【実施例】
【0024】
以下、実施例及び比較例を用いて本発明について説明するが、本発明はこれらによって何ら限定されるものではない。
消臭試験法および成分分析法
1.メチルメルカプタン消臭試験の方法
以下、本発明に係わる消臭成分の試験法について説明する。
<試薬の調製>
(1)メチルメルカプタン10ng/μl希釈液
メチルメルカプタン標準液1μg/μlベンゼン溶液(和光純薬)2mlを99%エタ
ノールで200mlにメスアップして供試した。
(2)1/15M燐酸緩衝液pH7.0・・・中性域での消臭試験時に使用する。
燐酸緩衝液3(20倍濃縮液)(三菱化学メディエンス(株)製)1瓶を精製水で希釈して1リットルにメスアップした。
(3)1/10Mクエン酸緩衝液pH3.0・・・pH変化による消臭試験時に使用する。
0.1Mクエン酸二ナトリウム1.5水和物水溶液、0.1N HCl水溶液を混合し、クエン酸にてpH3.0に調整した。
(4)1/10Mクエン酸緩衝液pH5.0・・・pH変化による消臭試験時に使用する。
0.1Mクエン酸二ナトリウム1.5水和物水溶液に0.1N HCl水溶液を混合し、クエン酸にてpH5.0に調整した。
【0025】
<試料の調製>
各溶媒抽出物、精油およびテルペン類を95%(w/w)エタノールにてそれぞれ1%(w/w)に希釈したものを消臭試験に供した。
【0026】
<方法>
所定量の試料を30mlバイアル瓶に入れ、予め37℃に保温した緩衝液5.0mlを加え、容器を密栓した。次に上記バイアル瓶中にメチルメルカプタン10ng/μl希釈
液50μl(500ng量のメチルメルカプタンに相当)を加え、37℃で10分間インキュベートさせた。10分経過後にガスタイトシリンジにてバイアル瓶中のヘッドスペースガス5mlを抜き取り、液体窒素によるコールドトラップ装置を装着したGC−MSに導入してメチルメルカプタン量を測定した。
*なお中性域(pH7.0)での消臭試験にはリン酸緩衝液を用い、酸性域での消臭試験の場合には、クエン酸−クエン酸ニナトリウム緩衝液(pH3.0および5.0)をそれぞれ使用した。
メチルメルカプタンのピーク検出は、本成分に由来する特有のMSフラグメントイオン47および48を選択して検出するSIM法により行った。各検体のメチルメルカプタン消臭率は、緩衝液のみをバイアル瓶に入れたものを対照液として下式(1)にしたがって算出した。
メチルメルカプタン消臭率(%)=(C−S)/C×100・・・・ (1)
(式中、Cは、対照液のヘッドスペース中のメルカプタン量、Sは、検体のヘッドスペース中のメチルメルカプタン量を示す。
【0027】
<GC−MS分析条件>
[装置] GC:Agilent 6890A MS:Agilent 5973N
コールドトラップ装置: Gerstel CIS
[コールドトラップの条件] −120℃ 、30秒間、スプリットレス
[カラム] ガス分析用HP-PLOTQ: 30m×0.32mm×20μm
[温度条件] 初期温度50℃(1.5分間保持)→20℃昇温/min.→120℃(5分間保持)
[流量] 1.8ml/min
〔イオン化電圧〕 70eV
【0028】
2.揮発成分の分析方法(チモキノンの検出)
ブラッククミン種子の各溶媒抽出物および精油に含有される揮発成分の分析に用いたGCおよびGC−MS分析の基本条件は下記の通り。
<GC分析条件>
〔装置〕 GC: HP 5890 Series 2
〔カラム〕 GL Sciences TC-1:30m×0.25mm×0.25μm
〔温度条件〕 初期温度50℃→3℃昇温/min→300℃(20分間保持)
〔キャリアガス〕 He
〔流量〕 0.7ml/min
〔注入口温度〕 300℃
〔注入量〕 ・各溶媒抽出物:10%(w/w)エタノール溶液を1.0μlずつ注
