特許第5715194号(P5715194)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パロ・アルト・リサーチ・センター・インコーポレーテッドの特許一覧

特許5715194検知結果の時間変化から情報を取得する方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5715194
(24)【登録日】2015年3月20日
(45)【発行日】2015年5月7日
(54)【発明の名称】検知結果の時間変化から情報を取得する方法
(51)【国際特許分類】
   G01N 15/14 20060101AFI20150416BHJP
   G01N 37/00 20060101ALI20150416BHJP
【FI】
   G01N15/14 B
   G01N37/00 101
【請求項の数】3
【全頁数】26
(21)【出願番号】特願2013-136906(P2013-136906)
(22)【出願日】2013年6月28日
(62)【分割の表示】特願2009-18514(P2009-18514)の分割
【原出願日】2009年1月29日
(65)【公開番号】特開2013-217941(P2013-217941A)
(43)【公開日】2013年10月24日
【審査請求日】2013年6月28日
(31)【優先権主張番号】12/022,485
(32)【優先日】2008年1月30日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】502096543
【氏名又は名称】パロ・アルト・リサーチ・センター・インコーポレーテッド
【氏名又は名称原語表記】Palo Alto Research Center Incorporated
(74)【代理人】
【識別番号】110001210
【氏名又は名称】特許業務法人YKI国際特許事務所
(72)【発明者】
【氏名】アレックス ヘジイ
(72)【発明者】
【氏名】ミハエル バスラー
(72)【発明者】
【氏名】ペーター キーゼル
(72)【発明者】
【氏名】ノーブル エム ジョンソン
【審査官】 ▲高▼見 重雄
(56)【参考文献】
【文献】 特表2008−533440(JP,A)
【文献】 特表2004−506919(JP,A)
【文献】 特開2001−044114(JP,A)
【文献】 特開平08−233788(JP,A)
【文献】 特開平04−157339(JP,A)
【文献】 特開2001−281132(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 15/00−15/14
G01N 37/00
(57)【特許請求の範囲】
【請求項1】
センサを用いる方法であって、
物体が移動する間、前記センサを操作して検知結果を取得するステップであって、前記検知結果は、周期変調を含む1つ以上の検知された時間変化波形を示す、ステップと、
前記検知結果を用いて前記物体についての情報を取得するステップと、を含む方法であって、
前記検知結果を用いるステップは、
前記検知された時間変化波形のうち少なくとも1つの時間変化波形の前記周期変調から周期変調値を求めるステップと、
記周期変調値及び少なくとも1つの前記検知された時間変化波形を用い、前記物体についての情報の取得するステップであって
前記周期変調値に基づく少なくとも1つの時間変化波形の第1セットであって、少なくとも1つの前記検知された時間変化波形及び基準時間変化波形のいずれかを含む第1セット、の時間軸伸縮を行うステップと、
少なくとも1つの時間変化波形の第2セットであって、前記検知された時間変化波形及び前記時間変化波形の第1セットのいずれかを含む第2セットを比較するステップと、
を含む、方法。
【請求項2】
請求項1の方法であって、
前記検知結果は、ランダム列を含む1つ以上の検知された時間変化波形を示す、方法。
【請求項3】
装置であって、
前記装置の動作中に、物体が通過して移動する流路を含む流体構造と、
周期変調を含む1つ以上の検知された時間変化波形を示す検知結果を求めることができる、前記流路に沿ったセンサ機構と、
前記センサ機構から検知結果を受信し、それに応答して、前記物体の情報を取得することができる回路と、を含む装置であって、
前記回路は、前記検知結果を用いて前記物体についての情報の少なくとも一部を取得するステップを実行するよう構成され、
前記検知結果を用いるステップは、
前記検知された時間変化波形のうち少なくとも1つの時間変化波形の前記周期変調から変調周期値を求めるステップと、
前記物体についての情報の取得に前記周期変調値を用いるステップと、を含
前記回路は、前記物体の移動に依存しない前記物体の情報を含む比較結果を得るために前記検知された時間変化波形の少なくとも1つを含む時間変化波形のセットを比較する処理において前記センサ機構からの前記検知結果を用い、前記時間変化波形のセットの少なくとも1つの時間軸伸縮を行う装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、物体の情報を取得するための検知に関する。時間変化を有する検知結果は物体の情報を含んでもよい。
【背景技術】
【0002】
物体についての情報を取得するために様々な技術が提案されている。例えば、米国特許第7,358,476号には、流路を有し、その流路に沿って検知コンポーネントが物体についての情報を取得する、流体構造が記載されている。
【0003】
物体についての情報を取得する技術を改善することは、効果的である。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国第4573796号明細書
【特許文献2】米国第5324401号明細書
【特許文献3】米国第5682038号明細書
【特許文献4】米国第5880474号明細書
【特許文献5】米国第6558945号明細書
【特許文献6】米国第6580507号明細書
【特許文献7】米国第7248361号明細書
【特許文献8】米国第7268868号明細書
【特許文献9】米国第7291824号明細書
【特許文献10】米国第7315667号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、例えば、時間変化波形を表す検知結果を用いて物体についての情報を取得する方法及び装置を提供する。
【課題を解決するための手段】
【0006】
本発明に係る方法は、センサを用いる方法であって、物体が移動する間、前記センサを操作して検知結果を取得するステップであって、前記検知結果は、周期変調を含む1つ以上の検知された時間変化波形を示す、ステップと、前記検知結果を用いて前記物体についての情報の少なくとも一部を取得するステップと、を含む方法であって、前記検知結果を用いるステップは、前記検知された時間変化波形のうち少なくとも1つの時間変化波形の前記周期変調から変調周期値を求めるステップと、前記物体についての情報の取得に前記周期変調値を用いるステップと、を含む。
【図面の簡単な説明】
【0007】
図1】検知結果の用いた技術の特徴を示す。
図2】システムのコンポーネントを示す。
図3】励起機構を示す。
図4】フィルタ機構を示す。
図5】変位制御コンポーネントを示す。
図6】システムを示す。
図7】物体識別ルーチンを示す。
図8】分析器を示す。
図9】物品を示す。
図10】物品を示す。
図11】別の物品を示す。
図12】物品を示す。
図13】物品を示す。
図14】フィルタ機構を示す。
図15】フィルタ機構を示す。
図16】フィルタ機構を示す。
図17】符号化/検知機構を有する流体流路を示す。
図18図17のコンポーネントを示す。
図19図17の別のコンポーネントを示す。
図20】一連のグラフを含む。
図21】一連のグラフを含む。
