【実施例】
【0046】
以下、本発明の実施例を示して、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲での種々の変更が可能である。
【0047】
(実施例1)溶媒に対する溶解性又は分散性試験
表1に示す各種生理活性物質10質量部とプロピレングリコール又はグリセリン90質量部とを、約1時間混合して、混合液を得た。また表2に示すように生理活性物質OVA(オブアルブミン)43質量部とトリエタノールアミン、ジエタノールアミン、又はマクロゴール400 57質量部とを、上記と同様に混合して、混合液を得た。そして、得られた混合液について、生理活性物質の溶媒に対する溶解性又は分散性の評価を、以下の指標により目視にて行った。評価結果をそれぞれ表1、表2に示す。
a:生理活性物質は溶媒に溶解した(均一な液性)。
b:生理活性物質は溶媒に分散した(分散された液性)。
c:生理活性物質は溶媒に溶解せず、混合液には明らかな凝集物が認められた(不均一な液性)。
【0048】
【表1】
【0049】
【表2】
【0050】
(実施例2)モデル生理活性物質(オクトレオチド酢酸塩)とプロピレングリコール又はグリセンからなる生理活性組成物の組成と、粘度及びマイクロニードル上に付着している生理活性組成物中の生理活性物質含量との関係
<設定条件>
(a)マイクロニードル
・材質:ポリ乳酸、高さ:500μm、密度:625本/cm
2、マイクロニードル基板の製剤面積:1cm
2/patch
(b)メタルマスク版
・ピッチ:400μm、マスク厚:100μm、開口部:四角形状(一辺250μm)
(c)環境設定:室温(25℃)
【0051】
<粘度測定>
表3及び表4に示すとおり、オクトレオチド酢酸塩濃度とプロピレングリコール又はグリセリン濃度を設定し、生理活性組成物を調製した。得られた生理活性組成物の粘度を微量サンプル粘度計(RHEOSENSE INC. Micron Sample−Viscometer/Rheometer−on−a−chip VROCTM)で10回測定し、算出した平均値を表2及び表3に示した。
【0052】
<マイクロニードル上に付着している生理活性組成物中のオクトレオチド酢酸塩含量測定>
表3及び表4に示すとおり、オクトレオチド酢酸塩濃度とプロピレングリコール又はグリセリン濃度を設定し、生理活性組成物を調製した。マイクロニードルへの生理活性組成物の付着を、上述の
図3(a)〜(c)に示す方法で行った。生理活性組成物をヘラにより掃引し、メタルマスク開口部に充填した。充填した開口部にマイクロニードル(針)を挿入させた後引き出すことにより、付着されたマイクロニードル上の生理活性組成物を精製水で抽出し、BCA法(オクトレオチド標準)により、マイクロニードルデバイス1patch(枚)当たりのオクトレオチド酢酸塩含量(付着量)を10回測定し、算出した平均値を表3及び表4に示した。
【0053】
【表3】
【0054】
【表4】
【0055】
表3及び表4に示すように、生理活性組成物中のオクトレオチド酢酸塩の含有量の上昇とともに生理活性組成物の粘度も上昇するが、マイクロニードル上に付着している生理活性組成物5中のオクトレオチド酢酸塩含量については、ある粘度までは粘度の上昇とともに上昇するが、ある粘度を超えるとその後減少に転じることが判明した。
【0056】
表3のプロピレングリコールにおいては粘度15000cpsから45000cpsにかけてオクトレオチド酢酸塩含量が減少に転じていることより、最適な粘度は200cpsから45000cpsであり、これ以上の粘度は投与効率の面から好ましくない。
【0057】
また、表4のグリセリンにおいては粘度21000cpsから27000cpsにかけてオクトレオチド酢酸塩含量が減少に転じていることより、最適な粘度は2000cpsから25000cpsであり、これ以上の粘度は投与効率の面から好ましくない。
【0058】
(実施例3)マイクロニードルデバイスの製造工程を繰り返し行ったときの、マイクロニードル上に付着している生理活性組成物中の生理活性物質含量変化測定試験
