【実施例】
【0058】
(実施例1:糖質残基の修飾によるポリマーVWF結合体の調製)
糖質残基(
図1B)を介してポリマーVWF結合体を調製するために、rVWF(最終濃度:500μg/ml)の溶液を20mM酢酸ナトリウム緩衝液(pH6.0)で調製し、NaIO
4を糖質残基の酸化のために添加した(5mM最終濃度)。酸化を4℃で20分間行い、亜硫酸水素ナトリウム(5mM最終濃度)を添加して反応を停止させた。その後、mPEGヒドラジド(鎖長:3kD)を添加し(10mM最終濃度)、さらにVWFのPEG付加を室温で1時間行った。次に、PEG付加VWFをサイズ排除クロマトグラフィーによって精製した。反応混合物をセファクリルS−300HR(Amersham)充填クロマトグラフィーカラム(寸法26mm×840mm)に加え、PEG付加VWFを20mM HEPES緩衝液(150mM NaCl、pH7.4、5%トレハロース含有)を用いて、試薬から分離した。280ナノメートルVWF抗原量およびODの計測によって示されるように、修飾VWFをボイド容量で溶出させた。VWF含有分画を、さらに精製するために、EMD TMAE 650M(Merck)充填陰イオン交換カラムに直接載せた(寸法:10mm×108mm)。次に、PEG付加VWFを20mM HEPES緩衝液(5%トレハロースおよび1000mM NaCl含有)で溶出させた。
【0059】
(実施例2:mPEGスクシンイミジルスクシネートによるVWFのリジン残基のPEG付加)
リジン残基(
図1A)を介したVWFのPEG付加のために、rVWF(最終濃度:500μg/ml)溶液を20mM HEPES緩衝液(150mM NaCl、pH7.4、5%ショ糖含有)で調製し、mPEGスクシンイミジルスクシネート(鎖長:5kD)を添加した(10mM最終濃度)。VWFを室温で1時間、PEG付加した。その後、PEG付加VWFをサイズ排除クロマトグラフィーによって精製した。反応混合物をセファクリルS−300HR(Amersham)充填クロマトグラフィーカラムに載せ、PEG付加VWFを、PEG付加反応に使用されるのと同じ緩衝系によって分離した。VWF抗原量およびOD280nmの計測によって示されるように、修飾VWFをボイド容量で溶出させた。VWF含有分画を、さらに精製するために、EMD TMAE650M(Merck)充填陰イオン交換カラムに直接載せた(寸法:26mm×840mm)。次に、PEG付加VWFを20mM HEPES緩衝液(5%ショ糖および1000mM NaCl含有)で溶出させた。
【0060】
(実施例3:mPEGp−ニトロフェニルカーボネートによるVWFのリジン残基のPEG付加)
mPEG p−ニトロフェニルカーボネートによるVWFのPEG付加のために、血漿由来VWF(最終濃度:500μg/ml)を20mM HEPES緩衝液(150mM NaCl、pH7.6、5%ショ糖含有)で調製し、mPEG p−ニトロフェニルカーボネート(鎖長:2kD)を添加した(最終濃度:10mM)。VWFを室温で2時間、PEG付加した。その後、PEG付加VWFをサイズ排除クロマトグラフィーによって精製した。反応混合物をセファクリルS−300HR(Amersham)充填クロマトグラフィーカラムに載せ、PEG付加VWFを、PEG付加反応に使用されるのと同じ緩衝系によって分離した。VWF抗原量およびOD280nmの計測によって示されるように、VWFをボイド容量で溶出させた。
【0061】
(実施例4:mPEGマレイミドによるVWFのスルフヒドリル残基のPEG付加)
mPEGマレイミドによる遊離SH残基を介したVWFのPEG付加のために、rVWF溶液(最終濃度:500μg/m)を20mM HEPES緩衝液(150mM NaCl、pH7.6、4%マンノースおよび1%トレハロース含有)で調製し、mPEG マレイミド(鎖長:10kD)を添加した(最終濃度:10mM)。VWFを室温で2時間、PEG付加した。その後、PEG付加VWFをサイズ排除クロマトグラフィーによって精製した。反応混合物をセファクリルS−300HR(Amersham)充填クロマトグラフィーカラムに載せ、PEG付加VWFを、PEG付加反応に使用されるのと同じ緩衝系によって分離した。VWF抗原量およびOD280nmの計測によって示されるように、修飾VWFをボイド容量で溶出させた。
【0062】
(実施例5:デキストランとVWFとの結合)
6mg/mlのデキストラン(MW40kD)溶液を20mM酢酸ナトリウム緩衝液(pH6.0)で調製し、NaIO
4を添加した(最終濃度10mM)を添加して遊離アルデヒド基を生成した。酸化を暗所で4℃、1時間実施し、亜硫酸水素ナトリウム(最終濃度5mM)を添加して反応を停止させた。活性化デキストランを0.15MNaCl(PBS緩衝液)含有0.1Mリン酸ナトリウム緩衝液(pH7.2)で透析した。次に、この活性化デキストラン溶液2.4mlを10mlのrVWF溶液(濃度:PBS緩衝液中0.6mg/ml)に添加した。この混合物に、5mlのシクラミン酸ナトリウム溶液(PBS緩衝液中64mg/ml)を添加し、暗所で室温、一晩にわたってインキュベートした。次に、3mlの1.0MTRIS−HCl溶液(pH7.2)を添加して残留アルデヒド基をブロックし、室温で1時間インキュベートし、さらに20mM HEPES緩衝液(pH7.4、5%ショ糖含有)でインキュベートした。次に、rVWF誘導体に結合したデキストランをさらに、セファクリルS−300HR(緩衝液:20mM HEPES、5%ショ糖、pH7.4)を充填したクロマトグラフィーカラム(寸法:50mm×860mm)に混合物を載せることで、サイズ排除クロマトグラフィーにより精製した。rVWF誘導体を、VWF抗原量およびOD280nmの計測によって示されるように、VWFをボイド容量で溶出させた。これらの分画を回収し、100kDの再生セルロース膜(Millipore)を用いて、限界濾過法によって濃縮した。
【0063】
(実施例6:VWDマウスにおける薬物動態)
Denis et al.(PNAS 95:9524−9529,1998)に詳述されているVWF欠乏マウスを、重度III型VWD類似ヒトVWDモデルとして使用した。マウス5匹からなる群に対して、PEG−rVWF(鎖長3kD、実施例1によるrVWFのPEG付加)または対照としてのネイティブrVWFを、PEG付加後、検出可能なVWF(ELISA)に基づいて、40単位(U)VWF:Ag/kg体重の用量で、経尾静脈ボーラス注入法により投与した。PEG−rVWF群を、注射後5分、30分、1時間、2時間、6時間、10時間、および24時間(対照群の場合、5分、15分、30分、1時間、2時間、4時間、6時間、10時間、および24時間)麻酔し、クエン酸血漿を心臓穿刺から調製した。血漿でVWF抗原量を追跡した。この実験の結果を
