【実施例】
【0183】
下記の例示の実施例は、制限的であることを意図するものではなく、また制限的なものと考えてはならない。例えば、本明細書に示される各化合物において、リンカーを形成する際に使用されるアミノ酸の立体化学は、随意に、天然のL型から、または、非天然のD型から選ばれてよい。各実施例は、表示されるようにNMR、MS、および/またはUV分光光度計測、および/またはHPLCによってその特性が解明され、選択された特性信号は適宜注記される。
【0184】
[実施例1]
ジエチレントリアミン葉酸、γ-アミド(DETA-葉酸塩)は、P. Fuchs et al., J. Am. Chem. Soc., 1997, 119, 10004によって記載される工程に従って合成された。なお、この開示を引用することにより本明細書に含める。この化合物(100 mg)を、2 mLの0.1N HClに溶解した。得られた溶液を、1 mLの0.1N HClに溶解したK
2PtCl
4(158 mg)溶液に攪拌しながら加えた。3 mLのDMSOを加え、攪拌を3日間続け、溶液をろ過し、ろ液をアセトニトリルで沈殿させたところ、170 mgの黄色粉末が得られた。MS(MALDI) 1249.92, 1286.27;
1H NMR(D
2O)δ1.05(t, 1H), 2.3(t, 2H), 3.1(t, 2H), 4.45(m, 1H), 6.65(d, 2H), 7.5(d, 2H), 8.65(s, 1H)。
【0185】
[実施例2a]
N
10-トリフルオロアセチル保護葉酸含有ペプチジル断片N
10-TFA-Pte-Glu-Glu-Lys-OHを、スキーム12に一般的に示すように、Fmoc-策を用いたポリマー支持継続法によって調製した。これは、酸感受性のFmoc-Lys(Boc)-Wang樹脂の上で合成した。低当量のアミノ酸による効率的結合を確保するためにPyBopを活性化試薬として与えた。各結合工程の後で、標準条件下(DMFに溶解した20%ピペリジン液)にFmoc保護基を除去した。保護されたアミノ酸建設ブロックとしてFmoc-Glu-OtBuおよびN
10-TFA-Pte-OHを用いた。最後の集合工程の後で、ペプチドを、トリフルオロ酢酸、エタンジチオール、およびトリイソプロピルシランで処理することによってポリマー支持体から分断した。この反応では、t-Buとt-Boc保護基の同時除去も実現された。この未精製ペプチドを、分取HPLCによって精製したところ、N
10-TFA-Pte-γGlu-γGlu-Lys-OHがTFA塩として得られた。このペプチド81 mg(0.1 mmol)を2 mL DMSOに溶解した溶液を、15 μL(0.11 mmol)のEt
3Nおよび35 mg(0.1 mmol)のマイトマイシンAで処理した。マイトマイシンAは、M. Matsui, Y. Yamada, K. Uzu, and T. Hirata, J. Antibiot. 21, 189-198(1968)およびD. Vias, D. Benigni, R. Partyka, and T. Doyle, J. Org. Chem. 51, 4307-4309(1986)の処理工程に従ってマイトマイシンCから調製してもよい。なお、これらの開示を引用することによって本明細書に含める。反応混合物は、室温で48時間攪拌し、溶媒を凍結乾燥によって除去した。別様に注記しない限り、溶媒の蒸発は全て減圧下で行った。最後に、トリフルオロアセチル保護基は、水酸化アンモニウム水溶液(pH=10.0)で分離し、産物をアセトニトリル中で沈殿させたところ102 mgの結合体が黄色固体として得られた。
1H NMR(D
2O)δ2.45(q, 1H), 2.95(m, 2H), 3.35(dd, 1H), 3.5(d, 1H), 6.5(d, 2H), 7.55(d, 2H), 8.55(s, 1H)。
【0186】
[実施例2b]
N
10-トリフルオロアセチル保護葉酸含有ペプチジル断片N
10-TFA-Pte-Glu-Glu-Cys-OHを、スキーム12に一般的に示すように、また、実施例2aに記載されるようにFmoc-策を用いたポリマー支持継続法によって調製した。シスタミンをマイトマイシンAと反応させたところ(Matsui, et al., J. Antibiot. 21, 189-198(1968); Vias, et al., J. Org. Chem. 51, 4307-4309(1986)参照)、末端に遊離アミノ酸を有するジスルフィド含有マイトマイシンC誘導体が得られた。これをレブリン酸と結合させ、その後、カルボニル基をマレイニド誘導アシルヒドラジドと反応させた。得られたマイケルアクセプターとN10-TFA-Pte-Glu-Cys-OHを反応させ、水酸化アンモニウム水溶液(pH=10.0)でトリフルオロアセチル保護基を除去し、アセトニトロル中で沈殿させたところ、最終的な結合体が得られた。MS(MALDI) 1059.04, 1148.44, 1225.32, 1300.8;
1H NMR(D
2O)δ1.8(d, 2H), 1.9(s, 1H), 2.3(q, 1H), 2.45(q, 1H), 2.9(t, 1H), 3.35(dd, 1H), 4.45(s, 1H), 4.5(dd, 1H), 6.65(d, 2H), 7.55(d, 2H), 8.6(s, 1H)。
【0187】
[実施例3]