入した。
・各蒸留精油:0.1μlずつ注入した。
【0029】
<GC−MS分析条件>
〔装置〕 GC:Agilent 6890A MS:Agilent 5973N
〔カラム〕 GL Sciences TC-1:30m×0.25mm×0.25μm
〔温度条件〕 初期温度50℃→3℃昇温/min→300℃(20分間保持)
〔キャリアガス〕 He
〔流量〕 0.8ml/min
〔イオン化電圧〕 70eV
〔注入口温度〕 300℃
〔注入量〕 ・各溶媒抽出物:10%(w/w)エタノール溶液を1.0μlずつ注
入した。
・各蒸留精油:0.1μlずつ注入した。
【0030】
(実施例1:ブラッククミン粉砕種子の作製)
ブラッククミン種子150gを電池式ごますり器(CB-AA10-WB(象印社製))により粉砕後、30メッシュをパスさせた。この粉砕種子10mg、30mg、50mgを用いた時のメチルメルカプタンに対する消臭試験を実施した(pH7.0)。
ブラッククミン粉砕種子のメチルメルカプタン消臭試験結果を表1に示す。
【0031】
【表1】
【0032】
表1の結果より、ブラッククミンの粉砕種子に消臭効果があり、用量依存的にその消臭率(%)が高まることが判った。
【0033】
(実施例2:ブラッククミン未粉砕種子あるいは粉砕種子の水蒸気蒸留)
ブラッククミン種子を上記と同様に粉砕して、以下の実験に供した。
(1)Linkens-Nickerson連続蒸留装置の試料用フラスコに未粉砕種子1.0kg、溶媒フラスコにペンタン:ジエチルエーテル混合液(1:1、v/v)を入れ、蒸留−溶媒抽出を同時に行った。3.5時間蒸留した後に得られた有機相をロータリーエバポレーターにて減圧下で濃縮して精油分を得た。
(2)未粉砕種子500gに水蒸気を通じて3.0時間蒸留し、得られた蒸留液から浮油を採取した。
(3)粉砕種子500gに水蒸気を通じて3.0時間蒸留し、得られた蒸留液から浮油を採取した。
(4)粉砕種子500gに水蒸気を通じて3.0時間蒸留し、得られた蒸留液を酢酸エチル600mlで分配した。酢酸エチル相を減圧下で濃縮し、精油分を得た。
【0034】
上記(1)〜(4)の精油につき、それぞれGCおよびGC−MSに供して、抽出物中のチモキノン量について比較分析した。また各抽出物(1)〜(4)の1.0mgを用いた時のメチルメルカプタンに対する消臭試験も実施した(pH7.0)。
ブラッククミン未粉砕あるいは粉砕種子から得た抽出物の収量(g)、チモキノン量(GC−MSPeak Area)および消臭試験の結果を表2に示す。
【0035】
【表2】
【0036】
表2の結果より、ブラッククミン種子を粉砕処理することにより、チモキノンの含有量が増加すること、粉砕種子の蒸留液から酢酸エチル等の有機溶媒を用いて分液操作を行うことにより、精油収量(g)が増加し、さらに消臭率(%)も高まることが判った。
【0037】
(実施例3:ブラッククミン未粉砕種子の溶媒抽出)
ブラッククミンは、インド産種子(商品名:カロンジ)を東京上野の大津屋より購入して実験に供した。濾液の濃縮には、ロータリーエバポレーターを使用した。
(1)未粉砕種子100gをイオン交換水200gに浸漬し、90℃で1時間加温抽出した。つぎに抽出液を吸引濾過(ADVANTEC TOYO No.2濾紙を使用)し、濾液を減圧下、45℃以下で濃縮した。
(2)未粉砕種子100gをメタノール200gに浸漬し、常温下で3日間静置抽出した。
つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、45℃以下で溶媒臭がなくなるまで濃縮した。