PP(ポリプロピレン)製マイクロチューブに、ヒト血漿アルブミン(HSA)40質量部、グリセリンを60質量部添加し、溶解したものを非水系処方の生理活性組成物とした。対照となる水系処方の生理活性組成物には、ヒト血漿アルブミン(HSA)40質量部、グリセリン30質量部及び水30質量部の混合液を調製し、溶解したもの生理活性組成物とした。複数のマイクロニードルデバイスの製造を行うため、実施例2と同様の条件でこれらの生理活性組成物の充填、付着の工程を繰り返し行った。上記付着工程の開始直後、20分、40分、及び60分経過後に得られたマイクロニードルデバイスのマイクロニードル上に付着している生理活性組成物中のヒト血漿アルブミン(HSA)の含量を、実施例2と同様に測定した。得られた測定結果をグラフとして
図4に示す。
【0059】
非水系処方では、経時でも粘度が安定しており、マイクロニードル上に付着している生理活性組成物中の生理活性物質の含量の変動も殆ど見られなかった。一方、水系処方では、経時での水分蒸発に伴う粘度上昇が確認され、生理活性組成物中の生理活性物質の含量も経過時間に伴って著しく減少する傾向を示した。
【0060】
(実施例4)非水系処方における生理活性組成物への粘度付与試験
プロピレングリコール及びグリセリンの溶媒に対し、それぞれ表5及び表6に示す高分子化合物を加え、混合液を作製した。高分子化合物の濃度は分子量等を考慮して設定されたものである。作製した混合液をスターラーにより撹拌(1500rpm、12時間、25℃)し、高分子化合物の溶解性を目視にて以下の基準にしたがって評価した。また、撹拌後の混合液又は溶液の粘度を、微量サンプル粘度計を用いて25℃にて測定した。粘度及び溶解性の評価結果を表5及び6に示す。
a:完全に溶解している
b:一部溶解している
c:溶解していない
【0061】
なお、グリセリンを溶媒としてDx40及びDx70を加えた例における粘度及び溶解性の測定結果は、撹拌時の温度を80℃として得られたものである。
【表5】
【0062】
【表6】
【0063】
表中のPEG4000は重量平均分子量が4,000のポリエチレングリコールであり、Dx40及びDx70はそれぞれ重量平均分子量が約40,000及び約70,000のデキストランであり、PVA117、PVA220及びPVA617はいずれも重量平均分子量が約75,000のポリビニルアルコールであり、HPC−H、HPC−M及びHPC−Lはそれぞれ重量平均分子量が250,000〜400,000、110,000〜150,000、及び55,000〜70,000のヒドロキシプロピルセルロースであり、HAはヒアルロン酸である。
【0064】
少量の高分子化合物で溶液の粘度を向上させると、塗布及び乾燥後の生理活性組成物を薄く制御することが可能となる。よって、このような高分子化合物はマイクロニードル上に付着している生理活性組成物の成分として特に好適である。表5に示すように、ヒドロキシプロピルセルロースはプロピレングリコールに対する溶解性が高く、ヒドロキシプロピルセルロース添加前と比べて溶液の粘度が大きく向上した。また、ヒドロキシプロピルセルロースの分子量を高くすることにより、溶液の粘度が向上する傾向があった。これらの結果から、HPC−Hは少ない添加量(低濃度)であっても粘度向上効果が期待される。HPC−Hの添加量を少なくすることにより、上記溶液にさらに生理活性物質を添加して生理活性組成物とし、マイクロニードル上の生理活性物質の含量をより高めることができる。したがって、表5中でHPC−Hがプロピレングリコールに対する最も適当な増粘剤であると考えられる。
【0065】
また、PEG4000、コンドロイチン硫酸及びHAは、プロピレングリコールに対して完全には溶解しなかったものの、溶液又は混合液の粘度向上効果が認められた。
【0066】
表6に示すように、デキストランはグリセリンに対する溶解性が高く、デキストラン添加前と比べて溶液の粘度が大きく向上した。また、デキストランの分子量を大きくする、又はデキストランの濃度を高くすることにより、溶液の粘度が向上する傾向があった。クロスカルメロースナトリウム(Na)及びコンドロイチン硫酸は、グリセリンに対して完全には溶解しなかったものの、溶液又は混合液の粘度向上効果が認められた。