T-2トキシンの中間体マレイミドp-メトキシベンジリデンアセタールを、市販のN-(2-ヒドロキシエチル)マレイミドから出発して合成した。そのヒドロキシル基を、穏やかな塩基として塩化メチレン中で酸化銀(I)の存在下にp-メトキシベンジルクロリド(1.2 eg.)と反応させた。未精製産物をシリカカラムで精製した。得られたp-メトキシベンジルエーテルを、OH含有T-2トキシン(1 eg.)の存在下に1.5 eg.の2,3-ジクロロ-5,6-ジシアノ-ベンゾキノン(DDQ)によって酸化処理したところ、所望のp-メトキシベンジリデンアセタールが、安定化p-メトキシベンジルカルベニウム中間体を介して得られた。
【0188】
もう一方の反応相手、Pte-γ-Glu-Arg-Asp-Cys-OHを、Fmoc策を用いたポリマー支持継続法によって調製した。これを、酸感受性H-Cys(4-メトキシトリチル)-2-クロロトリチル樹脂の上で合成した。低当量のアミノ酸による効率的結合を確保するためにPyBopを活性化試薬として与えた。保護されたアミノ酸建設ブロックとしてFmoc-Asp(OtBu)-OH、Fmoc-Arg(Pbf)-OH、Fmoc-Glu-OtBu)およびN
10-TFA-Pte-OHを用いた。各結合工程の後で、標準条件下(DMFに溶解した20%ピペリジン液)にFmoc保護基を除去した。最後の集合工程の後で、ペプチドを、トリフルオロ酢酸、エタンジチオール、およびトリイソプロピルシランで処理することによってポリマー支持体から分断した。この反応では、t-Buとt-Boc保護基の同時除去も実現された。この未精製ペプチドを、分取HPLCによって精製したところ、N
10-TFA-Pte-γ-Glu-Arg-Asp-Cys-OHが得られた。トリフルオロアセチル保護基は、水酸化アンモニウム水溶液(pH=10.0)中で分離した。
【0189】
最後に、標的とするp-メトキシベンジリデンアセタール連結葉酸-薬剤結合体を、アルゴン下に、ペプチドのバッファー水溶液(pH=7.0)を、T2トキシンのマレイミド含有アセタールの等モルアセトニトリル溶液と混合することによって調製した。室温で1時間攪拌後、最終結合体を分取HPLCで精製したところ、収集分画の凍結乾燥後に黄色粉末が得られた。MS(m+H)
+ 1541.3;
1H NMR(DMSO-d
6)δ0.1(s, 1H), 0.55(d, 2H), 0.9(dd, 3H), 1.65(s, 1H), 2.0(d, 1H), 3.75(d, 2H), 5.25(d, 1H), 6.65(d, 2H), 6.9(d, 2H), 7.3(t, 2H), 7.65(d, 2H), 8.65(s, 1H)。
【0190】
[実施例4a]
[実施例4b]
[実施例4c]
実施例4a、4bおよび4cの化合物は、アシルアジリジンは、市販の適当なN-(アルカン酸)マレイミドによってマイトマイシンAをアシル化すること(スキーム1参照)によって調製されたことを除いては、一般に実施例3で記載した工程に従って調製した。
【0191】
[実施例5]
塩基として2.2 eg. NaHCO
3、および、溶媒としてアセトニトリル/水(l/l)の存在下に、trans-4-アミノシクロヘキサノール塩酸を、等モル量のFmoc-OSuと反応させると、N-Fmoc保護アミノアルコールが得られた。これをSwernの条件(Synthesis, 1981, 165)を用いて酸化して対応するN-Fmoc-保護アミノケトンを得た。4 eq.のメチルオルトギ酸および触媒量のトリフルオロ酢酸によってケタール化したところ、N-Fmoc-保護アミノケタールが定量的収率で得られた。このケタールを、等モル量のトリメチルシリルトリフルオロメタンスルフォネートおよび2,4,6-トリ-t-ブチル-ピリジンで処理したところ、産物として、4-Fmoc-アミノシクロヘキシルエノールエーテルが得られた。次の工程で、薬剤T-2トキシンを、分子ふるい(3オングストローム)および触媒量のトリフルオロ酢酸の存在下に、4倍過剰量のエノールエーテルで処理した。得られた非対称混合ケタールをシリカで精製した。Fmoc保護基は、DMF中で樹脂結合ピペリジンによる処理で除去した。解放されたアミノ酸は、1.1 eg.のヒューニッヒ塩基の存在下に1.1 eg.のマレイミド酢酸-NHS-エステルと反応させた。T-2トキシンのマレイミド含有ケタールをシリカの上で精製した。
【0192】
葉酸含有ペプチド断片、Pte-γ-Glu-β-Dap-Asp-Cys-OHは、スキーム12に一般的に記載されるように、Fmoc策を用いたポリマー支持継続法によって調製した。Fmoc-L-Cys(Trt)-OHを負荷した、酸感受性Wang樹脂の上で合成した。低当量のアミノ酸による効率的結合を確保するためにPyBopを活性化試薬として与えた。各結合工程の後で、標準条件下(DMFに溶解した20%ピペリジン液)にFmoc保護基を除去した。保護されたアミノ酸建設ブロックとしてFmoc-Asp(OtBu)-OH、Boc-Dap(Fmoc)-OH、Fmoc-Glu-OtBu、およびN10-TFA-Pte-OHを用いた。最後の集合工程の後で、ペプチドを、トリフルオロ酢酸、エタンジチオール、およびトリイソプロピルシランで処理することによってポリマー支持体から分断した。この反応では、t-Bu、t-Boc、およびトリチル保護基の同時除去も実現された。最後に、トリフルオロアセチル基を水酸化アンモニウム水溶液中で分離したところ、所望のチオール含有ペプチドが得られた。この未精製ペプチドを、分取HPLCにて精製した。
【0193】
最後に、標的とするケタール連結葉酸-薬剤結合体を、アルゴン下に、ペプチドのバッファー水溶液(pH=7.0)と、T-2トキシンのマレイミド含有ケタールの等モル量アセトニトリル溶液とを混合することによって調製した。室温で1時間攪拌した後、最終結合体を分取HPLCで精製したところ、収集画分の凍結乾燥後に黄色粉末が得られた。ES MS(m-H)
