【実施例】
【0048】
(実施例1)
この実施例は、本発明に係るサーメット溶射用粉末材料の製造例を示すものである。即ち、各種のセラミック粒子に対する無電解めっき膜の被覆状況とめっき液中の還元剤の種類によるめっき膜の化学成分の変化、ならびにセラミック粒子への無電解めっき膜の付着状況を試験した結果を示す。
【0049】
(1)供試セラミック粉末:供試セラミック粒子としては、粒径:10〜50μm
のY2O
3、YAG、CeO
2、Eu
2O
3を用いた。
(2)無電解めっき液:表1記載の無電解めっき液を用いたが、ヒドラジンを還元剤とするめっき液は、表1のNi−P液の次亜リン酸ナトリウムに代えて、ヒドラジンを5〜10ml/L添加した。めっき液の温度は、60〜95℃であり、時間は最高10時間とした。この間、金属の析出反応が低下する時には、還元剤のみを適宜追加した。
(3)試験項目:被処理セラミック粒子へのめっき膜の付着状況と、そのめっき膜の主要成分の確認
(4)試験結果:試験結果を表2に要約した。この結果から明らかなように、供試セラミック粒子の表面には、緻密な無電解めっき膜が均等な状態で付着していた。めっき膜の化学成分は、ヒドラジンを還元剤とする場合にはNiのみ、次亜リン酸ナトリウムの場合はNiとP、ボロン化合物の場合にはNiとBがそれぞれ含まれており、その内訳は、Pは1〜13mass%、Bは1〜8mass%の範囲で変化させた。即ち、これらP、Bの含有量は、無電解めっき液中の各成分中の各成分濃度を変化させることで対応した。その結果、PとBはそれぞれの還元剤の添加濃度を変えることによって、本発明の範囲に制御できることが確認できた。
【0050】
【表2】
【0051】
(
参考例)
こ
の例では
、Ni膜を被覆したセラミック粉末によって形成した溶射皮膜の気孔率と基材に対する密着力について調査した。
(1)供試皮膜:供試皮膜として、SS400鋼基材上に、A1
2O
3粉末の表面にNiの無電解めっき膜を1μmの厚さに被覆した各種のサーメット溶射用粉末材料を大気プラズマ溶射法、減圧プラズマ溶射法、高速フレーム溶射法により、それぞれ150μm厚さの溶射皮膜を形成した。また、溶射皮膜の形成に際しては、基材上にNi−20mass%Alのアンダーコートを大気プラズマ溶射法によって、80μm厚さに施工した場合、ならびに比較例の溶射皮膜として、Al
2O
3のみのセラミック溶射皮膜も準備した。
【0052】
(2)試験方法:この実施例の溶射皮膜の試験方法は次の通りである。
1.気孔率試験:供試皮膜の断面を切断し、その切断部を研摩後、光学顕微鏡および画像解析装置を用いて、A1
2O
3粒子の積層部に存在する空隙部の面積を求めた。なお、測定は1試料につき、3ヶ所測定した。
2.密着力測定:皮膜の密着力はJIS H8402規定の溶射皮膜の引張密着強さ試験方法により、1条件当り3個の試験片を用いて測定した。
【0053】
(3)試験結果:試験結果を表3に要約した。この結果から明らかなように、溶射皮膜の気孔率は、A1
2O
3粒子のみからなる溶射用粉末材料を用いて形成した溶射皮膜(No.1、3、5、7、9、11)については、アンダーコートの有無にかかわらず、減圧プラズマ溶射皮膜が最も低く、0.2〜4.0%の範囲にあり、次いで、大気プラズマ溶射皮膜の5〜9%であり、高速フレーム溶射法で形成された皮膜は、基材との接合力とともにA1
2O
3粒子同士の結合力も低く、実用的な皮膜とはいえない状態を示した。
【0054】
これに対して、Niの無電解めっき膜を被覆してなる非混合形サーメット溶射用粉末材料を用いた溶射皮膜(No.2、4、6、8、10、12)は、アンダーコートの有無に関係なく、減圧プラズマ溶射皮膜で0.2〜2.2%、大気プラズマ溶射皮膜では3〜6%、さらに高速ガスフレーム溶射皮膜でも正常な機能を有するサーメット溶射皮膜の外観を有し、その気孔率も4〜9%の範囲内にあることが確認された。
【0055】
以上の結果から、A1
2O
3粉末のみの材料では、高温のプラズマ熱原中では、溶融状態となって基材面に衝突し粉末が相互に融合し合うが、高速フレーム溶射熱源の灯油など化石燃料の燃焼フレーム中では温度が低いうえ、この中を飛行するA1
2O
3粉末の飛行速度が大きいため、十分な加熱時間が得られず溶融することなく、基材表面に堆積した結果であることがうかがえる。
【0056】
これに対して、A1
2O
3粉末の表面にNi無電解めっき膜を被覆してなる溶射粉末材料を用いて溶射した例では、A1
2O
3粉末自体は溶融しなくても、表面のNi無電解めっき膜が完全に溶融状態となって基材表面に衝突し、Ni無電解めっき膜の流動性、粘着性によって、比較的有効度の低い皮膜を形成したものと考えられる。