図2にまとめる。ネイティブrVWFを、文献(Lenting et al.,J.Biol.Chem.279:12102−12109,2004)に記載されているように、典型的な二相法で血行から除去することで、600分と1440分(10時間および24時間に等しい)との間の検出限界以下に落とす。対照的に、注射時の0から注射後10時間の約0.6U/ml血漿までの初期増加後のPEG付加rVWFは、依然として注射後24時間であっても約0.4U/mlの実質的に高いレベルに存在し、10時間ないし24時間の範囲では平坦な勾配となったことから、PEG付加rVWFがより長期にわたって持続することが示される。経時的な計測可能VWFの漸増は、VWFによって結合体を形成したポリマーPEGの結合の可逆性を示すもので、ポリマーからの放出後、計測のためにアクセス可能になる。このモデルでのPEG−VWFの長い循環時間は、この調製物がVWDの予防療法に使用し得ることを示す。
【0064】
(実施例7:FVIII−K.O.マウスにおける薬物動態)
Bi et al.(Nat.Genet.10:119−121,1995)に詳しく記載されているFVIII欠乏マウスを、重度ヒト血友病Aのモデルとして使用した。マウス5匹からなる群に対して、各々をrFVIIIと事前に混合して3UFVIII/mlおよび3UVWF:Ag/mlを達成するためにPEG−rVWF(鎖長3kD、実施例1によるrVWFのPEG付加)またはネイティブrVWFのいずれかによる経尾静脈ボーラス注入法による投与(13ml/kg)を行った。麻酔後、生成物を注射してから5分および6時間後に、心臓穿刺によってクエン酸血漿を各々の群から調製した。対照群に対しては緩衝液を注射し、注射5分後に出血させた。VWF抗原量を血漿サンプルで計測した。この実験の結果を
図3にまとめた。曲線は、VWFのベースレベルの近くまで落ち込んだ、FVIII欠乏マウスに存在するrVWFの典型的除去を示し、その一方でPEG付加rVWFの使用後、レベルが6時間の観察期間中に増加したことを示す。このことは再び、ポリマーPEGの結合の可逆性がVWFと結合体を形成したことを示し、ポリマーからの放出の後、計測のためにアクセス可能になり、適用後360分(6時間)経過しても増加を持続することを示している。
【0065】
(実施例8:VWDマウスでのFVIII増加)
Denis et al.(PNAS 95:9524−9529,1998)によって詳述されるフォンビルブラント欠乏マウスを、重度III型VWD類似ヒトVWDモデルとして使用した。4〜5匹のマウスからなる群に対して、PEG−rVWF(鎖長5kD、実施例2によるrVWFのPEG付加)含有20mM HEPES(150mM NaCl、5%ショ糖、pH7.4)またはネイティブrVWFを、尾静脈を経る静脈内注射した。対照群を緩衝液で処置した。(ELISA換算PEG−rVWF−用量18UVWF:Ag/kg、2700μg/kg、rVWFネイティブ用量:2400μg/kg)。
【0066】
各マウスに対して、10ml/kg体積用量を投与した。PEG−rVWF投与後の時点(5分、1時間、3時間、6時間、10時間、24時間、および48時間)またはネイティブrVWF投与後の時点(5分、15分、30分、1時間、2時間、6時間、24時間、および32時間)の注射の後の時点で、マウス4〜5匹からなる群を麻酔し、クエン酸血漿を心臓穿刺から調製し、FVIII活性(ハウスアッセイにおける発色)のレベルを血漿で追跡した。対照群を注射15分後に出血させた。この実験の結果を
図4にまとめた。
【0067】
マウスにおける内因性FVIIIのレベルは、rVWF注入の結果として増加する。PEG付加rVWF適用後の血中濃度時間曲線下面積(AUC)は、rVWF使用後のたったの3.3U*h/mlと比較して、8.0U*h/mlであった。これは、PEG付加rVWFのための実質的により長い循環時間を示す。結果は、PEG付加VWFがVWDにおける二次FVIII欠乏の予防療法に使用し得ることを示す。
【0068】
(実施例9:FVIII−K.O.マウスでのrFVIIIおよびVWFの回収)
Bi et al.(Nat Genet.10:119−121,1995)に詳しく記載されているFVIII欠乏マウスを、重度ヒト血友病Aのモデルとして使用した。マウス5匹からなる群に対して、各々をrFVIIIと事前に混合して3UFVIII/mlを達成するためにPEG−rVWF(HZ−PEG、3K、糖質を介して結合)またはネイティブrVWFのいずれかによる経尾静脈ボーラス注入法による投与(13ml/kg)を行った。麻酔後、注射してから5分および6時間後に、心臓穿刺によってクエン酸血漿を各々の群から調製した。FVIII活性およびVWF抗原回収量を血漿サンプルで計測した。この実験の結果を
図5および
図6にまとめた。
【0069】
無処置のrVWFと比較して、両調製物のPEG付加rVWFは、同時注射されたrFVIllのより高度な回収をもたらした。経時的にPEG付加rVWFに対するVWFレベルが上昇し、その一方で正常rVWFが360分以内に完全に除去された。結果は、FVIIIと複合体を形成したPEG付加VWFを、FVIII循環時間の増大という利点をもって血友病Aの急性処置に用いることができることを示している。
【0070】
(実施例10:FVIII×VWFダブルノックアウトマウスにおけるFVIII半減期の増大)
FVIII×VWFダブルノックアウトマウスは、FVIII欠乏およびVWF欠乏マウスの交雑育種によって得られた。それらのマウスはVWF欠乏と同様にFVIII欠乏を患う。このように、動物モデルにおけるFVIII−VWF相互作用を研究するための理想的なモデルを提供する。
【0071】
FVIII×VWFダブルノックアウトマウス(FVIII欠乏マウスをVWF欠乏マウスと交雑育種した)5匹からなる群に対して、PEG−rVWF(鎖長5kD、rVWFのPEG付加を、mPEGスクシンイミジルスクシネートのリジン残基の修飾によって、実施例2により行った)含有20mM HEPES(150mM NaCl、5%ショ糖、pH7.4(またはネイティブrVWFSS−PEGまたはネイティブrVWF(各々をrFVIIIと事前に混ぜ合わせ、9UFVIII/mlおよび9UVWF抗原/mlおよび0.67UVWF:RCo/mlを達成)を、経尾静脈によりボーラス注入(11ml/kg)を行った。公開(Ingerslev(Scand.J.Clin).Invest.47:143−149(1987))されているようにして、VWF−抗原値をELISA法で計測した。一次止血のプロセスにおけるVWFの血小板結着性を反映している機能的なVWF:RCo活性をMacfarlane et al.(Thromb.Diath.Haemorrh.34:306−308,1975)により、計測した。注射後5分、3時間、6時間、10時間、および24時間、麻酔後の心臓穿刺によるクエン酸血漿を、それぞれの群から調製した。FVIII活性およびVWF抗原量を、血漿サンプルで計測した。
【0072】
FVIIIおよびVWFの半減期を、薬物動態学ライブラリーの1つの区画をモデルとして使用するMicroMath科学者プログラム(Micromath Research,Saint Luis,MO,US)を用いて算出した。rVWFまたはPEG付加rVWFのいずれかと同時注入されたFVIIIの半減期は、1.88時間から2.58時間へと増大し、血中濃度時間曲線下面積(AUC)は4.3から7.3U*h/mlへと増大した。VWFの半減期は、3.1から10.4へと増大し、血中濃度時間曲線下面積は、5.7から22.8に増やされる。結果を