(3)未粉砕種子100gを95%(w/w)エタノール200gに浸漬し、常温下で3日間静置抽出した。つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、45℃以下で溶媒臭がなくなるまで濃縮した。
(4)未粉砕種子100gを70%(w/w)エタノール200gに浸漬し、常温下で3日間静置抽出した。つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、45℃以下で溶媒臭がなくなるまで濃縮した。
(5)未粉砕種子100gを50%(w/w)エタノール200gに浸漬し、常温下で3日間静置抽出した。つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、45℃以下で溶媒臭がなくなるまで濃縮した。
(6)未粉砕種子100gをアセトン200gに浸漬し、5℃で3日間静置抽出した。つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、25℃以下で溶媒臭がなくなるまで濃縮した。
(7)未粉砕種子100gを酢酸エチル200gに浸漬し、5℃で3日間静置抽出した。つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、45℃以下で溶媒臭がなくなるまで濃縮した。
(8)未粉砕種子100gをジエチルエーテル200gに浸漬し、5℃で3日間静置抽出した。つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、10℃以下で溶媒臭がなくなるまで濃縮した。
(9)未粉砕種子100gをn−ヘキサン200gに浸漬し、5℃で3日間静置抽出した。つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、25℃以下で溶媒臭がなくなるまで濃縮した。
【0038】
上記(1)〜(9)抽出物につき、それぞれGCおよびGC−MSに供して、抽出物中のチモキノン量について比較分析した。また各抽出物(1)〜(9)の1.0mgを用いた時のメチルメルカプタンに対する消臭試験も実施した(pH7.0)。
ブラッククミン種子の抽出溶媒の違いによる抽出物の収量(g)、チモキノン量(GC Peak Area)および消臭試験の結果を表3に示す。
【0039】
【表3】
【0040】
表3の結果より、ブラッククミン種子から各種溶媒によりチモキノンが抽出されること、および(2)メタノール、(3)95%エタノール、(6)アセトン、(7)酢酸エチル、(9)n−ヘキサン抽出物では1.0mgという微量で高い消臭率(%)を示すことが判った。
【0041】
(実施例4:ブラッククミン未粉砕種子の溶媒抽出物からの水蒸気蒸留)
下記方法により、ブラッククミン種子の各抽出物から水蒸気蒸留法により精油を得た。n−ヘキサン相の濃縮には、ロータリーエバポレーターを使用した。
(1)未粉砕種子100gをメタノール200gに浸漬し、常温下で3日間静置抽出した。つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、45℃以下で溶媒臭がなくなるまで濃縮した。つぎにこの濃縮物に水蒸気を通じ、3.0時間蒸留した。得られた蒸留液をn−ヘキサン600mlで分配し、n−ヘキサン相を減圧下で濃縮し、精油分を得た。
(2)未粉砕種子100gを95%エタノール200gに浸漬し、常温下で3日間静置抽出した。つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、45℃以下で溶媒臭がなくなるまで濃縮した。つぎにこの濃縮物に水蒸気を通じ、3.0時間蒸留した。得られた蒸留液をn−ヘキサン600mlで分配し、n−ヘキサン相を減圧下で濃縮し、精油分を得た。