図22】フィルタアセンブリを示す。
図23】励起機構を示す。
図24】別の励起機構を示す。
図25】変位制御機構を示す。
図26】別の変位制御機構を示す。
図27】別の変位制御機構を示す。
図28】別の励起機構を示す。
図29】符号化/検知機構を示す。
図30】波形の時間軸伸縮及び比較を含む処理を示す。
図31】時間軸伸縮及び比較を行う処理を示す。
図32】スケーリング係数がどのように求められるかを示す。
図33】グラフを示す。
【発明を実施するための形態】
【0008】
検知の種類には、光検知(photosensing)及び「インピーダンスベースの検知」があり、「インピーダンスベースの検知」は、抵抗(または導電率)、キャパシタンス、インダクタンス、または、他の電気インピーダンスの変化から情報を得る検知方法である。
【0009】
以下の実施例では、検知結果を用いて、例えば、生体細胞、分子、または、分子下複合体(submolecular complex)などの物体(または、オブジェクト、対象物)についての情報を取得する際に起こる問題に対処する。物体についての情報を抽出する技術には限界がある。
【0010】
センサまたは他のコンポーネントに対する物体の動きは、例えば、時間変化波形の効果的な比較を阻止するなど、情報抽出を妨げる。2つの信号、すなわち、検知した信号と期待信号または所望信号(「テンプレート」)の相関により、信号対雑音(S/N)比は向上するが、時間変化信号の相関は、時間領域スケールの違いの影響を大きく受ける。時間スケールが十分に異なると、相関結果は存在する相関または逆相関を示さないことがある。しかし、物体を移動させる際、その動きが検知結果の時間スケールを変更する可能性がある。
【0011】
また、物体の位置、すなわち「位相情報」を求める際、計算上の問題がある。位置を求めることは、計算処理上集中的になるので(computationally intensive)、情報をリアルタイムに抽出することが困難である。
【0012】
ある実施では、検知した時間変化波形を比較するのに、少なくとも1つの波形を時間軸伸縮(time scale、タイムスケール)する。他の実施では、検知した波形の周期変調から周期値を求め、その周期値を用いて情報を取得する。ある実施では、周期値は、比較される波形の時間軸伸縮に用いられるスケール値である。
【0013】
図1において、物体10は、符号化/検知機構12の内部で、流路に沿って相対的な動きをする。物体10は、流体経路における一連の物体の1つか、または、走査動作における物体の配列の1つである。
【0014】
「D」とラベルされた矢印14は、時間が1増加する間の物体10の変位を示し、「D」とラベルされたx方向成分20、「D」とラベルされたy方向成分22、「D」とラベルされたz方向成分24、及び、「Dspin」とラベルされたスピン成分26を含む、成分の変位に解析される。
【0015】
物体10は、矢印30に示すように、例えば、発光、反射または他の拡散及び/または透過により光を放射するなど、センサ32と相互に作用する。センサ32は、放射される光を検知する光センサを含む。また、センサ32との電気的または磁気的相互作用も起こる。センサ32は、例えば、電極、コイル、または、物体10の電気的または磁気的特徴の抵抗検知、容量検知、誘導検知、または、他のインピーダンスベースの検知を行う他のコンポーネントを含む。「相互作用」は、それにより、センサ32が物体10の情報を含む検知結果を提供できる、全ての相互作用を含む。例えば、物体10が光を放射する、または、センサ32によって検知される信号を提供する、または、センサ32によって検知される信号に影響を与える相互作用、及び、センサ32の近くの物体10の存在及び/または動きが、転送される測定可能信号なしで、抵抗検知、容量検知、誘導検知、または、他のインピーダンスベースの検知などにより検知結果に影響を与える相互作用を含む。
【0016】
物体10の相対的な変位の結果、矢印34に示すように、検知結果は、符号化された時間変化(encoded time variation、エンコードされた時間変化)を含む。
【0017】
物体10についての情報は、例えば、符号化/検知機構12により時間変化に関し符号化される。変位Dの値または成分のみに相当する符号化された情報は、「動きに依存する情報」である。変位とは無関係に符号化された情報は、「動きに依存しない情報」である。「動きに依存しない情報」には、例えば、発光、拡散及び/または透過/吸収スペクトル、体積、密度、断面または他の形状、化学組成、正味荷電、荷電極性、磁気軸方向、透磁率、または、他の特性などが含まれる。
【0018】
例えば、フローサイトメトリ(flow cytometry)、バイオチップの読み出し、検体検出、文書または他の物体の配列の走査などの用途において、光センサは、放射される光に他の光子エネルギが含まれていても、用途の範囲内でエネルギを検知する。同様に、インピーダンスベースのセンサまたは他のセンサも、関連する制約内で検知する。
【0019】
「物体」は、その情報がセンサによって取得され、検知結果に含まれる、全ての識別可能な物を含む。例えば、物体は、液滴、少量の流体、単一分子、凝集分子、分子クラスタ、細胞、ウィルス、バクテリア、長いポリマ、分子下複合体、微粒子、ナノ粒子、特定の化学物質または他の検体を結合及び伝達できるビーズ(beads)または他の小粒子、エマルション、配列内の物体、及び、例えば、有色点など表面の識別可能な領域である。
【0020】
時間変化波形を示す検知結果は、「符号化された時間変化」を有する。
【0021】
「時間変化波形」は、時間領域で変化する。「検知された時間変化波形」は、時間とともに得られた検知結果によって表される。
【0022】
物体の動きは、システムの部品またはコンポーネント、システムの環境パターンまたは特徴、例えば、符号化及び/または検知コンポーネント、励起パターンまたはフィルタリングパターン、または、他の環境パターンや特徴など、と相対的な全ての動きを含む。
【0023】
符号化/検知機構12は、検知結果を取得することができる。検知結果は、最初はアナログまたはデジタル電気信号であるが、次の、記憶、送信及び処理のため、光または他の電磁信号などの他の形式に変換されてもよい。
【0024】
ボックス40では、ボックス42及び44のどちらかまたは両方により、検知結果を用いて物体10の情報を取得する。ボックス40での処理は、検知結果の送信、記憶、変換、または、例えば、検知した時間変化波形を示す符号化情報を保存する他の動作の後、行われてもよい。
【0025】
ボックス42では、検知結果を用いて一連の時間変化波形を比較する。波形は、検知結果に示された検知した時間変化波形を含む。ボックス42では、1つ以上の波形の時間軸伸縮を行い、動きに依存しない情報を抽出する。
【0026】
ボックス42では、例えば、2つの波形を相関させ、比較の前に、1つまたは両方の波形を時間軸伸縮する。相関または逆相関が最大化されるような時間軸伸縮、または、最大に近い結果を得るために時間軸伸縮を一度行い、他の情報から適切な時間軸伸縮を見つけるなど、様々な時間軸伸縮が行われる。ボックス42では、検知結果を用いて、符号化された動きに依存しない情報を取得する、すなわち、「復号」(decoding、デコード)する。
【0027】
ボックス44では、検知した時間変化波形から、例えば、周波数または波長などの周期値を求め、その周期値を用いて符号化情報を取得し、復号する。ボックス44での処理は、時間変化信号と周波数スペクトルとの間で変換する「変換(transforming)」、また、例えば、フーリエ変換または高速フーリエ変換などによる「変換」を含む。
【0028】