【0067】
表5及び表6で示される結果より、プロピレングリコール及びグリセリンのそれぞれに対して粘度向上のために好適な高分子化合物が見出された。
【0068】
非水系処方における生理活性組成物への粘度付与試験
(実施例5)
プロピレングリコール7.3質量部、水酸化ナトリウム0.7質量部及び塩化マグネシウム2.0質量部をスターラーにより撹拌混合した。さらに得られた混合液と酢酸オクトレオチドを1:1の質量比で混合し、生理活性組成物(50.0質量%酢酸オクトレオチド/3.5質量%水酸化ナトリウム/10.0質量%塩化マグネシウム/36.5質量%プロピレングリコール)を得た。なお、水酸化ナトリウムは酢酸オクトレオチドの酢酸部分と同じモル数分、添加された。
【0069】
上記生理活性組成物を、実施例2と同様のマイクロニードルの先端部に、塗布、乾燥し、顕微鏡観察によりマイクロニードル上に付着している生理活性組成物の高さHを測定した。評価結果を表7に示す。
【0070】
(比較例1)
塩化マグネシウムを加えず、代わりに同じ質量分のプロピレングリコールを加えたこと以外は実施例5と同様にして、生理活性組成物(50.0質量%酢酸オクトレオチド/3.5質量%水酸化ナトリウム/46.5質量%プロピレングリコール)を得た。上記生理活性組成物を実施例5と同様にマイクロニードル上に塗布し、マイクロニードル上に付着している生理活性組成物の高さHを測定した。評価結果を表7に示す。
【0071】
(実施例6)
グリセリン8.434質量部、水酸化ナトリウム0.233質量部及び塩化マグネシウム1.333質量部をスターラーにて撹拌混合した。さらに得られた混合液とLHRH(黄体形成ホルモン放出ホルモン酢酸塩)を3:1の質量比で混合し、生理活性組成物(25.0質量%LHRH/1.75質量%水酸化ナトリウム/10.0質量%塩化マグネシウム/63.25質量%グリセリン)を得た。なお、水酸化ナトリウムはLHRHの酢酸部分と同じモル数分、添加された。上記生理活性組成物を実施例5と同様にマイクロニードル上に塗布し、マイクロニードル上に付着している生理活性組成物の高さHを測定した。評価結果を表7に示す。
【0072】
(比較例2)
塩化マグネシウムを加えず、代わりに同じ質量分のグリセリンを加えたこと以外は実施例6と同様にして、生理活性組成物(25.0質量%LHRH/1.75質量%水酸化ナトリウム/73.25質量%グリセリン)を得た。上記生理活性組成物を実施例5と同様にマイクロニードル上に付着させ、マイクロニードル上に付着している生理活性組成物の高さHを測定した。評価結果を表7に示す。
【0073】
【表7】
【0074】
表7に示すとおり、実施例5及び実施例6では、生理活性組成物に塩化マグネシウムを添加することにより、マイクロニードル上に付着している生理活性組成物を薄く(高さHを小さく)制御することができた。生理活性組成物の粘度が向上し、液だれを改善することができたためである。
【0075】
マイクロニードル上に付着している生理活性組成物の薬物含量の安定性試験
(実施例7)
プロピレングリコール9.444質量部、塩化マグネシウム0.556質量部をスターラーにて撹拌混合した。さらに得られた混合液と酢酸オクトレオチドを9:1の質量比で混合し、生理活性組成物(10質量%酢酸オクトレオチド/5.0質量%塩化マグネシウム/85質量%プロピレングリコール)を得た。
【0076】
上記生理活性組成物を実施例2と同様のマイクロニードルの全面に10mg塗布し、50℃30分乾燥してマイクロニードルデバイスを得た。その後、得られたマイクロニードルデバイスを保存剤(ファーマキープKD;三菱ガス化学製)とともに梱包材中に封入し、封入されたマイクロニードルデバイスを60℃1週間の条件下で保存した。さらに、封入された別のマイクロニードルデバイスを、5℃1週間の条件下で保存した。
【0077】
保存後のマイクロニードルデバイス上の生理活性物質の含量を高速液体クロマトグラフィー(HPLC)により測定した。そして、5℃で保存したマイクロニードル上の生理活性物質の含量に対する、60℃で保存したマイクロニードル上の生理活性物質の残存率を百分率として算出した。算出結果を表8に示す。
