープスートが焼結する(またはホウ素ドープシリカ(応力)ロッドが周囲の石英ガラスに恒久的に結合する)に十分な時間、例えば1400℃〜1500℃のピーク温度まで加熱することによって、再焼結した。例えば、ホウ素ドープシリカ粉末を有する焼結プリフォームを、10mm/分で移動させながら温度を1000℃から1430℃まで上げ、次いで1.5mm/分で移動させながら1430℃から1466℃のピーク温度まで上げ、次いで1430℃まで戻すことで再焼結して、焼結プリフォーム内部のホウ素ドープシリカ粉末(スート)を完全に焼結した。
【0124】
Cu,Ag,Au,W及びGaのような金属、あるいはSiまたはSi/SiCのような半導体を含む、別の材料組成を円筒形空気穴に充填して、ファイバプリフォームに形成できることが分かった。
【0125】
実施例8
本実施例は実施例6と同様であるが、本実施例では、2本の固結ホウ素ドープガラスロッドの代わりに2本の直径が21mmのアルミニウム製鋳型ロッドを、それぞれの下端を下端プラグの軸外配置穴に挿入して、キャビティ内部に配置した。
【0126】
鋳型ロッドの上端を、既知のいずれかの機構または方法を用いることによって、(鋳型ロッドの中心を結ぶ直線がコアロッドの中心と交差するように)適切な場所に保った。次いで上端エンドキャップを取り外し、上端のフォームラバー製プラグ及びスートプリフォームを取り外すに十分に可撓壁の直径が大きくなるように環形キャビティ内の空気をポンプで排出した。得られた集成スートプリフォームの直径は約89mmであった。2本の鋳型ロッドを集成ブランクから慎重に引き出して、圧縮スートで囲まれた2つの直径が21mmの空気穴を残すことができ、スート密度は約0.8g/cmであった。空気穴は微粒ガラス、例えばホウ素ドープガラス粉末で充填することができる。好ましくは、粉末は圧縮スートの密度に等しいタップ密度を有するべきである。空気穴の底にテーパ付ガラス製プラグを嵌め込み、ホウ素ドープガラス粉末を空気穴に充填することができる。別の構成において、初めに直径が21mmより若干小さい薄壁シリカチューブを空気穴に嵌め込み、次いでシリカチューブに栓をして、ホウ素ドープガラス粉末を充填することができる。
【0127】
ガラス粉末またはガラス粉末を充填したシリカチューブを有する集成スートプリフォームを、管状炉内で、5℃/分のレートで、初めに、有機汚染物を除去するために500sccmの酸素流内で室温から800℃まで上げて加熱し、次いで、金属汚染物を除去するために500sccmのヘリウム/5%塩素混合気流内で800℃から1200℃まで上げて加熱した。清浄化されたプリフォームを次いで縦型降下炉内で固結した。例えば、炉は、1000℃において、10%酸素で1時間パージし、次いで5%塩素で1時間パージすることができ、その後、プリフォームを、ヘリウム内で10mm/分で移動させながら温度を1000℃から1430℃まで上げ、次いで1.5mm/分で移動させながら1430℃から1466℃のピーク温度まで上げ、次いで1430℃まで戻すことによって、完全に焼結することができた。
【0128】
ホウ素ドープスートは、圧縮スートともに固結し、2本の鋳型ロッドの取り外しによって形成された2つの空気穴領域を埋める。
【0129】
実施例9
本実施例は実施例6と同様であるが、本実施例では、2本の固結ホウ素ドープガラスロッドの代わりに4本の直径が21mmの固結コアロッド(またはコアケーン)115を、それぞれの下端を下端プラグの中心を外して配置された穴に挿入して、キャビティ内部に配置した。スートプリフォームの内部キャビティからの取外し後、得られたスートプリフォームの直径は約89mmで、密度は約0.8g/cmであった。
【0130】
次いで、複数本のコアロッドを有するスートプリフォームを、管状炉内で、5℃/分のレートで、初めに、有機汚染物を除去するために500sccmの酸素流内で室温から800℃まで上げて加熱し、次いで、金属汚染物を除去するために500sccmのヘリウム/5%塩素混合気流内で800℃から1200℃まで上げて加熱した。清浄化された複数本のコアロッドを有するプリフォームを次いで縦型降下炉内で固結した。例えば、炉は、1000℃において、10%酸素で1時間パージし、次いで5%塩素で1時間パージすることができ、その後、プリフォームを、ヘリウム内で10mm/分で移動させながら温度を1000℃から1430℃まで上げ、次いで1.5mm/分で移動させながら1430℃から1466℃のピーク温度まで上げ、次いで1430℃まで戻すことによって、完全に焼結することができた。
【0131】
実施例10