- 1474.5, (m+H)
+ 1476.2, (m+Na)
+ 1498.3。
【0194】
[実施例6]
エチレンジアミン葉酸、γ-アミド(EDA-葉酸塩)は、P. Fuchs et al.(J. Am. Chem. Soc., 1997, 119, 10004、例えば、本論文に記載される化合物52の合成を参照)によって記載される工程に従って合成された。なお、この開示を引用することにより本明細書に含める。EDA葉酸塩(600 mg)を、5 mLの無水DMSOに懸濁させた。60℃で4時間攪拌後、得られた溶液を20℃に冷却し、4 eg.の1,2,4,5-ベンゼンテトラカルボン酸無水物(無水BTCA)を加えた。5分後、反応混合液を、よく攪拌した無水アセトニトリルに注入した。得られた沈殿を遠心によって単離したところ、657mgのBTCA(一無水物)-EDA-葉酸塩が得られた。
【0195】
乾燥DMSOに溶解したダウノマイシンのよく攪拌された溶液に、固体のBTCA(一無水物)-EDA-葉酸塩(1.5 eg.)を添加した。さらに14時間攪拌後、50%のダウノマイシンが未反応のまま残り(HPLC)、1.5 eg. BTCA(一無水物)-EDA-葉酸を加えた。さらに4時間攪拌した後、ダウノマイシンは全て消費された。HPLCプロフィールにおいて、二つの新しいピークが観察された。これらは、保持時間が近接しており、最終結合体の二つの位置異性体を表していた。未精製産物をアセトニトリル中の沈殿後に単離し、逆相HPLCによってさらに精製した。産物の構造は、ES MS(m-H)
- 1227.1に一致した。
【0196】
[実施例7]
アルゴン下0℃にて、4 mLの無水ジクロロメタンに溶解した250 mg(0.25 mmol)のパクリタクセルおよび130 μL(0.73 mmol)のヒューニッヒ塩基のよく攪拌された溶液に、85 μL(0.8 mmol)のAlloc-Clをゆっくりと加えた。さらに12時間攪拌を続け、産物を、標準的抽出法によって単離した。この白色粉末、2’-alloc-パクリタクセルを、これ以上精製することなく次の工程に用いた。
【0197】
この工程では、108 mg(0.117 mmol)の2’-alloc-パクリタクセルを、1.0 mLの無水アセトニトリルに溶解した。アルゴン下攪拌しながら、25 mg(0.117 mmol)の1,2,4,5-ベンゼンテトラカルボン酸無水物(無水BTCA)および21 μL(0.120 mmol)のヒューニッヒ塩基をこの溶液に加えた。攪拌をさらに2.5時間続けた。別の反応フラスコで、52 mgのEDA-葉酸を60℃で、全物質が溶解するまで攪拌した(約60分)。室温に冷却後、前の反応混合液をこの溶液に添加し、攪拌をさらに2時間続けた。反応混合液を、アセトニトリル/ジエチルエーテル(20:80)のよく攪拌された混合液に滴下により加えた。黄色沈殿を遠心によって分離し、さらに分取HPLCによって精製した。この産物の構造は、1Dおよび2D(COSY)1H-NMRスペクトル;ES MS(m+H)
+ 1555.5と一致した。
【0198】
[実施例8]
1.0 eg.のアクラマイシン、2.0 eg.のヒドラジド-[3-(2-ピリジルジチオ)プロピオネート](SPDP-ヒドラゾン)、および、数結晶のピリジニウムp-トルエンスルフォネートから成る混合物を、アルゴン下、無水メタノールに攪拌しながら溶解した。この反応混合液を室温で8時間攪拌した。溶媒を蒸留乾固した。残渣を、あらかじめクロロフォルム/メタノール(90:10)に溶解させた1.5%トリエチルアミンで前処理したシリカカラムにて精製した。得られたアクラマイシンアシルヒドラゾンを、最少量のアセトニトリルに溶解した。得られた溶液に、等モル量のPte-γ-Glu-Cys-OH(水に溶解させ、pH=6.8に調整)をアルゴン下ゆっくりと加えた。このPte-γ-Glu-Cys-OHの調製は、実施例2aに記載する工程と似ており、一般にスキーム12に記載される。ジスルフィド交換反応は10分を要した。この反応溶液を、過剰量のアセトニトリルにゆっくりと加え、得られた沈殿を遠心にて単離した。沈殿を、もう一度アセトニトリルに再懸濁し、15分攪拌後遠心にて分離した。高真空にて一晩乾燥した後では、最終結合体は十分に純粋であった(HPLC); ES MS(m+H)
+ 1474.1。
【0199】
[実施例9a]
1.0 eg.のアクラマイシンと1.2 eg.のβ-マレイミドプロピオン酸・TFAの混合物を、アルゴン下、無水メタノールに攪拌しながら溶解した。この反応混合液を室温で1時間攪拌した。溶媒を蒸留乾固した。残渣を、あらかじめクロロフォルム/メタノール(90:10)に溶解させた1.5%トリエチルアミンで前処理した短いシリカカラムにて精製した。別のフラスコで、ペプチド断片Pte-γ-Glu-γ-Glu-Cys-OHを、pHを6.8に調節しながら、アルゴン下に水に溶解した。このPte-γ-Glu-γ-Glu-Cys-OHの調製は、実施例2aに記載する工程と似ており、一般にスキーム12に記載される。得られた黄色味を帯びた溶液に、最少量のメタノールに溶解させたアクラマイシンのマレイミドヒドラゾンをゆっくりと加えた。この反応混合液をアルゴン下1時間攪拌した。メタノールを除去し、残渣を、HPLCの分取カラムにて精製し、その後凍結乾燥した; ES MS(m+H)
+ 1722.3。
【0200】
[実施例9b]
[実施例9c]
実施例9bと9cの化合物は、実施例9aに一般的に記載される工程に従って、ドキソルビシン(14-ヒドロキシダウノマイシン)誘導体から調製された。