図7および
図8にまとめた。データによれば、PEG−VWFを、VWDおよびFVIIIの循環時間を長くするという利点とともに、血友病AおよびVWDの急性処置および予防処置のために使用し得ることが示された。
【0073】
(実施例11:マウス血漿におけるPEG付加の可逆性の実証)
PEG付加の可逆性を、VWF欠乏血漿による試験管内実験によって示した。クエン酸血漿を、4℃、15分間、1100xgの遠心によって、VWF欠乏マウスから得た(Denis et al.PNAS 95:9524−9529,1998)。4容量のマウス血漿を、実施例1(糖質を経たPEGカップリング)または実施例2(リジン残基を経たPEGカップリング)によって調製し、48時間にわたり37℃に保ち、1容量のPEG付加rVWFと混ぜ合わせた。非PEG付加rVWFが、両方の実験における対照として用いた。副試料を混合直後、ならびに1時間、5.5時間、24時間、および48時間後に回収し、VWF抗原量を、サンドイッチELISAシステムを用いて凍結試料からアッセイした。ポリクローナル抗VWF抗体(DAKO)を用いて、96穴ELISAプレートを被覆し、ヤギ−抗ウサギ−lgG−HRP−結合体(AXELL)を結合VWF因子検出のためにアッセイした。経時的にVWF抗原の増加性量を計測し、生体外血漿サンプルにおける場合も含めVWFに対するポリエチレングリコールの結合の可逆性が示された(
図9)。
【0074】
(実施例12:PEG付加VWF調製試料のFVIII結合能の側定)
異なるPEG付加rVWF調製試料のFVIII結合能を、BIACORE(登録商標)3000装置(BIACORE、Uppsala、Sweden)を使用して表面プラズモン共鳴実験によって比較した(Karlsson et Falt,J.Immunol.Methods 200:121−33,1997)。通常、リガンドをセンサチップに固定し、該リガンドに対する他の構成要素の結合を表面プラズモン共鳴によって測定する。この技術の使用によって、チップ表面の近くの溶液の屈折率の変化が計測される。チップの表面の結合した構成要素の濃度変化を信号として検出し、それを任意の共鳴音単位(RU)で表す。固定リガンドに結合したタンパク質量と観察されるRUとのあいだに、比例関係が存在する。PEG付加VWF調製試料を、7000〜9000RUおよび25℃で、NHS/EDC化学を用いて、BIACORE(商標)センサチップのデキストラン表面に25℃で固定した。150mM NaCl、3mM EDTA、および0.005%界面活性剤P20(HBS緩衝液、BIACORE)を含む10mM HEPES緩衝液(pH7.4)を流速15μl/分で使用した。
図10に例示されるように、市販のFVIII産物(ADVATE、Baxter AG、Vienna、Austria)の異なる量の結合が計測された。この図は、mPEGマレイミド5000で修飾され、かつ実施例4によって調製されるPEG付加rVWF調製試料のFVIII結合能を示す。異なるPEG付加rVWF調製試料のBIACORE実験の結果を表1にまとめている。この表では、PEG付加rVWF調製試料の異なるFVIII結合能は、10〜20IUFVIII/ml(色素アッセイ)の範囲にある参照の最大レベルでの非PEG付加参照調製試料のRU値の割合として与えられる。
【0075】
【表1】
(実施例13:ポリマー結合後のVWFの質量増加)
rVWFを、種々の濃度(1mM、2.5mM、5mM、7.5mM、および10mM)でmPEGスクシンイミジルスクシネート(鎖長:5kD)を使用して、実施例2により、PEG付加した。PEG付加VWF種を2つの異なる方法で分析した。すなわち、SDSポリアクリルアミドゲル電気泳動およびVWFマルチマー分析である。SDSゲル電気泳動を、3〜8%勾配ゲルを使用して還元条件下で行った(Tris Acetat Gel/Bio−Rad)。VWFマルチマー分析を、1.6%のアガロースゲルを使用してRuggeri et Zimmerman(Blood 57:1140−43,1981)により行った。VWFマルチマーの明視化を、Aihara et al.(Thromb.Haemost.55:263−67,1986)によって実施した。
【0076】
SDSゲル電気泳動(
図11)は、成熟VWF(下部のバンド)とプロVWF(上層ブライトバンド)とからなるrVWF調製試料を示すとともに、異なる試薬濃度の使用によってPEG付加後の分子量が増加することを示す。PEG付加の後、ヒト血清アルブミン(HSA)調製試料(PEG付加は、実施例2によって実施)からの分子量の推移は、参照調製試料として示される。HSAの分子量が66,000のダルトンから190,000のダルトンまでシフトしていることで、PEG付加手法が有効であることが示されることが明らかになった。
【0077】
図12は、異なる試薬濃度でのPEG付加前後におけるrVWFの多量体パターンを示す。試薬濃度の上昇に伴って異なるマルチマーの分子量がより高いほうへ移行および広幅化することが明らかに示される。
【0078】
(実施例14:mPEGスクシンイミジルグルタレートによるVWFのリジン残基のPEG付加)
リジン残基(
図1A)を介したVWFのPEG付加のために、rVWF(最終濃度:500μg/ml)を、20mM HEPES緩衝液(150mM NaCl、pH7.4、5%スクロース含有)で調製し、mPEGスクシンイミジルグルタレート(鎖長:5kD)を添加した(最終濃度:200mgPEGスクシンイミジルグルタレート/mgタンパク質)。つぎに、pH値を0.1MNaOHで7.4に合わせた。VWFを室温で1時間、PEG付加し、実施例2の記載に従って精製した。
【0079】
(実施例15:FVIII−K.O.マウスでのFVIII半減期の増大)
Bi et al.(Nat.Genet.10:119−121,1995)に詳しく記載されているFVIII欠乏マウスを、重度ヒト血友病Aのモデルとして使用した。マウス5匹からなる群に対して、各々を組換え型FVIIIと事前に混合して10UFVIII/mlおよび10UVWF/mlを達成するために、実施例2により調製したPEG−rVWF(SS−PEG、5K)またはネイティブrVWFのいずれかによる経尾静脈ボーラス注入法による投与(10ml/kg)を行った。麻酔後、生成物を注射してから5分、3時間、9時間、および24時間後に、心臓穿刺によるクエン酸血漿を調製した。FVIII活性およびVWF抗原回収量を血漿サンプルで計測した。この実験の結果を
図13および
図14にまとめた。
【0080】
FVIIIのための半減期は1.8時間(ネイティブrVWF存在下)から3.9時間(PEG−rVWFと併用)へと増大し、血中濃度時間曲線下面積(AUC)が4.1から7.8U*hへと増大した。VWF半減期は3.2時間から13.6時間へと増大し、VWFのAUCは7.7から32.1U*hへとほぼ4倍になった。
【0081】
(実施例16:異なる方法によるSS−PEG付加VWF調製試料のFVIII結合能の測定)