(3)未粉砕種子100gを酢酸エチル200gに浸漬し、5℃で3日間静置抽出した。つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、45℃以下で溶媒臭がなくなるまで濃縮した。つぎにこの濃縮物に水蒸気を通じ、3.0時間蒸留した。得られた蒸留液をn−ヘキサン600mlで分配した。n−ヘキサン相を減圧下で濃縮し、精油分を得た。
(4)未粉砕種子100gをメタノール200gに浸漬し、常温下で3日間静置抽出した。つぎに抽出液を吸引濾過し、(ADVANTEC TOYO No.2濾紙を使用)濾液を減圧下、45℃以下で溶媒臭がなくなるまで濃縮した。つぎにこの濃縮物に水蒸気を通じ、3.0時間蒸留した。得られた蒸留液を酢酸エチル600mlで分配し、酢酸エチル相を減圧下で濃縮し、精油分を得た。
【0042】
上記(1)〜(4)の精油につき、それぞれGCおよびGC−MSに供して、精油中のチモキノン量について比較分析した。
図1は、(1)の精油のガスクロマトグラムを示すものである。
各精油(1)〜(4)の1.0mgを用いた時のメチルメルカプタンに対する消臭試験も実施した(pH7.0)。
ブラッククミン未粉砕種子の溶媒抽出物からの精油収量(g)、チモキノン量(GC Peak Area)および消臭試験の結果を表4に示す。
【0043】
【表4】
【0044】
表4の結果から、ブラッククミン種子溶媒抽出物の水蒸気蒸留によりチモキノンを含有する精油を得ることが出来、特にメタノール抽出物由来の精油では1.0mgという微量で92%(ヘキサン抽出)、94%(酢酸エチル抽出)という非常に高い消臭率(%)を示すことが判った。
【0045】
(実施例5:チモキノンとテルペン化合物のメチルメルカプタンに対する消臭試験)
チモキノンと各種香料に使用されるテルペン類の試料1.0mgを用いた時のメチルメルカプタンに対する消臭効果について比較検討した(pH7.0)。消臭試験の結果を表5に示す。
<供試試料>
チモキノンは、SIGMA-ALDRICH社製の試薬(99%品)を使用した。その他のテルペン類は、香料原料として使用されているグレードのものをそれぞれ、α−Pinene(日本テルペン化学(株)製)、β−Pinene(ヤスハラケミカル(株))、p−Cymene(日本テルペン化学(株)製)、Limonene((株)佐々木香料店製)、1,8−Cineole(高陽ケミカル(株)製)、γ−Terpinene(高砂香料工業(株)製)、4−Terpineol(シムライズ(株)製)、Carvone(塩野香料(株)製)、Thymol(シグマアルドリッチジャパン(株)製)、Carvacrol(シグマアルドリッチジャパン(株)製)、β−Caryophyllene((株)井上香料製造所製)を使用した。
チモキノンとテルペン類のメチルメルカプタンに対する消臭効果の比較を表5に示す。
【0046】
【表5】
【0047】
表5の結果から、チモキノンが香料に使用されるテルペン類((2)〜(12))と比較して特に高い消臭率(%)を示すことが判った。
【0048】
(実施例6:チモキノンの用量−消臭率(%)について)
チモキノンの消臭効果における用量依存性について確認することを目的に、pH7.0におけるチモキノン量(mg)−
消臭率(%)の関係について調べた。消臭試験の結果を
図2に示す。
図2の結果より、チモキノンは0.05mgという極微量で60%近い消臭率を示し、その効果は用量依存的であることがわかった。
【0049】
(実施例7:ブラッククミン抽出物、チモキノンと酵素酸化型消臭剤のpHの違いによるメチルメルカプタンに対する消臭試験)
次に本発明品と酵素酸化型消臭剤の酸度条件の違い(pH=3、5、7)による消臭効果を比較検討した。消臭試験の結果を表6に示す。