【0057】
一方、前記溶射皮膜の密着力は、A1
2O
3粉末表面にNi無電解めっき膜を被覆してなる溶射用粉末材料を用いて形成した溶射皮膜は、大気プラズマ溶射皮膜で55〜62MPa、減圧プラズマ溶射皮膜で58〜69MPa、高速フレーム溶射皮膜でも45〜53MPaに達し、良好で、十分実用化できるほどの密着力を有することが認められた。
【0058】
これらの結果から、A1
2O
3粉末の表面にNi無電解めっき膜を被覆した溶射用粉末材料については、成膜可能な溶射法の利用範囲が拡大できるとともに、Ni無電解めっき膜がアンダーコートとしての作用機能をも有していることが明らかとなった。
【0059】
【表3】
【0060】
(実施例
2)
この実施例では、酸化物系セラミック粉末表面にNi無電解めっき膜を被覆した粉末を用いて溶射皮膜して得られた溶射皮膜の耐熱衝撃性を調べた。
(1)供試皮膜
:Y2O
3、YAGなどの酸化物系セラミック粒子(粒径20〜45μm)の表面に無電解めっき法によってNiの膜を1.5μmの厚さに被覆したものを、大気プラズマ溶射法によって、SUS304鋼(寸法:幅30mm×長さ50mm×厚さ3.2mm)基材上に150μmの厚さに施工した。この際、溶射皮膜を基材の表面に直接溶射したものと、Ni−20mass%Cr合金のアンダーコート(80μm)を施工したものを準備した。
(2)熱衝撃試験:供試皮膜の熱衝撃試験は、皮膜試験片を電気炉中で500℃×20分間加熱後、炉外に取り出して送風機で、室温(25℃)まで冷却する操作を1サイクルとして計10サイクルの試験を行った。1サイクル毎に皮膜表面を目視及び拡大鏡(8倍)を用いて視察し、皮膜の割れ、剥離などの有無を調査した。
(3)試験結果:試験結果を表4に要約した。この結果から明らかなように、アンダーコートがなく、また、酸化物系セラミック粒子のみからなる溶射用粉末材料を用いて形成した比較例の溶射皮膜(No
.4、6)は、6〜7サイクルの熱衝撃試験によって皮膜の一部に割れが発生したり、剥離する現象が見られるが、セラミック粒子表面にNi膜を被覆した本発明に係るサーメット溶射用粉末材料を用いて形成された溶射皮膜(No
.3、5)には、剥離は認められず、優れた耐熱衝撃性を発揮した。一方、アンダーコートを施工した溶射皮膜(No.
9〜12)では、すべて10サイクルの熱衝撃性に耐え、皮膜の剥離は全くなかった。これらの結果から、本願発明に適合するサーメット溶射皮膜は、アンダーコートの役割りをも果たしていることが推定される。
【0061】
【表4】
【0062】
(実施例
3)
この実施例では、Ni無電解めっき膜を被覆したものと被覆しないサーメット溶射用粉末材料を用いて形成した溶射皮膜の耐食性を調査した。
(1)供試皮膜:本発明に適合するものとしては、SS400鋼(寸法:幅50mm×長さ70mm×厚さ3.2mm)の基材の表面に、YAG、Y
2O
3、CeO
2セラミック粉末の表面に無電解めっき法によって、Ni、Ni−4.9〜5.0P、Ni−4.0〜4.9B合金をそれぞれ1.3μm被覆した粉末を成膜材料として、大気プラズマ溶射法によって膜厚150μmの皮膜を形成した。また、比較例の皮膜として、Ni、Ni−20mass%Cr合金などの溶射皮膜とともに、無処理のSS400鋼を準備した。
(2)腐食試験方法:皮膜の耐食性は、JIS Z2371規定の塩水噴霧試験方法により、連続96時間の試験を行い、その表面を目視観察によって赤さびの発生状況から、皮膜の耐食性を評価した。
(3)試験結果:試験結果を表5に要約した。この結果から明らかなように、溶射用粉末材料の種類にかかわらず、セラミック粒子を用いて形成した溶射皮膜(No.4、8、12)では、すべて赤さびの発生が多く、皮膜の気孔を通じて内部へ侵入した塩水によって、基材のSS400鋼が腐食され、その腐食生成物としての赤さびが皮膜表面にまで達したものと考えられる。このような赤さびの発生は、比較例のNiやNi−Cr合金皮膜(No.13、14)にも認められた。これに対して、Ni無電解めっき膜、Ni−Cr合金無電解めっき膜を被覆してなる本発明に係るサーメット溶射用粉末材料を用いて形成した溶射皮膜(No.1〜3、5〜7、9〜11)では、赤さびは発生するものの、その発生状況は極めて小さく、点状の赤さびは1〜2点発生する程度にとどまっていた。この効果は、実施例1(表2)における溶射皮膜の気孔率の低下に起因しているものと思われる。
【0063】
【表5】
【0064】
(実施例
4)
この実施例では、大気プラズマ溶射法と減圧プラズマ溶射法によって形成した各種の溶射皮膜について、活性化されたハロゲンガスに対する耐食性を調査した。