例えば、ボックス42及び44からの復号化情報は、物体の種類を示すので、物体を識別できる。ボックス40内の「AND/OR」は、ボックス42及び44の処理が別々に行われてもよいし、または、一緒に行われてもよいことを示す。破線矢印46は、ボックス44で、スケーリング係数を得ることができることを示し、そのスケーリング係数を用いて、ボックス42で時間軸伸縮を行い、物体の位置またはスペクトルを求め、これにより物体の種類を求める。
【0029】
励起パターンが、異なる色の励起領域の長手方向列(longitudinal sequence)を含む場合、時間変化により、励起スペクトルの情報が符号化される。フィルタアセンブリが、異なる色の帯域フィルタ素子の長手方向列(longitudinal sequence)を有する場合、時間変化により、物体の位置及び放射される光のスペクトルが符号化される。
【0030】
また、異なる色の励起領域またはフィルタ素子の長手方向列は、例えば、周期的な長手方向列により符号化される速度または他の変位速度についての情報など、動きに依存する情報を符号化することができる。
【0031】
また、符号化/検知機構は、例えば、適切なパターンの光センサを含むパターン化された光検出機構、または、電極、インダクタ、または、適切なパターンの他のコンポーネントを含むインピーダンスベースの検知機構など、パターン化された検知機構を含む。
【0032】
図2のシステム100において、動いている物体から放射される光は、その特徴についての情報を含む。符号化コンポーネント102は、符号化された出力光を供給し、光検出コンポーネント104は、それに応答し、例えば、処理コンポーネント106に伝達することができる電気信号などの検知結果を供給する。コンポーネント106は、検知結果を用いて、物体の特徴についての情報を示す特徴データを取得する、及び/または、供給する。
【0033】
物体110は、複数の位置を通過して矢印112に示す方向に相対的に動く。ある位置では、物体110は、矢印114に示すように励起を受けることができ、紫外線または固有の細胞物質の他の励起などによって、染料または他の付着した「タグ」の蛍光、または、固有蛍光または自己蛍光などから、矢印116に示すように光を放射することで反応することができる。化学蛍光(chemofluorescence)、生体蛍光(biofluorescence)、吸収、拡散、または、同時励起を必要としない他の現象が用いられる。
【0034】
矢印120は、コンポーネント102からの出力光を表す。ボックス122は、物体110の特徴についての情報が、出力光に含まれ、例えば、矢印120に示す符号化された出力光を得るための励起のパターニング、及び/または、放射される光のパターニングなどの、様々な方法のいずれかにより符号化されることを示す。
【0035】
符号化された出力光の一部がコンポーネント104によって検知され、検知結果が得られる。この検知結果に基づいて、コンポーネント104は、矢印130に示す電気信号を供給する。電気信号は、ボックス120からの情報を含み、コンポーネント106は、この電気信号に応じて、物体の特徴を示すデータを得る、及び/または、供給する。
【0036】
図3において、励起機構150は、光を放射しながら物体152の経路に沿っている。「x または t」からわかるように、経路は、x方向に伸び、及び/または、時間tにわたって起こる。物体152の速度または他の変位速度は変化するが、速度または他の変位速度についての情報により、例えば、物体の符号化信号などからトリガ信号を求めるトリガ検出技術に基づき、x方向の位置と時間tとの間で近似的なマッピングを行うことができる。
【0037】
励起領域の長手方向列のカテゴリは、周期的なパターン、チャープパターン及びランダムパターンを含む。「ランダム」パターンは、長手方向列の長さにわたって非周期的であり、「周期」パターンは、列の長さにわたって1回以上繰り返し、「チャープ」列は、ランダムであるが、直線的に変化する時間軸伸縮により、周期的にされてもよい。すなわち、「チャープ」列は、周波数または波長が直線的に変化する期間の列である。
【0038】
図3は、K個の励起コンポーネント154から156の列を示し、コンポーネント154は「0」とラベルされ、コンポーネント156は「(K−1)」とラベルされている。励起コンポーネントは経路の周りのどの位置に配置されてもよい。2つ以上の励起コンポーネントが、同じ位置またはx または t軸に沿った重複した範囲に配置され、また、例えば、コンポーネント154から流路の反対側の「(0’)」とラベルされたコンポーネント158に、回転方向に変位してもよい。
【0039】
矢印160は、コンポーネント154からの励起を示し、矢印162は、コンポーネント158からの励起を示し、矢印164は、コンポーネント156からの励起を示す。
【0040】
「k1」とラベルされた励起コンポーネント170は、干渉光源171を含み、矢印172及び174に示すように異なる種類の励起をもたらす。矢印172に示す励起は、物体152が領域176を通過して移動する時に起こり、矢印174に示す励起は、物体152が領域178を通過して移動する時に起こる。領域176の励起は領域178の励起と異なる光子エネルギスペクトルを有する。すなわち、領域176及び178は「異なる色」の励起を有する。
【0041】
「k2」とラベルされた励起コンポーネント180は、空間パターン186で表す、空間的にパターニングされた励起を与えるように構造化された、構造化光源(structured light source)182を含む。矢印184は、領域188での励起を表し、パターン186で表される領域の完全なパターンの1つである。
【0042】
コンポーネント154から156は、それぞれ、回線190を介して、励起制御回路から制御信号を受信する。励起制御回路は、トリガ検出回路に応答し、定常状態または時間変化状態で、励起を起こす制御信号を供給する。
【0043】
図4において、フィルタ機構200は、発光物体202の経路に沿っている。フィルタ機構200は、フィルタアセンブリの組み合わせを含む。
【0044】
フィルタのカテゴリは、シャドーマスク、周期マスク、チャープマスク及びランダムマスクを含む。「ランダム」パターンは、フィルタの長手方向列の長さにわたって非周期的であり、「周期」パターンは、アセンブリの長さにわたって1回以上繰り返し、「チャープ」パターンは、ランダムであるが、直線的に変化する時間軸伸縮により、周期的にされてもよい。すなわち、「チャープ」パターンは、周波数または波長が直線的に変化する期間の列である。「シャドーマスク」は、強度に基づいたフィルタアセンブリであり、光子エネルギの対象範囲内で、全てのエネルギの光を送信するが、例えば、黒と白及び/または異なるグレースケールなど、異なる部分で異なる強度で送信する。
【0045】
図4は、M個のフィルタアセンブリ204から206を示し、アセンブリ204は「0」とラベルされ、アセンブリ206は「(M−1)」とラベルされる。フィルタアセンブリは、経路周辺のどの位置に配置されてもよい。フィルタアセンブリは、x または t軸に沿った同じ位置または重複する範囲に配置され、例えば、アセンブリ204から流路の反対側の「(0’)」とラベルされたボックス208に、回転方向に変位してもよい。
【0046】
「m1」とラベルされたアセンブリ210は、矢印212に示す光が、矢印214に示す出力光のように通り抜ける、フィルタの放射状の列を含む。アセンブリ210は、例えば、フィルタ216及び218を含む。
【0047】
アセンブリ220は、矢印222に示す光が、矢印224に示す出力光のように通り抜ける、フィルタの長手方向列を含む。アセンブリ220は、例えば、隣接フィルタ226及び228を含み、フィルタ226及び228は、それぞれ、帯域が、放射スペクトル(emanation spectrum)についての情報を与えることができるくらい十分異なる、帯域フィルタである。アセンブリ220及びフィルタ216及び218は、空間的にパターン化されたフィルタである。