異なるPEG付加rVWF調製試料のFVIII結合能を、ELISAと色素アッセイシステム(ECA)とを組み合わせ、Bendetowicz et al.(Blood 92:529−538,1998)の方法の変法によって計測した。マイクロタイタープレートを、200μlの2.6μg/mL抗vWFポリクローナル抗体含有50mmol/lNa
2CO
3/NaHCO
3(pH9.6)で覆った。プレートを、PBS−Tween緩衝液(100mM Na
2HPO
4/KH
2PO
4、150mM NaCl、pH7.6と0.05%Tween20)で、各ステップの後に洗った。プレートを、0.1%粉ミルク/2mMベンズアミジン含有PBS−Tweenで37℃、1時間にわたりブロックした。VWFの増加量を37℃、25分間にわたり、0.2U/mlrFVIII(ADVATE,Baxter AG,Vienna,Austria)とともにプレインキュベートし、これらの混合物の100μlをプレートに添加した。インキュベーション後、捕獲されたVWFに結合したFVIIIの量を、FVIII色素アッセイ(Technoclone,Vienna,Austria)で計測した。FVIII結合能を、1分内で405nm(dA405)で計測される吸光度の変化として表した。
図15は、2つのPEG付加VWF調製試料(両方ともmPEG−スクシンイミジルスクシネート(SS)で修飾)のVWF用量依存性FVIII結合を示す。修飾VWF調製試料のFVIII結合能は、非修飾開始VWF調製試料の%として算出され、PEG−SS−rVWF−1では20%およびPEG−SS−rVWF−2では50%であると算出された。
【0082】
図16は、実施例12に記載の表面プラズモン共鳴方法で計測される2つのPEG−SS−rVWF調製試料のFVIII結合能を示す。算出結合能は、それぞれ25および45%であった。
【0083】
SDS−PAGEで計測されるPEG−SS結合後のrVWF分子の分子質量における適当な増加を、
図17に示す。
【0084】
(実施例17:分枝PEGマレイミドによるVWFにおけるスルフヒドリル基のPEG付加)
分枝PEGマレイミドによる遊離SH残基を経たVWFのPEG付加のために組換え型VWF(最終濃度:500μg/ml)の溶液を、20mM HEPES緩衝液(150mM NaCl、pH7.6、3%トレハロース含有)によって調製する。次に、NOF社(NOF Europe,Grobbendonk,Belgium)によって供給される分岐mPEGマレイミド(鎖長:20kD)を添加した(最終濃度10mM)。VWFを静かに撹拌しながら室温で2時間にわたり、PEG付加した。その後、PEG付加rVWFを、再生セルロース(Millipore)からなる100kD膜を使用して、限界濾過法/ダイアフィルトレーション(UF/DF)によって、試薬から分離する。
【0085】
(実施例18:mPEGヒドラジド/EDCによるVWFのカルボキシル基のPEG付加)
実施例23により、フリン成熟rVWFを調製および精製した。調製試料を50mMリン酸緩衝液(pH6.2)に対して透析し、400μg/mlの濃度まで希釈した。次に、鎖長5kDのmPEGヒドラジド(mPEG Hz)を添加した(濃度:60mg mPEG Hz/mgVWF)。500mM 1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)の新しく調製された溶液30μlを、1mlのVWF含有混合物の1mlに添加し、5時間にわたって静かに振とうさせながら室温でインキュベートした。100kD膜(再生セルロース/Millipore)を用いて、20mM HEPES緩衝液(150mM NaCl、pH7.4)に対して、UF/DFによりPEG付加rVWFから試薬を分離する。
【0086】
(実施例19:ポリシアル酸によるVWFのリジン残基の修飾)
ポリシアル酸(コロミン酸、CA)によるリジン残基の修飾を、Fernandes et Gregoriadis(Biochim.Biophys.Acta 1341:26−34,1997)およびJennings et Lugowski(J.Immunol.127:1011−1018,1981)に記載のようにして、実施した。0.1MNaIO
4含有コロミン酸(濃度:20mg/ml)溶液を暗所、室温で15分間撹拌させて、CAを酸化した。活性化CA溶液1mlあたり2mlのエチレングリコールを添加し、暗所、室温でさらに30分間撹拌した。溶液を一晩にわたって暗所で0.05Mリン酸ナトリウム緩衝液(pH7.2)に対して透析した。その後、この溶液のアリコートをrVWF溶液(400μg/ml)含有0.05Mリン酸ナトリウムに添加し、1mgVWFあたり50mg活性化CAの最終濃度を得た。この混合物を暗所、室温で30分間撹拌した。NaCNBH
3を添加し(1mg/mgrVWF)、混合物を暗所、室温で18時間、静かに撹拌しながらインキュベートした。1MTRIS水溶液(pH7.2)を添加し(50μl/mgNaCNBH
3)、1時間にわたって撹拌することで反応を停止させた。遊離試薬を、100kD膜(再生セルロース/Millipore)を使用して、UF/DFによりrVWF−ポリシアル酸結合体から分離した。
【0087】
この調製試料のFVIII結合能を実施例16の記載通りに測定した。
【0088】
ポリシアル酸によるrVWFの結合を、還元条件の下で等電点電気泳動(IEF)によって検出される等電点(PI)の移動によって示した。
図20は、この実施例によりポリシアル酸による結合の前後におけるVWF調製試料の比較を示す。製造元(Amersham Bioscience)の指示により、Ampholine PAGplateシステム(pH3.5ないし9.5)を用いた。ポリシアル酸との結合による酸性基の導入によって、修飾rVWFの1つの酸性バンドが生ずる。
【0089】
実施例16に記載のように、54%のFVIII結合能がECA試験を用いて側定された。70%のFVIII結合能を表面プラズモン共鳴方法(実施例12)を用いて側定した。
【0090】
(実施例20:剪断応力条件下のPEG付加)
Sakariassen et al.(J.Lab.Clin.Med.102:522−535,1983)に記載のように、灌流チェンバーを作製し、剪断応力条件下でのrVWFのPEG付加に使用した。rVWF(500μg/ml)含有20mM HEPES(pH7.4、3%トレハロース含有)の溶液を調製した。次に、mPEGスクシンイミジルスクシネート(最終濃度:5mM)を添加し、0.1MNaOHを添加してpHを7.4に調製し、直ちに灌流システムに充填した。次に、PEG付加はSakariassen et al.(J.Lab.Clin.Med.102:522−535,1983に記載のように、灌流条件下で、蠕動ポンプを使用することで、2500秒
−1の剪断速度で、室温で行った。
【0091】
(実施例21:pdVWFの調製)