【0201】
[実施例10a]
極めて強力な細胞傷害性薬剤ビス-インドリル-seco-1,2,9,9a-テトラヒドロシクロプロパ[c]ベンズ[e]インドール-4-オン(ビス-インドイル-seco-CBI)の5’’-(N-Boc)アミノ類縁体を、最初に、D. Boger et al., J. Org. Chem., 1992, 57, 2873によって記載されたもののやや修飾された工程に従って調製した。なお、この開示を引用することにより本明細書に含める。
【0202】
ペプチド断片、Pte-γ-Glu-Asp-Arg-Asp-Cys-OHは、スキーム12に一般的に記載されるように、Fmoc策を用いたポリマー支持継続法によって酸感受性H-Cys(4-メトキシトリチル)-2-クロロトリチル樹脂上で調製した。低当量のアミノ酸による効率的結合を確保するためにPyBopを活性化試薬として与えた。保護されたアミノ酸建設ブロックとしてFmoc-Asp(OtBu)-OH、Fmoc-Arg(Pbf)-OH、Fmoc-Glu-OtBu、およびN
10-TFA-Pte-OHを用いた。各結合工程の後で、標準条件下(DMFに溶解した20%ピペリジン液)にFmoc保護基を除去した。最後の集合工程の後で、ペプチドを、トリフルオロ酢酸、エタンジチオール、およびトリイソプロピルシランで処理することによってポリマー支持体から分断した。この反応では、t-Bu、およびt-Boc保護基の同時除去も実現された。この未精製ペプチドを、分取HPLCにて精製したところ、N
10-Pte-γ-Glu-Asp-Arg-Asp-Cys-OHが得られた。トリフルオロアセチル保護基は、水酸化アンモニウム水溶液(pH=10.0)中で分離した。
【0203】
Lev-Val-OHは、バリンメチルエステル塩酸を、EDCとヒューニッヒ塩基の存在下に縮合し、その後メチルエステルを、水酸化リチウムと水で加水分解することを含む、標準的プロトコールを用いて合成した。
【0204】
複合した結合体の最終集合は、5’’-(N-Boc)アミノ-ビス-インドリル-seco-CBIのN-Boc基の除去と、EDCの存在下に、解放されたアミノ基とLev-Val-OHのカルボキシ官能基との結合で始まった。アシルヒドラゾン形成は、テトラヒドロフランにおけるレブリン酸成分のケトン官能基と1.2 eg.のβ-マレイミドプロピオン酸・TFAとのテトラヒドロフラン中での反応によって実現された。クロマトグラフィーによる精製後(シリカ、THF/ヘキサン=1/1)、前述の反応の産物をDMSOに溶解した。この溶液に、アルゴン下、0.9 eg.のPte-γ-Glu-Asp-Arg-Asp-Cys-OHを加え、反応混合液を18時間攪拌した。溶媒を凍結乾燥にて除去し、残渣をHPLCにて精製した。
【0205】
[実施例10b]
[実施例10c]
実施例10cおよび10cの化合物は、実施例10aに一般的に記載した工程に従って、5’’-(N-Boc)アミノ-ビス-インドリル-seco-CBIの誘導体から調製した。
【0206】
[実施例11]
炭酸カリウムの存在下に、2-メルカプトエタノールのS-アルキル化を臭化アリルによって実現した。得られたアリルβ-ヒドロキシエチルスルフィドのヒドロキシル基を、塩化チオニルによって塩素と交換した。この産物を、酢酸と無水酢酸の存在下に過酸化水素で酸化すると(J. Am. Chem. Soc., 1950, 72, 59、なお、この開示を引用することにより本明細書に含める)、アリルβ-クロロエチルスルフォンが得られた。この産物を、触媒量の白金6塩化水素酸(IV)の存在下に高温でクロロジメチルシランと反応させると、分留後、3-(β-クロロエチルスルフォニル)プロピルジメチルシリルクロリドが得られた。このクロロシランは、1 eg.のピリジンを塩基として用いると、高い細胞傷害性を持つ化合物リゾキシンのヒドロキシル基をシリル化した。この分子のβ-クロロエチルスルフォン基を、過剰なトリエチルアミンによって処理すると、塩化水素の滑らかなβ-除去が達成され、それぞれのビニールスルフォンが形成された。
【0207】
もう一方の反応相手、ペプチド断片Pte-γ-Glu-Arg-Asp-Cys-OHは、実施例2aとスキーム12に一般的に記載されるように、Fmocプロトコールを用いたポリマー支持継続法によって調製された。
【0208】
複合した結合体の最終集合は、リゾキシンに付着したシリコンリンカーのビニールスルフォン基に対して、ペプチド断片のチオール基をマイケル付加することによって実現された。この変換の反応溶媒は、50:50アセトニトリル/水(pH=7.2)であった。室温で24時間攪拌後、最終結合体を、HPLCの分取カラムにて単離した。ES MS(m+H)
+ 1631.6; (m-H)
- 1629.6。
【0209】
[実施例12]
このリゾキシンのシリコン連結結合体は、クロロジメチルシランの代わりに市販のクロロメチルフェニルシランを用いたことを除いては、実施例11に記載するプロトコールを用いて合成した。
【0210】
[実施例13]
===システインジスルフィド結合を含む化合物の一般的調製===
Ranasinghe and Fuchs, Synth. Commun. 18(3), 227-32(1988)の方法(この開示を引用することにより本明細書に含める)に従って調製されたチオスルフォネート4(1 eq.)を、薬剤、薬剤類縁体、または、薬剤誘導体5(1 eq.)と反応させて、スキーム13に示すように、メタノール溶液として薬剤チオスルフォネート6を調製する。式中、Rはアルキルまたはアリールであり、Lは適当な脱離基、例えば、ハロゲン、ペンタフルオロフェニル等であり、nは1から4までの整数であり、Xは-O-、-NH-、-C(O)O-、または-C(O)NH-である。変換は、各開始材料の消失をTLC(シリカゲル;CHCl