【0048】
矢印224に示す出力光は、出力光を光検知し、検知結果を処理することで再生される、フィルタ226及び228からの符号化情報を含む。フィルタ226、228及び他のフィルタは、分解能の損失を生じる可能性のある、物体202のx または t方向の見かけ上の長さよりも短い長さ、または、物体202のx または t方向の見かけ上の長さ以上で、物体202がアセンブリ220を通過して移動する間、特徴が変化しないくらい十分短い長さなど、適切な長さを有する。
【0049】
図4に示すフィルタ機構は、流体実装、または、画像を有する用紙や他の媒体の走査など、走査動作により、他のコンポーネントに対して相対的に移動する一連の物体に適用されてもよい。物体202は、紙上の有色点でもよく、フィルタ機構は、物体202から放射される色のわずかな違いの情報を求めてもよい。物体202が、レジストレーションマーク(registration mark、位置合わせマーク)に特有の色を有するマークである場合、その色は他の色と見分けられ、その位置を求めることにより、イメージセンシングや印刷などのための紙のレジストレーションができる。
【0050】
図5において、変位制御機構250は、発光物体252が移動する経路に沿っている。機構250は、変位制御コンポーネントの組み合わせを含む。
【0051】
図5は、制御コンポーネント254から256を示し、コンポーネント254は、「0」とラベルされ、コンポーネント256は、「(N−1)」とラベルされる。
【0052】
「n1」とラベルされた制御コンポーネント260は、成形された境界262を含む。成形された境界262は、流路の周辺に部分的、または、完全に延び、速度や他の変位速度など、物体252の変位に作用する、または変位を制御する形状を有する。
【0053】
「n2」とラベルされた制御コンポーネント270は、運動装置272を含み、運動装置272は、双方向矢印274に示すように、流路のその区間で境界を横移動させる。装置272は、回線276を介して制御信号を受信する。変位制御回路は、定常状態または時間変化状態で、装置272を作動させることにより、トリガ検出回路に応答してもよい。
【0054】
図6は、バス404または他の回路を介してコンポーネントに接続された中央処理装置(CPU)402を含む、システム400を示す。
【0055】
システム400は、どちらもバス404に接続された、外部入力/出力(I/O)コンポーネント406とメモリ408とを含む。外部I/O406により、システム400の外部の装置との通信が可能になる。
【0056】
IC I/O410により、IC(0)412からIC(P−1)414までの一連のIP ICなどのICとの通信が可能になる。IC412から414は、光センサアレイ418を有するIC(p)416を含む。装置I/O420により、例えば、Q個の検知制御装置、装置(0)422から装置(Q−1)424との通信が可能になる。装置422から424は、励起及び変位制御コンポーネントを含み、また、ポンプ、計測電極(metering electrodes)、スマートゲート(smart gate)、ゲート制御や分岐のための装置、バルブ、流量または圧力センサなどの流体装置を含む。
【0057】
メモリ408は、プログラムメモリ430を含み、ソフトウェアまたはハードウェアの他の形式で指示が与えられる。プログラムメモリ430は、符号化ルーチン440、検出、読み出し及び合成ルーチン442、及び、物体識別ルーチン444を格納する。
【0058】
ルーチン440は、移動している物体から放射される光の情報を符号化する。CPU402は、センサから信号を受信し、どの流体動作が必要かを判定し、ポンプ、計測電極、ゲート及びバルブを駆動して物体と他のコンポーネントとの相対運動を生成する。CPU402は、また、トリガ検出装置から信号を受信し、制御信号を励起コンポーネントや運動装置などに供給して符号化を行う。
【0059】
ルーチン442は、プレセンシング(pre-sensing)読み出しを行い、物体の情報と検知周期とを取得し、検知周期で検知読み出しを行い、アナログ調整を行い、検知結果をデジタル処理で調整し、物体の量を記憶し、物体の量を合わせて特徴データを生成する。
【0060】
ルーチン444は、ルーチン442からの各物体のローデータ(raw data、生データ)を用いる。図7において、例えば、ボックス470では、ルーチン440及び442を連携させ、光検知された量などのローデータを取得する。
【0061】
ボックス472では、ボックス470からローデータを受信し、そのローデータを用いて、物体の種類を示す比較結果を求めるなど、物体の特徴データを求める。特徴データは、物体が更なる分析のための対象の物体であるかを示す。
【0062】
ボックス480では分岐が行われる。物体が対象ではない場合、ボックス482においてスマートゲートを開くか、または、物体を消去する。物体が対象である場合、ボックス484においてスマートゲートを閉じるか、または、物体を更なる分析のためにダウンストリームに転送する。
【0063】
図8において、分析器500は、支持構造502上にある。構造502は、蛇行流路(serpentine channel)504を含み、物体は、この蛇行流路504を通って、例えば、流体によって運ばれる。
【0064】
コールタカウンタ(coulter counter)510及びミー散乱センサ(Mie scatter sensor)512は、粒径検知器である。
【0065】
放射光符号器/光センサ520は、一般的に、励起/変位コンポーネント522と、フィルタコンポーネント524と、光検知コンポーネント526とを含む。
【0066】
コンポーネント530、532及び534は、第1及び第2蛍光検知コンポーネントと、ラマン散乱(Raman scatter)検知コンポーネントとを含む。物体の種類の違いに基づいて、バルブ540は、物体506が矢印542に示すように出力される位置と、矢印544に示すように出力される位置とを切り替える。
【0067】
図9において、物品600は、2つの光透過コンポーネントを含み、光透過コンポーネントの間の内部領域は、流体を含む流路部602、及び、流路部602を囲む非流路部604の2つの主要な部分を含む。ポート608により、流体が流路部602へ及び流路部602から入出できる。
【0068】
フィルタアセンブリ610は、フィルタ612、614、616、618及び620を含む、長手方向の系列の帯域フィルタを含む。フィルタ612、616及び620は、略同じ帯域であり、フィルタ614及び618も略同じ帯域で、フィルタ612、616及び620とは異なる帯域である。
【0069】
ブロッキング材622は、アパーチャ(開口、隙間)を有し、光の拡散及び反射を防ぐことができる。
【0070】
図10において、コンポーネント630及び632は、非流路部604の部材によって隔てられる。コンポーネント630及び632は、石英、ガラス、または、アクリルを含み、コンポーネント630は、約0.3ミリメートル、コンポーネント632は約1.0ミリメートルの厚さで、両者の間は、約50マイクロメートルである。非流路部604は、SU−8などのフォトレジスト材料であるか、または、流路部602は壁で囲まれていてもよく、非流路部604はエポキシで充填されていていてもよい。
【0071】
物体640は、全反射(TIR)の角度によって、発光錐(emission cone)に示すように、光を上方に放射する。フィルタアセンブリ642は、コンポーネント630の下面で流路部602と向かい合っていてもよく、フィルタアセンブリ644は、コンポーネント630の上面で流路部602の外側にあってもよく、フィルタアセンブリ646は、コンポーネント630から間隔をあけて配置され、光センサ648に隣接していてもよい。発光錐は、光学コンポーネント652によって、アセンブリ646を介して、イメージプレーン(画面)650上に投影される。