本実施例は実施例9と同様であるが、数本の固結ガラスロッド、例えば、4本の直径が10mmの固結コアケーン115が、断面が長方形の金型キャビティ108'の内部に配置される。それぞれのコアケーンの中心が同一直線上にあることが好ましい。さらに詳しくは、本実施形態において、長方形金型本体102'は、深さが4cmで幅が10cmの金型キャビティ108'を有する。図17Aに示されるように、本実施形態の金型キャビティ108'は、3つの固定硬壁108'、ラテックスまたはシリコーンゴムのような、可撓膜でつくられた第4の(可撓)壁108'及び、下端プラグ及び上端プラグ108'(図示せず)を有する。コアケーン115の下端は下端プラグに中心を外して配置された受入れ穴に挿入される。本実施例におけるガラスコアケーン115の長さは、金型キャビティ108'の長さと同じかまたはそれより若干長い。
【0132】
金型キャビティにスート190を装填し、可撓壁108'を介してスートに圧力Pを印加した。金型キャビティの形状寸法の結果として、複数本のコアケーンを有する圧縮スートプリフォームの幅は固定され、10cmに等しい。次いで圧縮スートプリフォームを金型キャビティから取り外した。得られたスートプリフォームはほぼ長方形であり、密度は約0.8〜0.85g/cmであった。次いで複数本のコアケーンを有する圧縮スートプリフォームを、金属汚染物を除去するため、実施例9に開示したように加熱した。次いで、清浄化された複数本のコアケーンを有するプリフォームを縦型降下炉内で固結し、複数本のコアを有する光ファイバの作製に、または複数コアリボンを作製するために、用いることができた。
【0133】
実施例11
本実施形態は実施形態10と同様であり、数本の固結ガラスロッド、例えば、4本の直径が21mmの固結コアロッド(またはコアケーン)115が、断面が長方形の金型キャビティの内部に配置される。それぞれのコアケーンの中心が同一直線上にあることが好ましい。さらに詳しくは、本実施形態において、長方形金型本体102'は、深さが4cmで長さが10cmの金型キャビティ108'を有する。図17Bに示されるように、本実施形態の金型キャビティ108'は、1つの固定(剛)硬壁108'及び、ラテックスまたはシリコーンゴムのような、可撓膜でつくられた3つの(可撓)壁108'を有し、2つのプラグ108'(図示せず)も有する。コアケーン115の下端は下端プラグ(図示せず)に中心を外して配置された受入れ穴に挿入される。本実施例におけるガラスコアケーン115の長さは、金型キャビティ108'の長さと同じかまたはそれより若干長い。
【0134】
金型キャビティにスート190を装填し、3つの可撓壁108'を介してスートに圧力Pを印加した。さらに詳しくは、コアケーンを囲むスート成形体198を形成するため、スート圧縮中に3つの壁に均等に圧力Pが印加され、第4の壁108'が堅固な平表面を提供する。金型キャビティの形状寸法の結果として、得られた集成プリフォームの断面形状寸法は初期キャビティ形状寸法と同様であり、同様の1×2のアスペクト比を有する。圧縮スートプリフォームの内部キャビティからの取外し後、得られたスートプリフォームの幅は約6cmで、密度は約0.85g/cmであった。
【0135】
次いで圧縮スートプリフォームを金型キャビティから取り出した。次いで、複数本のコアロッドを有するスートプリフォームを、金属汚染物を除去するため、実施例10に開示されるように加熱した。次いで、清浄化された複数本のコアロッドを有するプリフォームを縦型降下炉内で固結し、複数本のコアを有する光ファイバの作製に、または複数コアリボンを作製するために、用いることができた。
【0136】
実施例12
本実施例は実施例10と同様であり、数本の固結ガラスロッド、例えば、4本の直径が10mmの固結コアロッド(またはコアケーン)115が、断面が長方形のキャビティの内部に配置される。それぞれのコアケーン115の中心が同一直線上にあることが好ましい。さらに詳しくは、本実施形態において、長方形金型本体102'は、深さが4cmで幅が10cmの金型キャビティ108'を有する。図17Cに示されるように、本実施例の金型キャビティ108'は、3つの固定(硬)壁108'及び第4の、硬いが、可動の壁108'を有する。壁108'は移動することができ、金型キャビティ内に置かれたスートに圧力を印加するピストンとして用いることができる。スート圧縮中は、壁108'だけが移動し、他の3つの壁は固定されたままである。圧縮が進むと、得られるスートプリフォームの形状寸法は、一辺の寸法(幅)が10cmに等しい、長方形に近づく。圧縮スートプリフォームの内部キャビティからの取外し後、得られたスートプリフォームの厚さは約25mmで、密度は約0.8g/cmであった。圧縮スートプリフォームの圧縮後処理は実施例10及び11の圧縮後処理と同様に行うことができた。