3/MeOH=9/1)で観察することによって監視される。
スキーム13
【0211】
葉酸含有ペプチジル断片Pte-Glu-(AA)n-Cys-OH(9)は、スキーム14に示すように、酸感受性Fmoc-Cys(Trt)-Wang樹脂(7)上でFmoc策を用いるポリマー支持継続法によって調製した。R
1はFmocであり、R
2はトリチルであり、DIPEAはジイソプロピルエチルアミンである。PyBopは、効率的結合を確保するための活性化試薬として与えられる。各結合工程の後、標準条件下でFmoc保護基を除去する。適当に保護されたアミノ酸建設ブロック、例えば、Fmoc-Glu-OtBu、N
10-TFA-Pte-OH等が、スキーム14に記載するように、また、工程(b)においてFmoc-AA-OHによって表されるように用いられる。従って、AAは、適当に保護されたアミノ酸開始材料を指す。Fmoc-AA-OHを含む結合手順(工程(a)および(b))は、”n”回繰り返されて、固相支持ペプチド8を調製する。式中nは整数であり、0から約100に等しい。最後の結合工程後、残余のFmoc基を除去し、順次ペプチドを、グルタミン酸誘導体に結合させ(工程(c))、脱保護し、TFA保護プテロイン酸に結合させる(工程(d))。次に、ペプチドを、トリフルオロ酢酸、エタンジチオール、およびトリイソプロピルシランで処理することによってポリマー支持体から分離する(工程(e))。この反応条件により、t-Bu、t-Boc、およびTrt保護基の同時除去が実現される。TFA保護基は、塩基処理によって除去され(工程(f))、葉酸含有Cys含有ペプチジル断片9を与える。
スキーム14
(a)20%ピペリジン/DMF; Fmoc-AA-OH, PyBop DIPEA, DMF;(c)Fmoc-Glu(O-t-Bu)-OH, PyBop,DIPEA, DMF; (d)1. N
10(TFA)-Pte-OH; PyBop,DIPEA, DNSO; (e) TFAA, (CH
2SH
2)
2, i-Pr
3SiH; (f) NH
4OH, pH10.3。
【0212】
薬剤結合体は、葉酸誘導体9(0.9-0.95 eq.)を、脱イオン水に溶解させた薬剤チオスルフォネート6(0.04M、pHを0.1 N NaHCO
3で7に調節)と、アルゴン下で約30分反応させ、ジスルフィド結合を形成させて調製する。メタノールを減圧蒸留後、結合体を、分取HPLC(Prep Novapak HR C18 19 X 300 mMカラム;展開相(A)−1.0mMリン酸バッファー、pH=6;有機相(B)−アセトニトリル;条件−勾配、99%Aと1%Bから50%Aと50%Bまで30分;流速=15 mL/分)にて精製してもよい。
【0213】
[実施例14a]
1H NMR(DMSO-d
6)δ4.7(d, 1H), 4.95(d, 1H), 6.7(d, 4H), 6.9(t, 1H), 7.95(d, 2H), 8.1(d, 2H), 8.2(m, 1H), 8.3(s, 1H), 8.4(s, 1H), 8.7(s, 1H), 10.2(s, 1H), 11.8(d, 2H)。
【0214】
[実施例14b]
ES MS(m-H)
- 1436.4, (m+H)
+ 1438.3。
【0215】
[実施例14c]
1H NMR(DMSO-d
6/D
2O)δ1.0(s, 1H), 1.1(s, 1H), 1.6(s, 1H), 1.8(s, 1H), 2.1(s, 1H), 2.25(s, 3H), 2.65(dd, 2H), 3.7(d, 1H), 4.4(t, 1H), 4.55(q, 2H), 4.6(d, 2H), 4.95(d, 1H), 5.9(t, 1H), 6.15(s, 1H), 6.6(d, 2H), 7.85(d, 2H), 7.95(d, 2H), 8.6(s, 1H), 8.95(d, 1H)。
【0216】
[実施例14d]
1H NMR(DMSO-d
6/D
2O)δ1.0(s, 1H), 1.1(s, 1H), 1.65(s, 1H), 2.1(s, 1H), 2.25(s, 3H), 2.6(dd, 2H), 3.25(dd, 1H), 3.6(t, 2H), 3.7(d, 1H), 4.4(t, 1H), 4.6(d, 1H), 4.95(d, 1H), 5.9(t, 1H), 6.2(s, 1H), 6.6(d, 2H), 7.7(t, 1H), 7.9(d, 2H), 7.95(d, 2H), 8.6(s, 1H), 9.1(d, 2H)。
【0217】
[実施例14e]
1H NMR(DMSO-d
6/D
2O)δ10.85(d, 2H), 1.05(d, 2H), 1.2(d, 2H), 1.7(d, 2H), 3.95(d, 1H), 4.05(dd, 1H), 5.4(dd, 1H), 5.7(dd, 1H), 6.65(d, 2H), 7.6(d, 2H), 7.95(s, 1H), 8.65(s, 1H)。
【0218】
[実施例14f]
ES MS (m+H)
+ 1487.23;
1H NMR(DMSO-d
6/D
2O)δ0.9(t, 2H), 1.3(t, 2H), 2.15(t, 2H), 3.2(dd, 1H), 4.0(t, 1H), 4.15(q, 1H), 5.3(s, 2H), 5.5(s, 2H), 6.6(d, 2H), 7.0(s, 1H), 7.4(m, 2H), 7.55(d, 1H), 8.0(d, 2H), 8.6(s, 1H)。