【0072】
流路部602は、水(n=1.33)を含み、物体640は、例えば、Tリンパ球のように、直径d=7μmを有することができる。流路部602の高さは、30マイクロメートルにすることができる。すなわち、アセンブリ642からの物体の距離は、h=約15μmである。コンポーネント630は、空気(n=1)に囲まれたアクリル(n=1.48)にすることができる。アセンブリ642がなければ、流路部602からの射出角度(escape angle)は、48.75°である。コンポーネント630の上面のTIR角度は42.51°である。水とアクリルの接合面における、物体640よって照射される直径は、D=d+2tan(α(escape))=41.2μmであり、発光錐の最大半径は17.1マイクロメートルで、TIRなしでコンポーネント630を通り抜けることができる。接合面での、物体640を検出するパターンの「最小加工寸法(minimum feature size)」(「MFS」)は、Dか、または、約40マイクロメートルである。
【0073】
光センサ648が、発光錐を縮小する開口数を有する場合、または、光が、コンポーネント630からα(TIR)よりも若干高い角度で放射される場合、MFSは若干小さくてもよい。しかし、MFSが小さすぎると、光がアセンブリ642における両側の機構周辺の発光錐から通り抜けるので、時間変化信号が物体の変位を正確に示さない。アセンブリ644及び646のMFSについても同じことがあてはまる。10マイクロメートルの生体細胞では、一般的に、MFSは10から20マイクロメートルである。フィルタアセンブリの幅は、流路の幅に依存する。例えば、アセンブリ642は、幅100マイクロメートル、長さ1.0ミリメートルである。較正は、既知の蛍光スペクトルを有する小さなビーズを用いて行われればよく、測定値を調整するために較正値が求められ、既知の強度が求められる。
【0074】
図11において、コンポーネント630は、コンポーネント630及び632に対して約45°の斜めの面660を有する。矢印662に示す、面660に略垂直の入射励起光は、矢印664に示す、流路部602を通過する光と結合することができる。励起光は、例えば、266ナノメートルでもよい。
【0075】
流路部602は、右側が開口しており、ポート666を備えるか、または、横断面668の末端で途切れずに、面668に関して対称的に延びてもよい。
【0076】
図11において、アセンブリ610内のフィルタは、重なり合わないが、隣接している。例えば、フィルタは、コンポーネント630の凹所に組み込まれたり、同じ厚さのシャドウまたは透明材料に囲まれたりする。フィルタは、異なる材料をプリントすることにより生成されてもよく、シャドウまたは透明材料が、それらの周りにプリントされてもよい。
【0077】
図11のグラフは、放射する色「A」及び色「B」の光に応じた強度を示す。フィルタ612、616及び620は、色「A」を通し、フィルタ614及び618は、色「B」を通す。
【0078】
曲線672は、物体640が色「A」を放射する場合の強度を示す。曲線672は、フィルタ612、616及び620に沿って高くなるが、フィルタ614及び618に沿って低くなる。
【0079】
曲線674は、物体640が色「B」を放射する場合の強度を示す。曲線674は、フィルタ614及び618に沿って高くなるが、その他の場所では低くなる。
【0080】
フィルタ612、616及び620は、赤を通し、フィルタ614及び618は緑を通す。それぞれの物体は、赤または緑のどちらかの蛍光を発する。
【0081】
光センサ670からの信号により、例えば、色「A」を発する物体を、色「B」を発する物体と見分けるなど、物体の種類を識別できる。
【0082】
図12において、物品600は、周期的な励起パターン680を有し、領域682、684及び686は、同じスペクトルを有し、領域688及び690は、領域682、684及び686と異なるスペクトルを有し、それぞれの領域は同じ長さを有する。
【0083】
図13において、コンポーネント630及び632の厚さは、例えば、0.3ミリメートル以下である。励起コンポーネント692が構造化光源である場合、コンポーネント632は、光源と物体640との間の距離を低減するために、薄くされる。
【0084】
励起コンポーネント692は、パターン680を生成し、パターン680に反応して光が物体640から放射する。放射した光は、コンポーネント630を通過して光センサ694に到達する。
【0085】
図13のグラフは、色「A」及び色「B」に反応した強度を示す。曲線696は、領域682、684及び686において、色「A」に強く反応した物体からの強度を示す。曲線698は、領域688及び690において、色「B」に強く反応した物体からの強度を示す。
【0086】
領域682、684及び686は、主に赤の光子エネルギを有してもよく、領域688及び690は、主に緑の光子エネルギを有し、2つの物体が赤及び緑にそれぞれ反応してもよい。
【0087】
光センサ694からの信号により、物体の種類を識別できる。例えば、パターン680により、周期変調が起こるが、それにより、物体の速度を判定できる。
【0088】
吸収フィルタは、3つ以上の色を有する3つ以上の種類のフィルタを有してもよく、または、反射フィルタと組み合わせてもよい。
【0089】
図14のフィルタアセンブリ700において、それぞれのストライプはフィルタ基準を有する。ストライプ702は、赤を通し、ストライプ704は、クローズドフィルタであり、透過せず、ストライプ706は、オープンフィルタであり、全透過し、ストライプ708は、グレーフィルタであり、オープンフィルタとクローズドフィルタの中間の強度で、範囲にわたって光子エネルギを全て通し、ストライプ710は、緑を通し、ストライプ712は、青と緑の交差(intersection、共通部分)を通し、ストライプ714は、青を通す。ストライプの幅は不ぞろいである。
【0090】
図15において、アセンブリ700は、パターンニングされた光吸収材料を用いて、例えば、光吸収材料の層をプリントまたは堆積及びパターンニングすることにより生成されたフィルタを含む。
【0091】
アセンブリ700は、赤色部720と、赤色部720と重なり合っている黒色部722と、灰色部724と、緑色部726と、緑色部726と重なり合っている青色部728とを含む。重複部分では、2つのフィルタが交差しており、赤色部720と黒色部722の交差は、クローズドフィルタになっており、緑色部726と青色部728の交差は、緑と青の交差を通す。
【0092】
3つのグラフは、例えば、広域光センサからの、赤色蛍光の曲線730、緑色蛍光の曲線732、及び、赤色及び緑色蛍光の両方のタグを付けられた物体の曲線734の、3つの期待強度信号を示す。赤、緑及び青を識別するだけでなく、識別可能な時間変化信号となる組み合わせも識別することができる。
【0093】
識別される粒子の数は、例えば、主成分分析における、異なる色を着色された光検知セル(photosensing cells)、または、ディスクリート光センサ(discrete photosensors)のアレイにおける要素の数よりもずっと多い。物体は、環境または背景、または、他の種類の物体と区別される。
【0094】
異なる帯域の干渉ベースのフィルタが用いられてもよい。
【0095】