*酵素酸化型消臭剤=「ポリフェノール化合物と酸化酵素(ラッカーゼやパーオキシダーゼ等)の組み合わせによる消臭剤」
<緩衝液>
中性域: 1/15Mリン酸緩衝液pH7.0を使用
酸性域: 1/10Mクエン酸−クエン酸ナトリウム緩衝液(pH3.0あるいは5.0)
を使用。
【0050】
<供試試料>
(1)チモキノン(1.0mg)・・・SIGMA-ALDRICH社製試薬(99%品)
(2)メタノール抽出物(1.0mg)・・・実施例3.−(2)と同一
(3)メタノール抽出物由来の精油(1.0mg)・・・実施例4.−(1)と同一
(4)ミントリーフ(1.0mg)+ラッカーゼ(0.5mg)
「ミントリーフ」・・・インド、Arjuna社製「ミントリーフ」脱臭品を使用。
「ラッカーゼ」・・・大和化成(株)製「ラッカーゼダイワM120」を使用。
(5)ミントリーフ(1.0mg)+パーオキシダーゼ(0.5mg)
「ミントリーフ」・・・同上
「パーオキシダーゼ」・・・和光純薬工業(株)製「パーオキシダーゼ」を使用。
(6)オウゴン抽出物(1.0mg)+ラッカーゼ(0.5mg)
「オウゴン抽出物」・・・局方オウゴン(栃本天海堂薬局社製、刻み)100gにイオ
ン交換水700gを加え、液温88〜90℃で1時間加熱抽出
を行い、No.2濾紙(ADVANTEC TOYO社製)を用いて吸引濾過
した(濾液1:474.53g)。さらに上記抽出残渣にイオ
ン交換水700gを加え、液温88〜90℃上記同様に1時間
加熱抽出後、吸引濾過を行った(濾液2:691.02g)。濾
液1および濾液2を合わせ、減圧下で濃縮乾固(収量:51.
94g)したものを試験に供した。
「ラッカーゼ」・・・同上。
(7)オウゴン抽出物(1.0mg)+パーオキシダーゼ(0.5mg)
「オウゴン抽出物」・・・同上
「パーオキシダーゼ」・・・同上
(8)、(9)ローズマリー抽出物・・・油溶性ローズマリーエキス(インドSynthite社製)を使用。
*なお対照液は各pHの緩衝液をそれぞれ使用した。
ブラッククミン抽出物、チモキノンと酵素酸化型消臭剤のpHの違いによるメチルメルカプタン消臭効果の比較を表6に示す。
【0051】
【表6】
【0052】
表6の結果から、酵素酸化型消臭剤(4)〜(9)はpH3において、著しい消臭効果の低下を示すが、チモキノン(1)およびブラッククミン種子のメタノール抽出物由来の精油(3)は、中性域〜酸性域の幅広いpH域で高い消臭率(%)を示すことが判った。
【0053】
(実施例8:チモキノンとベンゾキノンの経時的褐変化の比較、及びアスコルビン酸添
加による褐変化抑制実験)
本実施例においては、チモキノンとベンゾキノンの経時的褐変化の比較ならびにアスコルビン酸(ビタミンC)添加による褐変化への影響を比較検討した。
<試料>
(1)チモキノン
(2)ベンゾキノン(東京化成製)
(3)アスコルビン酸(イワキ社製)
【0054】
<試料溶液の調製>
(1) チモキノン溶液
チモキノン0.01gを精秤して試験管(ガラス製、径12mm×120mm長)に入れ、95%エタノール0.99gを加え溶解させた後、さらに1/15Mリン酸緩衝液(pH7.0)4.0gを加えた。
(2)チモキノン+アスコルビン酸溶液
上記(1)で得られた溶液にさらにアスコルビン酸5.0mg(終濃度:0.1%)を加えた。
(3)ベンゾキノン溶液
ベンゾキノン0.01gを精秤して試験管(ガラス製、径12mm×120mm長)に入れ、1/15Mリン酸緩衝液(pH7.0)4.0gを加え溶解させた後、95%エタノール0.99gを加えた。
(4)ベンゾキノン+アスコルビン酸溶液
上記(3)で得られた溶液にさらにアスコルビン酸5.0mg(終濃度:0.1%)を加えた。
【0055】
<測定方法>