dVWFの調製を、改良を加えたThorell et Blomback(Thromb.Res.35:431−450,1984)により実施した。pdVWFの調製のために、1.5kgのクリオプレシピテートを20ないし30℃で6リットルの水に溶解した。1時間撹拌させた後に、フィブロネクチン沈殿物を遠心によって除去した。上清1リットルあたり8gNaClを添加し、溶液を室温まで温め、ウイルスを失活させるためにSDストック試薬(1%Tween80+0.18%アセチルトリエチルシトレート最終濃度)を添加した。
【0092】
溶液を、0.2MNaCl、0.02M酢酸ナトリウム(pH6.5)(洗浄用緩衝液)で事前に平衡化されたEMD−TMAEフラクトゲル650Mカラム(XK50/180)上で精製した。洗浄用緩衝液20カラム容量で洗浄した後、VWFを0.5MNaCl、0.02MNaクエン酸塩(pH6.9)で溶出させた。VWFを沈降させるために、グリシン(1M最終濃度)およびNaCl(3M最終濃度)を添加した。沈殿物を緩衝液に溶解し、最終濃度に対して0.3MCaCl
2、0.15MNaCl、20mM HEPES(pH7.4)で平衡化したカラムをセファクリルS−400HR(Amersham)上に載せた。
【0093】
【表2】
(実施例22:PEGSSによるpdVWFのリジン残基のPEG付加)
PdVWFを実施例21により調製し、20mM HEPES緩衝液(pH7.4)(150mM NaClおよび3%ショ糖を含む)で希釈し、最終濃度を400μg/mlとする。次に、mPEGスクシイミジルスクシネート(鎖長:5kD)を添加し(濃度:10mgPEGSS5000/mg VWF)、pdVWFを室温で、1時間にわたりPEG付加した。次に、再生セルロース(Millipore)からなる100kD膜を使用して、UF/DFによって、PEG付加rVWFから試薬を分離した。
【0094】
(実施例23:フリン成熟rVWFのフリン成熟および精製)
rFVIII発酵および精製プロセス由来の抗FVIII抗体カラムのフロースルー分画の143kgを、Schlokat et al.(Biotechnol.Appl.Biochem.24:257−267,1996)に記載のように、プロペプチド除去のためにフリンで処理し、滅菌濾過した。このプロセスは、初期の研究に基づいた(Fischer et al.,FEBS Lett.375:259−262,1995;Fischer et al.PCT/AT98/00034[WO98/38219],1−33,1998,18−2−1998 and Kaersgaard et Barington,J.Chromatogr.B 715:357−367,1998)。
【0095】
水で4倍希釈して16mS/cmにした後、633kgの希釈溶液を、10mM Tris、100mM NaAc、86mM NaCl、pH6.5、mS/cm(平衡緩衝液)により平衡化させたXK50/15EMD−TMAEフラクトゲル650Mカラム(300mlゲル;Merck;#K14540281)に載せた。カラムを平衡化緩衝液で洗浄し、100mM NaAc、250mM NaCl、100mMグリシン、3mM CaCl
2で溶出した。
【0096】
4506gのTMAE溶出液をSartoclean GF(0.8及び0.65μ)およびSartobran P(0.45及び0.2μ)上で濾過し、1.5倍希釈して29mS/cmとし、Mustang Qフィルター(#IH18770932)を介してポンピングする。22+/−2℃で60分間にわたりSD処置し、かつ水で2倍に希釈して16mS/cmにした後、溶液を、TMAEステップの平衡用緩衝液で平衡化させたAmicon 70/29 UNOsphere Sカラム(600mlゲル;Bio−Rad,#78960C)に載せた。カラムを平衡用緩衝液で洗浄し、そしてTMAEステップの溶離緩衝液で溶出させた。
【0097】
3223gのUNO−S溶出液を、再生セルロースからなる30kDaの0.1m
2膜(Hydrosart #01080217、Sartorius)を使用して限界濾過法により15倍濃縮した。コンセントレートの201gを、100mM NaAc、500mM NaCl、pH7.0(1698mlのゲル;GE Healthcare #17−0489−01)で平衡化させたXK50/86.5Superose 6 Prep Gradeカラム上で、サイズ排除クロマトグラフィーにより最終的に精製された。
【0098】
【表3】
(実施例24:フリン成熟rVWFのPEG付加)
フリン成熟VWFを実施例23により調製し、20mM HEPES緩衝液(pH7.4)(150mM NaClおよび3%ショ糖を含有)に対して透析した。次に、溶液を20mM HEPES緩衝液(pH7.4)(150mM NaClおよび3%ショ糖を含有)により最終濃度を300μg/mlに希釈した。続いて、mPEGスクシミジルスクシネート(鎖長:5kD)を添加し(濃度:25mgPEGSS5000/mgVWF)、フリン成熟VWFを室温で1時間にわたってPEG付加した。次に、再生セルロース(Millipore)からなる100kD膜を使用して、UF/DFによって、PEG付加VWFから試薬を分離した。
【0099】
(実施例25:フリン成熟rVWFの生体外特徴付け)
実施例12および
図15に記載のように、フリン成熟rVWFのFVIII結合能を表面プラズモン共鳴技術およびECAによって測定した。結果を、実施例21によって調製されるアルブミンを含まない血漿由来VWF調製試料と比較した。
【0100】
図18および
図19に示されるように、フリン成熟rVWFのFVIII結合能は血漿由来参照調製試料と同等だった。
【0101】
(実施例26:グルタルアルデヒドで架橋させることによるポリシアル酸とVWFとの結合)
グルタルアルデヒドを架橋試薬(Migneault et al.,Biotechniques 37:790−796,2004)として用いたrVWFとポリシアル酸(コロミン酸)との結合のために、コロミン酸(濃度:20mg/ml)含有20mM HEPES緩衝液(150mM NaCl、pH7.4)の溶液4mlを調製し、0.1MNaOHを添加してpHを7.4に合わせた。グルタルアルデヒドを添加して最終濃度を0.01%にした。続いて、rVWF(400μg/ml)含有20mM HEPES緩衝液(150mM NaCl、pH7.4)の溶液1mlを100μlのアリコートに添加し、混合物を静かに振とうさせながら1時間インキュベートした。次に、混合物を透析し、トレハロースを添加し(最終濃度:3%)、rVWFポリシアル酸結合体を限界濾過法によって濃縮した。
【0102】
(実施例27:VWF欠乏マウスでのVWF半減期の増大)
Denis et al.(PNAS 95:9524−9529,1998)により記載されたVWF欠乏マウスを、ヒトVWDの動物モデルとして使用した。マウス5匹からなる群に対して、100UVWF:Ag/kgを達成するために、実施例19により調製したrVWFポリシアル酸結合体またはネイティブrVWFのいずれかをボーラス注入法(10ml/kg)によって経尾静脈により投与した。麻酔後の心臓穿刺によるクエン酸血漿は、注射後5分、1、3、6、9、および21時間で、それぞれの群から調製した。VWF抗原回収および内因性マウスFVIII活性レベルを血漿サンプルで計測した。この実験の結果は、