図16のフィルタアセンブリ750においては、透明材の薄い層がファブリー・ペロ発振(Fabry-Perot oscillations)を起こし、厚さに依存した高屈折率差(index contrast)を得ることができる。フィルタ752、754、756、758及び760は、それぞれ、実質的に一定の厚みを有するが、フィルタ752、756及び760の厚みは、例えば、堆積された層をエッチングしたり、非固体層をインプリントしたりする(imprinting)ことにより、生成される、フィルタ754及び758の厚みよりも大きい。
【0096】
グラフは、透過光の強度/エネルギ関数を示す。フィルタ752、756及び760は略同じ厚さを有するので、曲線770、772及び774は類似する。フィルタ754と758の厚さは同じなので、曲線774と776は類似する。アセンブリ750を通過する発光物体により、強度/エネルギ関数が変化する時間変化信号が生成される。放射する光の関連部分を検出してもよい。アセンブリ750は、流路の1つのカバースライド上にあってもよく、2つの光センサが、流路の両側にある。
【0097】
ファブリー・ペロ干渉ベースのフィルタは、フィルタの空隙の光学的厚さがx方向に異なり、異なるフィルタが異なるエネルギの透過ピークを有する、帯域フィルタとなるように構成されてもよい。光学的厚さは、2つの厚さ間で、例えば、堆積後に層をエッチングしたり、成長の間ハーフトーンマスキングを用いたりすることで、変化する。または、光学的厚さは、例えば、転移、イオン拡散、または、紫外線誘発変化により、屈折率とともに変化してもよい。
【0098】
透明材またはファブリー・ペロフィルタのくさび形の層は、その表面にフィルタアセンブリを有してもよく、フィルタと、放射する光の付加的なスペクトル情報を符号化するフィルタコンポーネントにわたって継続的に変化する厚さとの両方を提供する。
【0099】
層流により、フィルタ機構を通過する物体の速度を実質的に均一にすることができ、以下のように、不均一な変位を生成することができる。
【0100】
図17から図19において、フィルタアセンブリは、流路800の両側にある。検出器802及び804は、それぞれ流路800の近い側及び遠い側にあり、それぞれフィルタアセンブリを含む。図18及び図19において、検出器802及び804は、それぞれ周期フィルタアセンブリを含み、一方はx方向に周期的で、他方は、x方向に対してどんな角度でも、または、平行でもよく、y方向に周期的である。検出器802からの検知結果は、y方向に変調され、検出器804からの検知結果は、x方向に変調され、それにより、発光物体の情報を取得することができる。
【0101】
検出器802は、フィルタ812を有する光センサ810を含んでもよく、フィルタ812は、y方向に周期的で、それぞれ、赤または他の色を通す。検出器804は、フィルタ816を有する光センサ814を含み、フィルタ816は、周期的で、例えば、緑を通す。
【0102】
流路800の一方に別の種類のテンプレート層を配置してもよく、他方に配置された周期的なマスク層により、周期信号を生成する。この周期信号は、変位を求めるために常に解析され、この変位は、テンプレートとの相関のタイムスケールを判定するのに用いられてもよい。または、一方で蛍光発光が光検知され、他方で拡散が光検知されてもよい。両側からの時間変化信号が、例えば、相関によって、比較されてもよい。
【0103】
組み合わされたフィルタアセンブリからの時間変化信号は、例えば、テンプレート層及び周期層を含む、放射状系列のフィルタ、または、フィルタの「スタック(stack)」からの、空間的に変化する2つの異なるパターンを有してもよい。
【0104】
図20及び図21において、1つのフィルタアセンブリにおける反射グレースケールフィルタは、フィルタの放射状の列、または、フィルタのスタックに相当する。フィルタ層の厚さの定義は、ソフトウェアを用いてオーバーレイされ、追加されるので、例えば、0,0.5及び1の厚さになり、層は、同じ方向の変化を有するか、または、直交方向など、異なる方向の変化を有してもよい。フィルタの光学的特徴の定義は、所望の等価フィルタの光学的特徴の定義となるようにオーバーレイされ、各領域が光学的厚さまたは他の特徴を有するようなレイアウトタイプの記述に変換されてもよい。
【0105】
等価フィルタの定義に近似する等価フィルタを構築するため、フィルタアセンブリ全体に高反射性の材料を堆積し、厚さが0または0.5である領域の反射材料を部分的にエッチングし、その後、厚さが0である領域の残りの反射材料をエッチングしてもよい。
【0106】
部分的なエッチングが不確実な部分には、厚さが0.5の第1パターン層を生成し、その後、エッチングせずにパターニングされた、厚さが0.5の第2パターン層を堆積してもよい。同様の技術により、厚さ及び屈折率変化の適切な組み合わせから、様々な透過/反射のDBR、及び/または、様々な光学的厚さの空隙を有する構造が生成される。
【0107】
図20のフィルタ900は、互いに重なり合う、ランダムフィルタと周期フィルタとの組み合わせに相当する。曲線902は、ランダムフィルタを示し、曲線904は、周期フィルタを示す。曲線906は、放射する光の変位と位置情報との両方を符号化できる透過関数を示し、時間軸伸縮により、情報を抽出することができる。
【0108】
破線910は、厚さレベルの大きさを、例えば、0,0.2,0.4などに伸縮(scaling)することにより総光出力が変化して、光透過量がより多くなることを示唆する。
【0109】
図21のフィルタアセンブリ930は、速度が異なるにもかかわらず、変位及び位置情報をより効率的に抽出できる、曲線932に示すチャープフィルタと曲線934に示す周期フィルタとの組み合わせに相当する。曲線936は、情報抽出を可能にする透過関数を示す。
【0110】
図22において、ランダム帯域フィルタ機構などのフィルタの長手方向列が、周期グレースケールフィルタなどの反射グレースケールフィルタ機構に組み合わされている。フィルタ機構950は、長手方向列のフィルタサブアセンブリ952を含む。その上面には、領域954を有する周期フィルタサブアセンブリがあり、それぞれ、中間の透過レベルを有する。フィルタアセンブリ950により、異なる色の識別可能な時間変化信号が生成され、時間軸伸縮が可能になる。
【0111】
図23において、流路には、例えば、流体分析器において、壁状部分970及び972による境界が設けられている。流路は、流路中心に十分な流れを提供する層流を維持する、流れの速い流体において、例えば、生体細胞またはウィルスなどの物体640を受け取ってもよい。
【0112】
領域682及び688を有する励起パターンは、例えば、レーザなどのオフセットソースからの、コリメート狭帯域光(collimated narrow band light)の干渉パターンを重ね合わせることにより生成される。光は、ミラー974及び976により反射される。ソース980からの光は、色「A」を有し、角度αで入射し、ソース982からの光は、色「B」を有し、角度βで入射した後、ミラー976により反射される。ミラー974及び976は、距離Δずれており(offset)、領域682、688などを含む組み合わされた干渉パターンを生成する。ミラー974及び976の位置と傾斜角は、独立して調整されてもよい。
【0113】
また、励起パターンは、構造化光源、ホログラフィなどにより生成されてもよい。図24から28において、物体が流体またはマイクロ流体の流路を通過する間に、空間的に変調された信号が、着色された励起の列により物体から得られる。
【0114】
図24において、壁状部分970及び972の間の流路の物体640は、励起パターン1002を生成する構造化多色光源を有する励起コンポーネント1000を通過する。構造化光源は、アクティブでもパッシブでもよく、例えば、発光ダイオード、レーザーダイオード、または、単一レーザにより励起される蛍光体により実現される。パターン1002のMFSは、物体640の大きさのオーダー(単位)であり、時間変化信号の変調度または振幅を維持することができる。