【0219】
実施例14a、14b、14c、14d、14e、および14fは、下記の一般的手順によって調製した。-OH基を有する対応薬剤のよく攪拌された溶液(乾燥CH
2Cl
2または乾燥THFに溶解した1 eq.)に、6-(トリフルオロメチル)ベンゾトリアゾリル2-(2’-ピリジルジチオエチルカルボネート(1.3 eq.)およびNN-ジメチルアミノピリジン(1.5 eq.)をアルゴン下に加えた。この反応混合液を3時間攪拌し、ピリジルジチオ-誘導体薬剤をシリカクロマトグラフィーにて単離した(各サンプルについて>65%)。スキーム12に概略した一般的方法によって調製した対応ペプチジル断片(0.5 eq.)をDMSOに溶解した。得られた黄色透明液に、ピリジル-ジチオ誘導体薬剤を加えた。30分後、反応は完了し、結合体はHPLCにて精製した。実施例14eの場合、先ず、ペプチジル断片Pte-Glu-Asp-Arg-Asp-Asp-Cys-OHを水に溶解し、溶液のpHを、0.1N HClによって2.5に調節した。これによって、ペプチジル断片は沈殿した。このペプチジル断片を遠心によって収集し、乾燥し、DMSOに溶解して、つぎの、ピリジルジチオ-誘導体薬剤との反応に備えた。
【0220】
[実施例15]
SN38(10-ヒドロキシ-7-エチルカンプトテシン)の、中間体4-(2-ピリジニルジチオ)ベンジルカルボネートを、P. Senter et al., J. Org. Chem. 1990, 55, 2875によって記載される手順に従って調製した。なお、この開示を引用することにより本明細書に含める。ペプチジル断片Pte-Glu-Asp-Arg-Asp-Cys-OHをDMSOに溶解し、得られた黄色透明溶液に、ピリジルジチオ誘導体薬剤を加えた。30分後反応は完了し、結合体はHPLCにて精製した。ES MS (m+H)
+ 1425.38;
1H NMR(DMSO-d
6/D
2O)δ0.9(t), 1.15(t), 3.9(t), 4.0(t), 4.25(t), 5.1(m), 5.2(s), 5.4(s), 6.55(d), 7.25(d), 7.35(d), 7.5(d), 7.9(d), 8.55(s)。
【0221】
[実施例16a]
[実施例16b]
実施例16aと16bの化合物は、スキーム12に記載される一般的手順に従って、ペプチジル断片Pte-Glu-Asp-Arg-Asp-Asp-Cys-OHから調製した。このペプチジル断片を、seco-CBI-ビス-インドールのマレイミド誘導体にマイケル添加したところ、葉酸結合体実施例16aが得られた。このペプチジル断片はさらに、チオスルフォネート、またはピリジルジチオ活性化ビンブラスチンと反応して実施例16bを形成した。seco-CBI-ビス-インドールのマレイミド誘導体、および、チオスルフォネートおよびピリジルジチオ活性化ビンブラスチン中間体は、他の実施例について本明細書で記載する方法を用いて調製した。
【0222】
[実施例17a]
デアセチルビンブラスチンモノヒドラジド(1 eq.)(Barnett et al., J. Med. Chem. 1978, 21, 88を参照、なお、この開示を引用することにより本明細書に含める)を、新鮮蒸留THF中で、1 eq.のトリフルオロ酢酸で処理した。10分間攪拌後、溶液を1.05 eq.のN-(4-アセチルフェニル)マレイミドで処理した。アシルヒドラゾン形成は45分で完了し、溶媒は留去した。スキーム12に概説した一般的方法に従って調製されたペプチジル断片Pte-Glu-Asp-Arg-Asp-Asp-Cys-OH(0.85 eq.)を水に溶解し、溶液のpHを、0.1N HClによって2.5に調節した。これによって、ペプチドは沈殿した。このペプチジル断片を遠心によって収集し、乾燥し、DMSOに溶解した。得られた黄色透明液に、ヒューニッヒ塩基(15 eq.)およびアシルヒドラゾンマイケル添加物を加えた。1時間後、最終的結合体をHPLCにて精製した。
【0223】
[実施例17b]
[実施例17c]
実施例17bと17cは、実施例17aに記載される手順に従って、対応するペプチジル断片とCBIのモノヒドラジド誘導体から調製した。
【0224】
実施例18-41の化合物は、実施例13に一般的に記載される手順に従って調製された。実施例18-41は、エレクトロスプレー質量分析(ES MS)、および、1Dおよび2D NMRおよびUVを含めた、その他の分光光度法によってその特性を明らかにした。
【0225】
[実施例18]
ES MS (m+H)
+ 1071.9, (m+Na)
+ 1093.9;
1H NMR(D
2O)δ2.6(t, 4H), 2.7(t, 4H), 4.15(s, 2H), 5.45(s, 2H), 7.75(d, 2H), 8.15(d, 2H), 8.9(s, 1H)。
【0226】
[実施例19]
UV(nm)233(max), 255, 280;
1H NMR(D
2O, NaOD, CD
3CN)δ1.15(d, 3H), 2.3(s, 3H), 3.6(s, 1H), 3.85(s, 3H), 4.9(s, 1H), 5.3(s, 1H), 6.5(d, 2H), 7.3(m, 1H), 7.5(d, 2H), 7.65(d, 2H), 8.4(s, 1H)。
【0227】
[実施例20]
ES MS (m-H)
- 935.6, (m+H)
+ 937.4, (m+Na)
+ 959.5。
【0228】
[実施例21]
1H NMR(D
2O, NaOD, CD