(1)供試基材:SS400鋼を寸法 幅20mm×長さ30mm×厚さ3.2mmになるように切り出し、これを基材とした。
(2)供試皮膜:セラミック粒子とし
てY2O
3、YAGを用い、本発明に適合するものとしてそれぞれの粒子の表面に無電解めっき法によって、Ni無電解めっき膜を1.5μmの厚さに被覆したものを用い、大気プラズマ溶射法と減圧プラズマ溶射法によって基材表面に厚さ130μmの皮膜を形成した。なお、比較用の溶射皮膜としてセラミック粒子のみからなる溶射用粉末材料てに溶射皮膜を作製した。
(3)腐食試験方法および腐食条件
図3は、腐食試験装置の構成概略図を示すものであって、この装置は、試験片31を電気炉32の中心部を貫通するステンレス鋼製試験管33内部(試験片設置台36の上)に静置した後、腐食性のガス34を、試験管33の左側から流すようにしてなるものである。試験に際しては、試験管33途中に設けた石英放電管35に出力600Wのマイクロ波を負荷させ、前記腐食性ガスの活性化を促すようにしている。活性化した腐食性のガスは電気炉中に導かれ、試験片設置台36上に静置された試験片31を腐食した後、試験管33右側から系外に放出される。このような構成を有する腐食試験装置を用い、試験片温度120℃、腐食性ガスCF
4を150ml/min、O
2を75ml/minを流しつつ、10時間の腐食試験を行った。この腐食試験の特徴は、腐食性のCF
4ガスがプラズマ照射によって励起されて、CF
4の一部が原子状のFとなって、一段と強い腐食性ガスに変化する環境における耐食性を評価しようとするものである。上記腐食試験後の試験片を、湿度95%温度35℃の恒湿槽中において48時間放置し、皮膜表面の外観変化を観察することによって、その耐食性を評価した。
(4)試験結果:試験結果を表6に要約した。この結果から明らかなように
、Y2O
3、YAGなどの酸化物系セラミックのみからなる溶射用粉末材料を用いて形成した溶射皮膜(No
.4、6
、10、12)は腐食量が0.5〜0.9mg/cm
2の範囲にあった。一方、Niめっき膜を被覆したサーメット溶射粉末材料を用いて形成された溶射皮膜(No
.3、5
、9、11)では0.1〜0.2mg/cm
2の腐食量を示し、優れた耐食性を発揮している状況が確認された。
【0065】
このような結果から
、Y2O
3、YAGなどの粒子を溶射して得られた溶射皮膜では、酸化物系セラミック自体の耐食性は認められるものの、皮膜の気孔部から内部へ侵入した活性化ハロゲンガスによって基材が腐食されるのに対して、これらの粒子表面にNiの無電解めっき膜を被覆したサーメット溶射粉末材料によって形成された溶射皮膜では、活性化されたハロゲンガスが内部へ侵入するための気孔が少ないため溶射皮膜の保護が図られたものと考えられる。
【0066】
【表6】
【0067】
(実施例
5)
この実施例では、本発明適合例として、セラミック粒子の表面にNiの無電解めっき膜を被覆してなるサーメット溶射用粉末材料を用い、比較例としてはめっき膜を有しない粉末材料を用いて形成した溶射皮膜について、それぞれの耐プラズマエロージョン性を調べた。
(1)供試皮膜:実施例
3とに同じ溶射皮膜を用いたが、比較例としてB
4Cセラミック溶射皮膜を追加した。
(2)プラズマエロージョン試験:供試皮膜の表面を10mm×l0mmの範囲が露出するように、他の部分をマスクし、下記条件にて20時間照射してプラズマエロージョンによる損傷量を減肉厚さとして求めた。
ガス雰囲気と流量条件
CF
4、Ar、O
2の混合ガスを用い1分間当たり、CF
4(100cm
3)/Ar(1000cm
3/O
210cm
3)の割合で流した。
プラズマ照射出力
高周波電力:1300W、環境圧力:133.3Pa
(3)試験結果:試験結果を表7に要約した。この結果から明らかなように、大気プラズマ溶射法及び減圧プラズマ溶射法で形成された本願発明に適合する方法で形成した溶射皮膜(No
.3、5
、9、11)は、比較例(セラミック粒子のみを溶射)である溶射皮膜(No
.4、6
、10、12)に比較して遜色のない耐プラズマエロージョン性を示した。また、これらの結果から、溶射成膜時あるいは、成膜後の表面加工時に、セラミック粒子の表面に被覆したNi無電解めっき膜などが局部的に破壊されたり、機械加工によって研削されてセラミック粒子が露出した場合においても、Ni無電解めっき膜とセラミック粒子の両者が耐プラズマエロージョン性に優れているので、ハロゲン系ガス環境下における耐食性及び耐プラズマエロージョン皮膜としての機能を発揮することがわかる。
【0068】
【表7】