【0115】
パターン1002は、領域の長さが均一でも、周期的でもないランダムな2色のパターンである、領域1004、1006、1008及び1010を含む。領域1012は、コンポーネント1000が照射しない、または、広帯域光または白色光、すなわち、無色の励起を生成する、間隙である。領域1004及び1008は赤であり、領域1006及び1010は緑であり、領域1014は青であり、領域1016は青と赤とが重なりあっており、領域1018は、領域1004及び1008と同じ強度の赤であり、領域1020は、より高い強度の赤である。
【0116】
曲線1030及び1032は、均一の速度、または、テストパターンで較正される速度の物体640からの時間変化信号、すなわち、位置依存信号を示す。曲線1030は、赤に強く反応し、青または緑に、赤よりもずっと弱く反応する物体からの信号を示し、曲線1032は、緑に強く反応し、赤または青に弱く反応する物体の例を示す。
【0117】
信号の変調度または振幅は、領域1004、1006、1008及び1010を横切る曲線1030と1032との違いに示されるように、発光スペクトルを示す。
【0118】
図25から27において、層流により、不均一な変位または他の変化が起こる。
【0119】
図25は、直線的に互いの距離が減少する、壁状部分1040及び1042を示す。物体640が互いにかみ合った(interdigitated)二色の励起パターン680を通過するにしたがって、曲線1050に示すように、位置及び/または時間に応じて、速度が直線的に上がる。時間変化信号がチャープされ、速度変化により、周期が直線的に短くなる。曲線1052は、領域682、684及び686の間の強度I(A)及び領域688及び690の間の強度I(B)を有するチャープされた信号を示す。
【0120】
また、例えば、球面鏡などの非平面ミラーが、図23のパターンに類似しているチャープされた干渉を起こしてもよい。
【0121】
図26は、流路が、どのように流れを、例えば、周期的に、チャープ状態に、または、ランダムに導くことができるかを示す。例えば、電荷を帯びた物体の流れの方向を、電界変化によって変えてもよい。
【0122】
図26において、壁状部分1070及び1072は、平行で正弦波形状を有するので、正弦曲線の流れを生成する。励起領域1074及び1076は、異なる色「A」及び色「B」の均一領域である。物体640が、領域1074と1076との間の正弦波経路1080を進みながら、それらの間の小さな空隙を通過する。曲線1090は、色Aに強く反応するが、色Bに弱い反応を示す物体からの信号を示す。曲線1092は、色Bに強く反応し、色Aに弱い反応を示す物体からの信号を示す。曲線はやや相補的であり、経路1080が空隙を横切る時、それぞれ略0になる。
【0123】
図27の壁状部分970及び972は、水平で平行であり、それらの間に均一な励起領域1100及び1102を有する。例えば、電気的に制御された装置である運動装置1110は、双方向矢印1112に示すように、物体640と領域1100及び1102との間で相対的な動きを起こす。制御回路1114は、運動装置1110に信号を送る。その結果として生じる動きは、周期的でも、非周期的でもよく、任意の時間変化信号を生成する。領域1110及び1112を制御する光源は、移動してもよく、または、壁970及び972と領域1100及び1102との間の相対的な動きにより、双方向矢印1112に示すような動きを起こしてもよい。また、流体の流れにより、時間とともに速度や他の変位速度が変化してもよい。運動装置1110は、トリガ信号に応答してもよい。
【0124】
曲線1120は、ランダムパターンにおける、「帯域A」とラベルされた領域1100と、「帯域B」とラベルされた領域1102との間の、y方向の物体640の動きを示す。ある種類の物体は、曲線1122に示すように、領域1100において、色Aにより強く反応し、別の種類の物体は、曲線1124に示すように、領域1102において、色Bにより強く反応する。領域1100と1102との間では、それぞれの曲線が一時的に0になる。
【0125】
図28において、励起コンポーネント692は、励起領域1140において、色の配列を生成する。トリガ検出器1142は、トリガ信号を供給し、制御回路1144は、コンポーネント692に制御信号を供給する。
【0126】
曲線1150において、領域1140の色は、ランダムな期間で、または、周期的またはチャープパターンで、色A及び色Bで交互に変わる。正確なトリガ信号により、ある時間の領域1140の物体を1つだけ用いて、時間変化を物体の位置と相関させることができる。トリガ信号は、例えば、励起系列を選択、拡大縮小または修正するのに役立つ粒子サイズを示してもよい。
【0127】
図29の符号化/検知コンポーネント1160は、測定装置1166に接続された、流路1164の壁に沿った電極1162を含む。装置1166は、例えば、キャパシタンス、電流または他のインピーダンス関連の特徴を示す時間依存信号を記録してもよく、生体細胞、細胞サイズ、膜容量、細胞質導電率または誘電率などの、検知された時間変化波形を求める。装置1166は、また、電極1162に電気的ウォブル周波数(wobble frequency)を供給することができる。
【0128】
電極1162は、ボックス1168における二値信号からわかるようなパターンを形成する。「a)」とラベルされた信号は、周期的であり、「b)」とラベルされた信号は、ランダムであり、「c)」とラベルされた信号は、例えば、論理和によりa)とb)とを論理的に組み合わせたものである。電極1162は、c)のONセグメントに比例し、セグメント1169及び3つの上部電極1162に示すように、a)に従って周期的に、b)に従ってランダムに波形を符号化する。
【0129】
図30は、例えば、CPU402により、速度または他の変位速度、位置及び種類を求める方法を示す。
【0130】
ボックス1170では、例えば、光センサ、インピーダンスベースのセンサ、または他のセンサから、時間変化信号を取得する。
【0131】
ボックス1172では、ボックス1170からの信号が、非周期的に符号化された信号の中に、または、別個に検知された信号の中に、周期変調を含むかによって分岐を行う。リアルタイムではない場合、ボックス1172の処理は、製造時、プログラム時、または、モードを切り替えるオペレータによって行われてもよい。
【0132】
ボックス1174、1176、1178及び1179では、一連の繰り返しにおいて、総当たりの、または、同様のアプローチを行うことができ、全ての期待されるタイムスケールを徹底的に捜索し、時間軸伸縮されたテンプレート信号をボックス1170からの信号と相関させようとする。
【0133】
各テンプレート信号は、特定の非周期フィルタアセンブリによって符号化された時間変化信号との相関結果において、鋭いピーク(sharp peak)を生成する。ボックス1170からの信号のタイムスケールは、速度または別の変位速度に依存するので、異なる速度または変位速度において得られたテンプレートとの相関では、ピークは生成されない。
【0134】
タイムスケールを一致させるために、ボックス1174では、各繰り返しにおいて、伸縮されたテンプレートを取得する。
【0135】
ボックス1176では、ボックス1170からの信号と時間軸伸縮されたテンプレートとを、例えば、相関させたり他の処理を行うなどして、比較する。ボックス1176の比較結果は、ボックス1178で用いられ、信号が、相関または逆相関のいずれかによって、一致するか判定される。一致が検出されない場合、次の時間軸伸縮されたテンプレートがボックス1174で取得される。
【0136】