【0078】
(比較例3)
塩化マグネシウムを加えず、代わりに同じ質量分のプロピレングリコールを加えたこと以外は実施例7と同様にして、生理活性組成物(10質量%酢酸オクトレオチド/90質量%プロピレングリコール)を得た。上記生理活性組成物を用いて実施例7と同様に、マイクロニードルデバイスを得た。得られたマイクロニードルデバイスを実施例7と同様に保存し、生理活性物質の残存率を算出した。算出結果を表8に示す。
【0079】
(実施例8)
薬物の種類をLHRHとした以外は実施例7と同様にして、マイクロニードルデバイスを得、生理活性物質の残存率を算出した。算出結果を表8に示す。
【0080】
(比較例4)
薬物の種類をLHRHとした以外は比較例3と同様にして、マイクロニードルデバイスを得、生理活性物質の残存率を算出した。算出結果を表8に示す。
【0081】
【表8】
【0082】
表8に示すとおり、実施例7及び実施例8では、生理活性組成物に塩化マグネシウムを添加することにより、生理活性物質の残存率を高く維持することができた。
【0083】
リキセナチドのへアレスラット生体内吸収試験
(実施例9)
チューブに、リキセナチドとプロピレングリコールを、50:50の質量比となるように加え、ミキサーで混合し、得られた混合物を生理活性組成物とした。生理活性組成物を、厚さ50μmのマスク版を用いて、マイクロニードルに塗布した。塗布された生理活性物質の含量は、12.2μg/patch/headであった。コーティングされたマイクロニードルアレイを有する0.4Jのアプリケータを用いて、生理活性物質をヘアレスラットに投与した(繰り返し試験数3回)。
【0084】
投与後10分、30分、60分、120分、240分、480分、720分が経過したときに、頸静脈より300μLの採血を行った。Exendin−4 EIA Kitを用いて、血中のリキセナチド濃度を測定した。測定結果を
図5に示す。また、
図5のグラフから得られたAUC値(area under the blood concentration−time curve)及びBA値(bioavailability)を表9に示す。なお、AUC値とは
図5のグラフにおいて、投与してから0分後から720分後の範囲の血中濃度−時間曲線下面積を指す。BA値とは、皮下投与に対する相対的なバイオアベイラビリティー値を指す。
【0085】
(比較例5)
チューブに、リキセナチドと生理食塩水を、50:50の質量比となるように加え、ミキサーで混合し、得られた混合物を生理活性組成物とした。生理活性組成物を15.1μg/300μL/headの条件で、ヘアレスラットに皮下投与した。その後、実施例9と同様に血中のリキセナチド濃度を測定した。測定結果を
図5に示す。また、AUC値及びBA値を表9に示す。
【0086】
【表9】
【0087】
β−インターフェロンのヘアレスラット生体内吸収試験
(実施例10)
チューブに、β−インターフェロンとグリセリンを、30:70の質量比となるように加え、ミキサーで混合し、得られた混合物を生理活性組成物とした。生理活性組成物を、厚さ100μmのマスク版を用いて、マイクロニードルに塗布した。塗布された生理活性物質の含量は、10.3μg/patch/headであった。コーティングされたマイクロニードルアレイを有する0.4Jのアプリケータを用いて、生理活性物質をヘアレスラットに投与した(繰り返し試験数3回)。
【0088】
投与後30分、60分、90分、180分、300分、420分、1440分が経過したときに、頸静脈より300μLの採血を行った。Exendin−4 EIA Kitを用いて、血中のβ−インターフェロン濃度を測定した。測定結果を
図6に示す。
【0089】
(比較例6)
チューブに、β−インターフェロンと生理食塩水を、50:50の質量比となるように加え、ミキサーで混合し、得られた混合物を生理活性組成物とした。生理活性組成物を10μg/300μL/headの条件で、ヘアレスラットに皮下投与した(繰り返し試験数3回)。その後、実施例10と同様に血中のβ−インターフェロン濃度を測定した。測定結果を
図6に示す。