図21および
図22にまとめられている。
【0103】
VWFの半減期を、薬物動態学ライブラリーの1つの区画をモデルとして使用するMicroMath科学者プログラム(Micromath Research,Saint Luis,MO,US)を用いて算出した。FVIII活性の曲線下面積は、ベースラインサブトラクションによる台形モデルで算出した。
【0104】
VWFの半減期は1.3時間(ネイティブrVWF)から2.4時間(rVWF−ポリシアル酸結合体)へと増大し、FVIIIのAUCがそれぞれ3.3U*hr/mlから5.3U*hr/mlへと増大した。
【0105】
(実施例28:還元性アミノ化によるリジン基に対するmPEGプロピオンアルデヒドの結合)
rVWF溶液(400μg/ml)を0.05Mリン酸ナトリウム緩衝液(pH7.2)に調製し、mPEGプロピオンアルデヒド(5kDa鎖長)を添加して最終濃度を1mgVWFあたり10mgのmPEGプロピオンアルデヒドとする。この混合物を30分間撹拌する。つぎに、NaCNBH
3を添加し(1mg/mgのrVWF)、混合物を静かに撹拌させながら室温で15時間にわたりインキュベートする。1MのTRIS水溶液(pH7.2)を添加し(1mgのNaCNBH
3あたり50μl)、1時間にわたって撹拌することで反応を停止させる。その後、PEG付加rVWFは、100kD膜(再生セルロース/Millipore)を使用している限界濾過法/ダイアフィルトレーションによって、試薬から分離される。
【0106】
(実施例29:VWFのN末端PEG付加)
rVWFのN末端PEG付加をLee et al.(Pharm.Res.20:818−825,2003)の記載のように行う。rVWF溶液(最終濃度:500のμg/ml)を50mMの酢酸ナトリウム緩衝液(pH5.5)に調製し、mPEGプロピオンアルデヒド(鎖長:5kD)を添加した(濃度:10mg mPEGプロピオンアルデヒド/mgVWF)。PEG付加を、還元剤として2mMのNaCNBH
3の存在下、室温で24時間にわたって行う。その後、PEG付加rVWFを、100kD膜(再生セルロース/Millipore)を使用して限界濾過法/ダイアフィルトレーションにより試薬から分離される。
【0107】
(実施例30:リジン残基およびrVWFのSH残基の逐次的なPEG付加)
RVWFを、実施例2によりmPEGスクシンイミジルスクシネート(鎖長:5kD)で、リジン残基を経てPEG付加する。PEG付加を1時間にわたって室温で行い、遊離試薬を、100kD膜(再生セルロース/Millipore)を使用して20mM HEPES緩衝液(pH7.4、5%サッカロース)に対してUF/DFによりrVWFPEG結合体から分離する。次に、溶液のpH値を、0.1MNaOHで7.6に合わせ、mPEGマレイミド(10mM鎖長5kD/最終濃度)を加えて、遊離SH基のPEG付加を行う。静かに振とうしながら、室温で2時間にわたってPEG付加を行う。次に、試薬を再び、100kD膜(再生セルロース/Millipore)を使用して反応混合物から分離する。
【0108】
(実施例31:糖質残基の酵素酸化とPEG−Hzによるその後のPEG付加)
Avigad et al.(J.Biol.Chem.237:2736−43,1962)に記載のように、アルデヒド基を生じさせるrVWFの糖質残基(Wilchek et Bayer,Meth.Enzymol.138;429−442,1987)の酵素酸化を、Dactylium dendroides(Sigma)由来のガラクトースオキシダーゼを使用して行う。得られた溶液を、50mMリン酸緩衝液(pH7.2)に対して透析し、希釈してVWF濃度を400μg/mlにする。次に、鎖長5kDのmPEGヒドラジド(mPEG Hz)(最終濃度:40mg mPEG−Hz/mg VWF)を添加する。混合物を静かに振とうさせながら室温で3時間インキュベートする。試薬を、100kD膜(再生セルロース/Millipore)を使用して、5%のサッカロース含有20mM HEPES緩衝液(150mM NaCl、pH7.4)に対して、UF/DFによりPEG付加rVWFから分離する。
【0109】
(実施例32:rFVIIIによるFVIII結合部位のブロッキングによるrVWFのPEG付加)
非修飾FVIII結合部位を持つPEG付加rVWFを調製するために、rFVIII(200U/ml)およびrVWF(40U VWF:Ag/ml)を含む50mM HEPES緩衝液(50mM HEPES、150mM NaCl、2%トレハロース、pH7.4)の溶液3mlを調製して、37℃で1時間インキュベートする。混合物を、室温まで冷やし、PEGスクシンイミジルスクシネート(PEG−SS/鎖長:5kD)を添加し(最終濃度:1mgPEG−SS/UVWF:Ag)、静かに振とうさせながら1時間インキュベートする。次に、CaCl
2を静かに振とうさせながら添加することで、最終濃度で400mMを得る。この溶液を、セファクリルS−400HR(Amersham)充填クロマトグラフィーカラム(2.6×80cm)に載せ、FVIIIの遊離結合部位を持つPEG付加rVWFを、サイズ排除クロマトグラフィー(溶離緩衝液:50mM HEPES緩衝液、400mM CaCI
2、pH7.4)によって、rFVIIIから分離する。
【0110】
(実施例33:ヘパリンによるFVIII結合部位のブロッキングによるrVWFのPEG付加)
rVWF(300μg/ml)含有50mM HEPES緩衝液(pH7.4)の溶液5mlを調製し、同一緩衝液のヘパリンセファロースCL−6B懸濁液(Amersham Bioscience)2mlに添加する。この混合物を静かに振とうさせながら2時間にわたってインキュベートし、VWFをゲルに結合させる(de Romeuf et Mazurier,Thromb.Hamost.69:436−440,1993)。その後、mPEGスクシンイミジルスクシネート(200mg/mgのVWF)を混合物に加え、静かに振とうさせなら、PEG付加を室温で1時間行う。混合物を等量の2MNaCl含有HEPES緩衝液(pH7.4)で希釈する。ゲルを濾過によって上清から分離する。次に、ゲルは2mlHEPES緩衝液(pH7.4)(20mM HEPES、1MNaCl)で3回洗浄し、上清および洗い溶液を組み合わせる。続いて、PEG付加VWFを含む溶液を限界濾過法によって濃縮し、再生セルロース(Millipore)からなる100kD膜を用いて20mM HEPES緩衝液(pH7.4)(150mM NaCl、3%のサッカロース)に対して透析する。得られた誘導体は、バイアコア技術またはECA試験(試験システムは、米国仮特許出願第60/668,378号(2005年4月4日出願)に記載されている)の使用によって、完全なFVIII結合能を示す。
【0111】
(実施例34:ヒアルロン酸とVWFとの結合)
ヒアルロン酸(HA)によるリジン残基の修飾を、Sigma(C53747)から得られるヒアルロン酸を使用して還元性アミノ化によって行った。HAを、新たに調製された0.1MのNaIO