3CN)δ0.1(s, 1H), 1.1(s, 3H), 1.2(s, 3H), 1.75(s, 3H), 1.9(s, 3H), 2.05(s, 3H), 2.35(s, 3H), 3.3(dd, 2H), 3.8(d, 1H), 4.3(q, 2H), 4.9(d, 1H), 5.1(d, 1H), 5.4(q, 1H), 5.55(d, 1H), 5.65(d, 1H), 6.1(t, 1H), 6.35(s, 1H), 6.9(d, 2H), 7.9(d, 2H), 8.15(d, 2H), 8.7(s, 1H)。
【0229】
[実施例22]
【0230】
[実施例23]
ES MS (m-H)
- 1136.5。
【0231】
[実施例24]
ES MS (m-H)
- 1136.3, (m+H)
+ 1138.0。
【0232】
[実施例25]
ES MS (m+H)
+ 1382.3, (m+Na)
+ 1405.4。
【0233】
[実施例26]
ES MS (m-H)
- 1379.2, (m+H)
+ 1381.2。
【0234】
[実施例27]
ES MS (mH)
- 949.2;
1H NMR(D
2O)δ1.55(s, 3H), 1.95(m, 2H), 2.05(s, 3H), 2.45(s, 3H), 2.75(dd, 2H), 2.95(dd, 2H), 3.05(s, 3H), 3.3(dd, 2H), 3.35(d, 2H), 3.45(t, 2H), 4.85(q, 2H), 6.5(d, 2H), 7.45(d, 2H), 8.5(s, 1H)。
【0235】
[実施例28]
1H NMR(DMSO-d
6)δ1.5(s), 2.25(t), 2.75(m), 3.9(q), 4.6(d), 4.85(t), 6.6(d), 7.6(d), 7.9(d), 8.15(d), 8.25(t), 8.65(s), 8.7(m), 9.3(m), 10.2(t)。
【0236】
[実施例29]
ES MS (m-H)
- 1413.5, (m+H)
+ 1415.3。
【0237】
[実施例30]
ES MS (m+H)
+ 1530.2;
1H NMR(DMSO-d
6/D
2O)δ1.2(s, 1H), 2.9(t, 1H), 3.65(t, 1H), 4.15(t, 1H), 4.25(t, 1H), 4.35(t, 1H), 6.7(d, 2H), 7.0(s, 1H), 8.1(d, 2H), 8.25(s, 1H), 8.7(s, 1H)。
【0238】
[実施例31]
1H NMR(DMSO-d
6)δ1.75(s, 1H), 1.85(s, 1H), 2.1(t, 2H), 4.3(t, 1H), 4.6(d, 1H), 4.9(t, 1H), 6.6(d, 2H), 8.15(s, 2H), 8.6(s, 1H)。
【0239】
[実施例32]
ES MS (m+H)
+ 1408.4。
【0240】
[実施例33]
ES MS (m-H)
- 1491.1, (m+H)
+ 1493.1;
1H NMR(DMSO-d
6/D
2O)δ4.15(q, 1H), 4.6(d, 1H), 4.9(t, 1H), 6.6(d, 2H), 7.25(s, 1H), 7.4(d, 1H), 7.9(d, 1H), 7.95(d, 2H), 8.15(d, 2H), 8.6(s, 1H)。
【0241】
[実施例34]
1H NMR(DMSO-d
6/D
2O)δ2.1(t, 2H), 2.75(q, 2H), 4.3(t, 1H), 4.65(d, 1H), 4.9(t, 1H), 6.6(d, 2H), 7.9(d, 1H), 8.0(d, 2H), 8.2(t, 2H), 8.6(s, 1H)。
【0242】
[実施例35]
【0243】
[実施例36]
ES MS (m+H)
+ 1680.4;
1H NMR(DMSO-d
6/D
2O)δ0.3(s, 3H), 0.35(s, 3H), 1.05(s, 9H), 2.15(t, 2H), 4.15(t, 1H), 4.85(t, 1H), 6.6(d, 2H), 7.55(t, 4H), 7.9(d, 1H), 8.0(s, 1H), 8.15(s, 1H), 8.6(s, 1H)。
【0244】
[実施例37]
1H NMR(DMSO-d
6/D
2O)δ1.1(s, 3H), 1.8(s, 1H), 4.55(d, 1H), 4.8(t, 1H), 6.6(d, 2H), 7.8(d, 1H), 8.1(d, 1H), 8.15(s, 1H), 8.6(s, 1H)。
【0245】
[実施例38]
【0246】
[実施例39]
【0247】
[実施例40]
【0248】
[実施例41]
【0249】
[実施例42]
===EC112治療マウスにおける腫瘍成長の抑制===
薬剤がダウノルビシンである、実施例9b(EC111)および9c(EC112)の化合物の、腫瘍負荷動物に静注投与した場合の抗腫瘍活性を、皮下にM109腫瘍を負荷させたBalb/cマウスで評価した。右腋窩皮下に1x10
6 M109細胞注入による腫瘍接種の4日後、マウス(グループ当たり5匹)に、実施例9bまたは実施例9cの化合物2-10 μmol/kg、あるいは、結合されていないダウノルビシンまたはPBSを、週に2度4週間静注した。腫瘍成長は、各治療グループにおいて、3日または4日間隔でキャリパーにて測定した。腫瘍容量は、方程式V=axb
2/2を用いて計算した。式中、”a”は腫瘍の、ミリメートルで表した長さであり、”b”は幅である。動物の体重も、3日または4日間隔で測定した。