一致する場合、ボックス1179では、例えば、速度またはその他の変位速度、位置及び種類などの物体についての情報を取得する。一致した時のタイムスケールが速度を示す。ピークの位置がx方向の位置を示す。
【0137】
周期変調の場合、ボックス1180では、変換されたものから、周波数または波長などの周期値を求める。変調周波数(または、波長)は、スケーリング係数を求めるのに用いられる。周波数及び/またはスケーリング係数もまた、速度またはその他の変位速度を示す。
【0138】
ボックス1182では、ボックス1180からのスケーリング係数を用いて、時間軸伸縮されたテンプレートを求める。ボックス1184では、時間軸伸縮されたテンプレートとボックス1170からの信号とを比較し、ボックス1186では、例えば、相関結果において鋭いピークを求めるなど、情報を取得することができる。鋭いピークの位置及び特徴は、x方向の位置を示すことができる。
【0139】
ボックス1179またはボックス1186の後、ボックス1170において、ボックス1170への破線に示すように、更に信号を取得してもよいし、または、ボックス1188で、物体を識別してもよい。
【0140】
図31において、ボックス1200は、ボックス1170からの時間変化信号の例である。ボックス1202は、例えば、ボックス1204に示すように、時間軸伸縮されるテンプレートである。
【0141】
ボックス1206では、ボックス1200とボックス1204とを相関させ、ボックス1208では、相関または逆相関のいずれかで一致するかによって分岐を行う。一致しない場合、結果には、ボックス1210に示すように、鋭いピークがない。一致する場合、結果は、ボックス1212に示すように、相関では上方、または、逆相関では逆ピークの、鋭いピークを有する。相関結果では、鋭いピークの位置が物体の位置を示し、鋭いピークが生じるタイムスケールが速度を示す。
【0142】
ボックス1212に示すようなピークの幅は、精度を示す。物体は、物体の間隔が最小距離よりも大きい場合、及び/または、物体の速度差が最小速度差よりも大きい場合、識別されてもよい。
【0143】
図32は、ボックス1180におけるスケーリング係数の求め方を示す。ボックス1250は、ボックス1170からの信号の非周期部分、及び、次第に消滅する、非周期部分の周波数領域変換されたものである。ボックス1252は、信号の周期的に変調された部分、または、同じ光からの周期的に符号化された信号、及び、その変換されたものである。その変換されたものは、1つの鋭いピークを有する。
【0144】
ボックス1250及び1252は合成されると、ボックス1254に示す波形を生成し、その変換されたものは、ボックス1250及び1252の変換されたものの和に近似する。
【0145】
ボックス1170からの実際の信号は、その変換されたものとともに示す、ボックス1256に類似する。変換されたものにおける鋭いピークの場所は、変調周波数を示す。
【0146】
変調周波数は、スケーリング係数を求めるのに用いられ、速度も示す。ボックス1258において、スケーリング係数aは、時間軸伸縮に用いられる。
【0147】
複数の物体が異なる速度を有する場合、フーリエ変換されたものはサブピークを有する。各サブピークのスケーリング係数は、物体の相関結果を求めるのに用いられる。
【0148】
チャープフィルタ上の周期フィルタによって、固定の周波数ピークが周期変調により生じ、粒子速度を示す。移動する周波数ピークは、チャープ変調の現在の部分を示す。
【0149】
固定のピークに対して移動するピークの割合は、例えば、流路内の位置またはチャープ信号のパーセンテージなどの、非周期変調内の相対的位置を示す。
【0150】
図33は、例えば、種類、位置またはスペクトルの差などを抽出し、物体を識別する方法を示す。
【0151】
ボックス1270では、例えば、光センサ機構から符号化された時間変化信号を取得する。
【0152】
ボックス1272では、ボックス1270からの信号、例えば、2つの符号化信号、または、1つの符号化信号とそれぞれのテンプレートを相関させるか、または、比較する。
【0153】
ボックス1274において、上部の曲線は、波形が整合(alignment)tにて相関しており、類似している結果を示し、下部の曲線は、波形が整合t’において逆相関しており、類似していない結果を示す。上部のピークは、振幅Aを有し、逆ピークは、同様の振幅を有する。
【0154】
ボックス1280では、ボックス1272からの各結果の時間微分(time derivative)d/dtを求める。相関している場合、ボックス1282に示すような曲線が得られ、正のピークの後に負のピークがあり、tにおいてゼロ交差し、対比または微分量が振幅Aになる。逆相関している場合、ボックス1284に示すような曲線が得られ、負のピークの後に正のピークがあり、t’においてゼロ交差し、対比または微分量が、ボックス1274における逆ピークの振幅である、振幅A’になる。
【0155】
ボックス1286では、ボックス1280からの微分係数を用いて、例えば、相関しているか、逆相関しているか、または、そのどちらでもないかに基づいた種類、ゼロ交差の時間に基づいた位置、及び、相関及び逆相関から正のピークと負のピークとの間の振幅または対比に基づいた、発光、吸収または拡散スペクトルの違いなどを抽出する。その後、ボックス1288では、ボックス1286からの情報を用いて物体を識別することができる。
【0156】
相関は、一般的に、AC電源周波数などのノイズの影響を受けにくい。
【0157】
本技術の成功した実証には、全血におけるCD4の計算などがあり、単一タグの検出が実現できた。
【0158】
シミュレーション結果は、1.0マイクロメートル未満の空間分解能が可能であり、単一の蛍光マーカを検出できることを示す。
【0159】
(附記1)
本願は、センサを用いる方法であって、物体がセンサを通過して移動する間、センサを操作して検知結果を取得するステップであって、前記検知結果は、前記物体の情報を含む時間変化を有する、1つ以上の検知された時間変化波形を示す、ステップと、前記検知結果を一連の時間変化波形の比較処理に用いて、前記物体についての動きに依存しない情報を示す比較結果を求めるステップであって、前記一連の時間変化波形は、前記検知された時間変化波形のうち少なくとも1つを含む、ステップと、を含む方法であって、前記検知結果を比較処理に用いるステップは、前記一連の時間変化波形のうち少なくとも1つの時間変化波形について時間軸伸縮を行うことを含む、方法の発明を含む。
(附記2)
本願は、装置であって、前記装置の動作中に物体が通過して移動し得る流路を含む流体構造と、1つ以上の検知された時間変化波形を示す検知結果を取得することができる、前記流路に沿ったセンサ機構と、前記センサ機構から検知結果を受け、それに応答して、前記物体の情報を取得することができる回路と、を含む装置であって、前記回路は、前記センサ機構からの前記検知結果を、前記検知された時間変化波形のうち少なくとも1つを含む一連の時間変化波形の比較処理に用いて、前記物体についての動きに依存しない情報を示す比較結果を求めるステップであって、前記比較処理で前記検知結果を用いる際、前記回路は、前記一連の時間変化波形のうち少なくとも1つの時間変化波形について時間軸伸縮を行う、ステップと、前記検知結果を用いて、前記検知された時間変化波形のうち少なくとも1つの時間変化波形の周期変調から変調周期値を求め、前記変調周期値を用いて前記物体についての情報を取得するステップと、のうち少なくとも1つを行うように構成された、装置の発明を含む。
【符号の説明】
【0160】
12 符号化/検知機構、32 センサ。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33