4溶液に溶解して最終濃度を5mgHA/mlにした。次に、静かに撹拌させながら15分間にわたり酸化を行った。1mlの酸化HA溶液に対して2mlのエチレングリコールを添加し、室温、暗所で30分間さらに撹拌することで、反応を停止させた。溶液を、0.05Mリン酸ナトリウム緩衝液(pH7.2)に対して、暗所4℃で一晩透析を行った。続いて、この溶液のアリコートを、0.05Mリン酸ナトリウム緩衝液(pH7.2))からなるrVWF溶液(40UVWF:Ag/ml)に添加して、最終濃度50mgの活性化HA/mgタンパク質を得た。この混合物を、暗所、室温で120分間にわたり撹拌した。NaCNBH
3を添加し(1mg/mgタンパク質)、混合物を静かに振とうさせながら、18時間、室温でインキュベートした。つぎに、100μlの1MTris緩衝液(pH7.2)をこの混合物1mlに対して添加し、1時間にわたり撹拌することで、反応を停止させた。遊離試薬を、100kD膜(再生セルロース/Millipore)を使用して、UF/DFによりrVWFHA結合体から分離した。
【0112】
(実施例35:PSA結合VWFの生体外生化学的特徴づけ)
実施例19によりRVWFをポリシアル化した。この実施例に記載のパラメーター、例えば等電点電気泳動(
図20)、実施例16によるECA試験(54%)および実施例12による表面プラズモン共鳴(70%)によってFVIII結合能の測定に加えて、比率VWF:RCo/VWF:Agを算出した。VWF抗原量を、市販のアッセイシステム(Asserachrom vWF,Roche,Basel,Switzerland)を用いて側定した。Macfarlane et al.(Thromb.Diath.Haemorrh 34:306−308,1975)に記載のように、調製試料の機能的な活性をリストセチンコファクターアッセイで測定した。rVWF出発原料に関して算出される0.39という比率の値は、ポリシアル酸付加後に減少して0.13となる。
【0113】
(実施例36:リジン残基を介した分岐PEGによるrVWFの結合)
成熟rVWF(35UVWF:Ag/ml)含有20mM HEPES緩衝液(150mM NaCl、pH7.4、0.5%ショ糖含有)の溶液を実施例23により調製した。次に、静かに撹拌させながら、NOF会社(NOF Europe,Grobbendonk,Belgium)によって供給される分枝mPEGスクシンイミジルグルタレート(PE−SG/鎖長:20kD)を、この溶液に添加し(5mgPEG−SG/mgタンパク質)、0.5MNaOHを滴加することでpH値を7.4に合わせた。次に、室温で1時間、静かに撹拌させながらPEG付加を行った。続いて、反応混合物を平衡イオン交換クロマトグラフィー樹脂(Fractogel EMD TMAE 650M)含有20mM HEPES緩衝液(150mM NaCl、pH7.4、0.5%ショ糖含有)に載せた。次に、このカラムを20CV平衡化緩衝液で洗い、PEG付加rVWFを溶離緩衝液(20mM HEPES、0.5MNaCl、0.5%ショ糖、pH7.4)で溶出した。溶出液を、20mMのHEPES、150mMのNaCl、0.5%ショ糖、pH7.4からなる緩衝系を用い、再生セルロースからなる膜および100kD分子量カットオフで、限界濾過法/ダイアフィルトレーションにより濃縮した。得られたPEG付加誘導体のVWF:RCo/VWF:Ag 比は、rVWF出発材料(VWF:Rco/VWF:Ag比:0.89)と比較して、わずかに減少して0.79であった。また、PEG付加rVWF出発原料のFVIII結合能は、ECA試験(実施例16)で計測されたように、83%であった。
【0114】
(実施例37:FVIII−K.O.マウスでの分岐PEGと結合体を形成したVWFの薬物動態)
FVIII欠乏マウス(Bi et al.,Nat.Genet.10:119−121,1995)を、重度ヒト血友病Aのモデルとして使用した。マウス5匹からなる群に対して、PEG−rVWF(分岐PEG,SG)およびrFVIIIの混合物またはネイティブrVWFおよびrFVIIIの混合物を経尾静脈によるボーラス注入法(10ml/kg)によって投与することで、30UFVIII/mlおよび25UVWF/mlを達成した。注射後5分、3、9、24、および32時間、麻酔後の心臓穿刺によってそれぞれの群からクエン酸血漿を調製した。FVIII活性およびVWF抗原回収濃度を血漿サンプルで計測した。VWFおよびFVIIIの抽出曲線を
図23および
図24に示す。VWF半減期は1.4から9.7時間へと増大し、VWFのAUCは11.8から49.2U*h/mlに増加した。FVIIIの半減期は、1.2時間(ネイティブrVWF存在下)から4.4時間(PEG−rVWFとともに適用)へと増大し、血中濃度時間曲線下面積(AUC)が12.1から30.5U*h/mlへと増大した。
【0115】
(実施例38:FVIII−K.O.マウスにおける異なる量のPEG−VWFと混合されたFVIIIの比較薬物動態)
FVIII欠乏K.O.マウス5匹からなる群に対して、PEG−rVWF(25mg分岐PEG−SG20000/mgタンパク質)とrFVIII(A:20IUPEG−rVWF/ml+20IUFVIII/ml、B:10IUPEG−rVWF/ml+20IUFVIII/ml、C:3IUPEG−rVWF/ml+20IUFVIII/ml)の種々の混合物を経尾静脈によるボーラス注入法(10ml/kg)によって投与した。PEG付加rVWFについて、算出された比率は3モルPEG/moleリジンであった。異なるPEG−rVWF/rFVIII混合物において等量(単位換算)のPEG−rVWFとrFVIIIとを比較すると、以下のPEG/FVIII比が算出された。すなわち、3:1(A)、1.5:1(B)、0.45:1(C)である。麻酔後、クエン酸血漿を注射後5分、1、3、9、および24時間で、それぞれの群から心臓穿刺によって調製した。FVIII半減期(A:2.1時間(B):2.0時間、および(C):2.5時間)とAUC(A:18.9(B):14.5、およびC:13.2U*hr/ml)との間に関連した違いは見出されなかった。FVIIIの抽出曲線を
図25に示す。
【0116】
(実施例39:PEG付加の度合いが異なるPEG−VWF調製試料を用いた比較薬物動態)
FVIII×VWFダブルノックアウトマウスを、FVIII欠乏マウスとVWF欠乏マウスとの交雑育種によって得た。それらのマウスは、VWF欠乏と同様にFVIII欠乏を患う。FVIII×VWFダブルノックアウトマウス5匹からなる群に対して、ネイティブrVWF/rFVIII(100/150IU/kg)混合物、PEG付加rVWF#AとrFVIIIとの混合物(100/150IU/kg)、あるいはPEG付加rVWF#BとrFVIIIとの混合物(150/150IU/kg)を経尾静脈により注入した。PEG−rVWF#A(5mg PEG−SS 5000/mgタンパク質)およびPEG−rVWF#B(20mg PEG−SS 5000/mgタンパク質)を実施例24により調製した。調製試料#Aに関しては、算出された比率は2.5molePEG/moleリジンであった。調製試料#Bに関しては、算出された比率は10molePEG/moleリジンであった。このクエン酸血漿に関して、試料適用後5分、1、3、9、および24時間、試料を調製した。VWF:Agの血漿レベルおよびFVIII活性を計測し、最大血漿レベルのパーセントに概ね注射後5分で達する。VWFおよびFVIIIの抽出曲線を、それぞれ