【0137】
実施例13
本実施例は実施例1と同様であるが、2本の応力ロッドの代わりに、本実施例においては別の2本の直径が1.9cmの固結コアロッド(またはコアケーン)115をキャビティの内部に配置した。本実施例では、石英ガラススートを一工程で金型キャビティに装填することによって2つの集成光ファイバプリフォームを作製した。集成光ファイバプリフォームを作製するため、直径が89mmで長さが610mmの金型キャビティを有するカーボン製金型内に3本のコアケーンを配置した。ガラス状カーボンコーティングで金型キャビティを内張した。本実施例においてガラスコアの長さは金型の長さと同じである。
【0138】
金型キャビティの下部に配置したラムの内腔にガラスコアケーンの内の1本の末端を挿入することにより、ガラスコアケーンを金型キャビティ内に配置した。他のコアケーンを、金型キャビティの下部に配置したラムの(軸外)内腔にそれぞれのコアケーンの末端を挿入することにより、金型キャビティ内に配置した。約930gの石英ガラススートを、1本のガラスコアケーンが石英ガラススートの中心に配置され、他の2本のコアケーンが軸外でコアロッドの比較的近くに、配置されるように、金型キャビティに装填した。3本のコアケーンの中心が同一直線上にあることが好ましい。スート圧縮において軸方向ロッドの存在が軸方向収縮を径方向収縮に対して抑制し得るから、軸方向スート−ガラス収縮及び径方向スート−ガラス収縮を測定することが必要になり得る。複数本のロッドが1つのファイバ直径に沿って配列されていれば、直交する2つの径方向ファイバ寸法に沿う収縮率も異なるであろう。計算を完了するに必要な可調パラメータは、スートタップ密度、最終圧縮スート密度及び金型直径である。石英ガラススートを金型キャビティ内に装填した後、石英ガラススートの圧縮前密度を最大化するため、振動エネルギーを金型本体に印加した。上部ラムを3本のガラスコアケーンにかけて配置し、金型キャビティに挿入した。本実施例においては、金型キャビティ内のガラスコアケーンの周りにラムエクステンションを挿入し、金型及びエクステンションを油圧プレス内に置いた。油圧プレスのプレスアームを上部ラムエクステンションに合わせて取付け、下部ラムエクステンションを油圧プレスの支持プレート上に置いた。約17〜19kHzの周波数で5kW増幅器のパワーの51%の振動エネルギーを金型に印加した。好ましい正確な共振周波数は、超音波変換器、導波路、クランプ及び金型の詳細に依存し、特定の要素セットのそれぞれに対して独立に最適化しなければならない。金型キャビティ内の定在波の確立を避けるため、40Hzの多重周波数掃引を0.026秒周期で振動エネルギーに適用した。
【0139】
スートを圧縮するため、プレスの上部ラムを下部ラムに向けて4.8mm/秒の速度で前進させた。金型をスート成形体に対して約2.4mm/秒の速度で滑らせ、よってスート成形体の中心に超音波源を維持することができた。スートの密度は、金型キャビティ内の上部ラムの位置の測定値、金型の諸元及びスートの重量に基づいて、圧縮工程を通して実時間で計算することができる。スートの密度の計算値が目標密度(本実施例においては0.8g/cm)から0.01g/cmの範囲に入ったときに、振動エネルギーを停止した。スートの密度の計算値が0.8g/cmの目標密度に達したときに油圧プレスのプレスアームの運動を停止させ、209ポンド(94.8kg)の静負荷だけをプレスの油圧ラインに残した。10分経過後に、静負荷を解放した。その後、集成光ファイバプリフォームを管状炉内に置き、ヘリウム/5%塩素を流して1000℃で一時間乾燥した。本実施例における複数本のコアロッドを有する集成光ファイバプリフォームは、1200℃で1時間の予備焼結を行い、次いで、上述したように、固結させることが好ましい。
【0140】
本発明の精神及び範囲を逸脱することなく本発明に様々な改変及び変形がなされ得ることが当業者には明らかであろう。したがって、本発明の改変及び変形が添付される特許請求項及びそれらの等価形態の範囲内に入れば、本発明はそのような改変及び変形を包含するとされる。
【符号の説明】
【0141】
100 金型装置
102 金型本体
104 下部ラム
106 上部ラム
108 金型キャビティ
115 ガラスコアケーン
115A 応力ロッド
115B 鋳型ロッド
150 超音波源
152 導波路
162 電気ケーブル
170 下部ラムエクステンション
172 誘導チャネル
190 石英ガラススート
198 スート成形体
図1
図2
図3
図4
図5A
図5B
図6
図7
図8A
図8B
図8C
図9
図10
図11
図12
図13
図14
図15
図16A
図16B
図17A
図17B
図17C