経時的褐変化の様子を調べるため、光電比色計(東京光電社製、製品名:ANA-18A+)を用いて、室温条件下で、上記(1)〜(4)の各試料溶液の一定時間経過後の420nmにおける吸光度(Abs.)を測定し、各試料溶液の0分時に対する吸光度の差(変化値)を求めた。
ベンゾキノンは0、5、15、30、及び60分後まで測定した。一方、チモキノンもベンゾキノン同様に測定を行い、60分経過後も表7の通りに12日目まで測定を継続した。
測定結果を表7に示す。
表8は、チモキノン及びベンゾキノンの消臭率(pH7.0)を示すものである。
【0056】
【表7】
【0057】
【表8】
【0058】
<結果>
図3は、表7の結果をグラフにしたものである。
図3から明らかなように、ベンゾキノン溶液は測定開始直後から褐変化が始まり、60分後にはAbs.1.248に達し、アスコルビン酸の添加によってもほとんど褐変化を抑制することは出来なかった。一方、チモキノンはベンゾキノンと比較して褐変化の進行が遅く、測定開始から緩やかに褐変化する様子が観察された。最終的に測定開始10日後にはAbs.1.228に達するが、0.1%濃度のアスコルビン酸の添加によりその褐変化は著しく抑制されることが判明した。
【0059】
(実施例9:香料の処方例)
以下にチモキノン又はブラッククミン種子溶媒抽出物(*)を配合した消臭性香料処方例を示す。
<ミント香料>
【0060】
<バナナ香料>
【0061】
<グレープ香料>
【0062】
<ストロベリー香料>
【0063】
<パイナップル香料>
【0064】
<ローズ香料>
【0065】
<ジャスミン香料>
【0066】
<ラベンダー香料>
【0067】
<グリーンアップル香料>
【0068】
以下に、本発明の消臭剤を配合した、水系芳香剤、消臭性チューインガム、消臭性キャンデー、練歯磨、マウスウォッシュの処方例を示す。
【0069】
[水系芳香剤の処方例]
消臭剤又は消臭性香料(*) 1.5(質量%)
ソルフィット(3-Methyl-3-methoxy butanol) 1.5
界面活性剤(**) 2.2
水 残部
合 計 100.0
*:チモキノン又はブラッククミン由来の消臭剤、或いは消臭性香料
**:溶解力向上の為に、以下のようなHLBの異なるものをブレンド
約70wt%の硬化ヒマシ油型非イオン性界面活性剤
約20wt%の脂肪酸エステル型非イオン性界面活性剤
約10wt%の硫酸塩型陰イオン性界面活性剤
【0070】
[シュガーレスガムの処方例]
ガムベース 25(質量%)
粉末マルチトール 40
粉末キシリトール 19
粉末エリスリトール 8
マルチトール シロップ 6
スクラロース 0.02
アセスルファムカリウム 0.05
MCT 0.2
消臭剤 1.0
香料 0.73
合 計 100.0
【0071】
[シュガーレスキャンディーの処方例]
還元パラチノース 97.9(質量%)
クエン酸 0.7
アスパルテーム 0.3
色素 0.1
消臭性香料(前記消臭性香料の処方参照) 1.0
合 計 100.0
【0072】
[練歯磨]
水酸化アルミニウム 43(質量%)
グリセリン 20
カルボキシメチルセルロースナトリウム 2
ソジウムラウリルサルフェート 2
香料 1
サッカリンナトリウム 0.1
消臭剤 0.15
ポリフェノールオキシダーゼ 0.05
N−ラウロイルサルコシンナトリウム 0.2
水 残
合 計 100.0
【0073】
[マウスウォッシュ]
エタノール 20(質量%)
香料 1
サッカリンナトリウム 0.05
消臭剤 0.2
o−アミノフェノールオキシダーゼ 0.1
モノフルオロリン酸ナトリウム 0.1
クロルヘキシジン塩酸塩 0.01
ラウリルジエタノールアマイド 0.3
水 残
合 計 100.0