図26および
図27に示す。半減期は、PEG−rVWF #Aおよび#Bに関して、それぞれ6.3時間および8.1時間であった。ネイティブrVWFに関しては、算出された半減期は2.0時間であった。PEG付加rVWF両方の正規化AUC(%最大×h)は、360%*h(ネイティブrVWF)から901%*h(#A)および1064%*h(#B)へと増大した。同時注入されたrFVIIIの循環時間は、ネイティブVWFと比較してPEG付加rVWFによって改善された。FVIIIの半減期は、ネイティブrVWFの存在下で0.8時間であって、それぞれPEG付加rVWF#Aおよび#Bが注入される場合、1.5および1.8時間へと増大した。FVIIIのAUCは、214、370、および358%*hであった。
【0117】
(実施例40:VWFダイマーのPEG付加)
VWFダイマー(58IUのVWF:Ag/ml)(組換えCHO細胞株の条件培地から精製(Baxter BioScience))を20mM HEPES緩衝液(150mM NaCl、pH7.4、0.5%ショ糖)で調製した。NOF社から供給された分岐mPEGスクシンイミジルグルタレート(PE−SG/鎖長:20kD)を、静かに撹拌しながらこの溶液に添加し(5mgPEG−SG/mgタンパク質)、0.5MNaOHを滴加してpH値を7.4に合わせた。PEG付加を、室温で1時間、静かに撹拌させながら行った。続いて、反応混合物を、反応混合物を平衡イオン交換クロマトグラフィー樹脂(Fractogel EMD TMAE 650M)含有20mM HEPES緩衝液(150mM NaCl、pH7.4、0.5%ショ糖含有)に載せた。次に、カラムを20CV平衡化緩衝液で洗い、過剰の試薬を取り除いた。PEG付加rVWFダイマーを溶離緩衝液(20mM HEPES、0.5MNaCl、0.5%ショ糖、pH7.4)で溶離させた。溶出液を、20mM HEPES、150mM NaCl、0.5%ショ糖、pH7.4からなる緩衝系を使用し、再生セルロース(Millipore)からなる膜および100kD分子量カットオフで、限界濾過法/ダイアフィルトレーションによって濃縮した。
【0118】
(実施例41:低マルチマーrVWFのPEG付加および生体外特徴付け)
成熟rVWFを、実施例23により精製した。精製手法は、イオン交換クロマトグラフィーステップおよびスペローズ6上での最終ゲル濾過ステップを含むもので、該手法を20mM HEPES、150mM NaCl、pH7.4で実行し、高マルチマーrVWF(17のマルチマー)がボイド容量で溶出した。VWFマルチマー分析を、1.0%のアガロースゲルを使用してRuggeri and Zimmerman(Blood 57:1140−43,1981)により行った。低マルチマーrVWF調製試料(6マルチマー)がサイド分画から得られ、より高い持続時間で溶離した。0.5%のショ糖pH7.4を加えることにより、この分画を安定化させた。次に、低マルチマーrVWFを、mPEGスクシンイミジルスクシネート(PEG−SS)を使用してPEG付加した。PEG−SSを、静かに撹拌させながらこの溶液に添加し(5mgPEG−SS/mgタンパク質)、0.5MNaOHを滴加することでpH値を7.4に合わせた。PEG付加を、室温で1時間、静かに撹拌させながら行った。その後、20mM HEPES、150mM NaCl、0.5%ショ糖、pH7.4からなる緩衝系を用いて過剰試薬を、再生セルロースからなる膜および100kDの分子量カットオフで、限界濾過法/ダイアフィルトレーションによって除去した。実施例16によるECAアッセイによって測定されるFVIII結合能は、出発原料の49%からPEG付加調製試料の34%まで、わずかに減少した。低マルチマーrVWFについて計測されたVWF:RCo/VWF:Ag比率の値は、0.02であり、PEG付加手法の影響を受けなかった。
【0119】
(実施例42:可逆的にブロックされたFVIII結合エピトープ(FVIIIおよびヘパリンでブロック)によるVWFの誘導体化)
クロマトグラフィーカラム(15mm×148mm)をヘパリンハイパーD(Bio−Sepra)で充填し、20mM HEPES、68mM NaCl、0.5%ショ糖、pH7.4からなる平衡化緩衝液で平衡させた。次に、成熟rVWF(48IUVWF:Ag/ml)含有20mM HEPES(150mM NaCl、0.5ショ糖)の溶液をH
2Oで希釈することで伝導率を7〜8mS/cmとし、線流速1.5cm/分を使用してカラム上に載せた。その後、NOF社(NOF Europe,Grobbendonk,Belgium)によって供給された分枝mPEGスクシンイミジルグルタレート(鎖長:20kD)を新たに15mlの平衡化緩衝液に溶かし、最終濃度を5mgPEG−SG/mg結合タンパク質とした。次に、この試薬液をカラム上にポンプで送り、PEG付加を静的条件下で2時間行った。次に、0.05%リジンを含む10CV平衡化緩衝液でカラムを洗った。次に、保護されたFVIII結合エピトープによるPEG付加rVWFを20mM HEPES、1MNaCl、0.5%ショ糖、pH7.4からなる緩衝液で溶出させた。最終的に、再生セルロース(Millipore)からなる100kD膜を使用して、20mM HEPES緩衝液(pH7.4、150mM NaCl、0.5%ショ糖)に対する限界濾過法/ダイアフィルトレーションによって、この溶液を濃縮した。得られた誘導体のVWF:RCo/VWF:Ag比率は0.48であり、rVWF出発原料(比率0.47)と同一であった。実施例36に記載の分枝PEG−SG20000によるrVWFのPEG付加手法と対照的にFVIII結合能は、ECA試験(実施例16)によって計測されるように、FVIIIエピトープキャッピングでこのPEG付加手法に影響を受けなかった。
【0120】
(実施例43:リジン残基を介した分解可能PEGによるVWFの結合)
成熟rVWFを、実施例23によって精製する。次に、このrVWF(40UVWF:Ag/ml)含有20mM HEPES緩衝液(150mM NaCl、pH7.4、0.5%ショ糖含有)の溶液を、調製する。続いて、PEG付加は、静かに撹拌させながら、mPEG−(カルボキシメチル)−3−ヒドロキシ−ブタン酸N−ヒドロキシスクシンイミドエステル(鎖長:5kD)をこの溶液に加えることによって行い(5mgのPEG試薬/mgタンパク質)、0.5MNaOHを滴加することでpH値を7.4に合わせた。次に、PEG付加反応を、室温で1時間、静かに撹拌させながら行った。その後、20mM HEPES、150mM NaCl、0.5%ショ糖、pH7.4からなる緩衝系を用いて過剰試薬を、再生セルロースからなる膜および100kDの分子量カットオフで、限界濾過法/ダイアフィルトレーションによって、PEG付加rVWFから分離した。