図1および2に示すように、実施例9cの化合物による治療は、外見上毒性もなく(動物の体重に基づく)、M109腫瘍成長を効果的に遅らせた。未結合のドキソルビシンも抗腫瘍反応を与えたが、同時に体重に基づく毒性作用を示した。
【0250】
[実施例43]
===EC105治療マウスにおける腫瘍成長の抑制===
実施例10aの化合物(EC105)を使用したことを除いては、プロトコールは実施例42に記載した通りであった。この化合物では、薬剤は、ビス-インドリル-seco-CBIであった。実施例10aの化合物を0.3 μmol/kgの用量で注入した。さらに、M109モデル(葉酸受容体陽性)および4T1モデル(葉酸受容体陰性)を含む二つの皮下腫瘍モデルを試験した。数匹の動物では、67倍過剰の遊離葉酸(20 μmol/kg, FA)を、結合体(すなわち、実施例10aの化合物)と同時投与した。
実施例10aの化合物において、動物体重に基づく毒性を外見上示すことなく、著明な抗腫瘍反応が観察された(
図3および4参照)。実施例10aの化合物による抗腫瘍反応は、過剰な遊離葉酸によって阻止され、反応の特異性を示した(
図3参照)。
図5に示すように、4T1モデル(葉酸受容体陰性)では抗腫瘍作用が観察されず、これも反応の特異性を示した。
【0251】
[実施例44]
===EC145治療マウスにおける腫瘍成長の抑制===
薬剤がデアセチルビンブラスチンモノヒドラジドである、実施例16bの化合物(EC145)の、腫瘍負荷動物に静注投与した場合の抗腫瘍活性を、皮下にM109腫瘍を負荷させたBalb/cマウスで評価した。右腋窩皮下に1x10
6 M109細胞注入による腫瘍接種の約11日後(t
0における平均腫瘍容量=60 mm
3)、マウス(グループ当たり5匹)に、EC145の1500 nmol/kg、あるいは、等投与容量のPBS(コントロール)を、週に2度(BIW)、3週間静注した。腫瘍成長は、各治療グループにおいて、2日または3日間隔でキャリパーにて測定した。腫瘍容量は、方程式V=axb
2/2を用いて計算した。式中、”a”は腫瘍の、ミリメートルで表した長さであり、”b”は幅である。
図6に示すように、EC145による治療は、生食液治療動物におけるM109腫瘍の成長と比べると、M109腫瘍成長を効果的に遅らせた。
【0252】
[実施例45]
===EC140治療マウスにおける腫瘍成長の抑制===
薬剤がデアセチルビンブラスチンモノヒドラジドである、実施例17aの化合物(EC140)の、腫瘍負荷動物に静注投与した場合の抗腫瘍活性を、皮下にM109腫瘍を負荷させたBalb/cマウスで評価した。右腋窩皮下に1x10
6 M109細胞注入による腫瘍接種の約11日後(t
0における平均腫瘍容量=60 mm
3)、マウス(グループ当たり5匹)に、EC140の1500 nmol/kg、あるいは、等投与容量のPBS(コントロール)を、週に3度(TIW)、3週間静注した。腫瘍成長は、各治療グループにおいて、2日または3日間隔でキャリパーにて測定した。腫瘍容量は、方程式V=axb
2/2を用いて計算した。式中、”a”は腫瘍の、ミリメートルで表した長さであり、”b”は幅である。
図7に示すように、EC140による治療は、生食液治療動物におけるM109腫瘍の成長と比べると、M109腫瘍成長を効果的に遅らせた。
【0253】
[実施例46]
===EC136治療マウスにおける腫瘍成長の抑制===
薬剤がCBIである、実施例10bの化合物(EC136)の、腫瘍負荷動物に静注投与した場合の抗腫瘍活性を、皮下にL1210A腫瘍を負荷させたDBAマウスで評価した。右腋窩皮下に0.25x105 L1210A細胞注入による腫瘍接種の約5日後(t
0における平均腫瘍容量は~50 mm
3、グループ当たり5匹)に、EC136の400 nmol/kg、あるいは、等投与容量のPBS単独(コントロール)を、週に3度(TIW)、3週間静注した。腫瘍成長は、各治療グループにおいて、2日または3日間隔でキャリパーにて測定した。腫瘍容量は、方程式V=axb
2/2を用いて計算した。式中、”a”は腫瘍の、ミリメートルで表した長さであり、”b”は幅である。
図8に示すように、EC136による治療は、生食液治療動物におけるL1210A腫瘍の成長と比べると、L1210A腫瘍成長を効果的に遅らせた。
【0254】
[実施例47]
===各種葉酸-薬剤結合体による細胞DNA合成の抑制===
実施例17b、10b、16a、10c、17a、16b、14e、および15の化合物(それぞれ、EC135、EC136、EC137、EC138、EC140、EC145、EC158、およびEC159)を、薬剤の、葉酸受容体陽性KB細胞の成長抑制能力を予測する、インビトロ細胞傷害性アッセイを用いて評価した。化合物は、本明細書に記載するプロトコールに従って調製された、それぞれの化学療法剤に連結された葉酸塩から成っていた。KB細胞は、表示の濃度の葉酸-薬剤結合体(
図9-16のx軸参照)に対して、少なくとも100倍過剰量の葉酸の不在下に、または存在下に37℃で最大7時間暴露した。次に、細胞を、新鮮な培養液で濯ぎ、新鮮な培養液で37℃で72時間インキュベートした。細胞生存率を、
3H-チミジン取り込みアッセイによって評価した。
【0255】
図9-16に示すように、用量依存性細胞傷害性が測定され、ほとんどの場合、IC
50値(新たに合成されるDNAへの
3H-チミジン取り込みを50%低下させるのに必要な、薬剤結合体の濃度)は、低ナノモル範囲であった。さらに、これら結合体の細胞傷害性は、過剰な遊離葉酸の存在下では低下した。このことは、観察された細胞殺戮は、葉酸受容体結合によって仲介されたことを示す。
【0256】
EC158、および、細胞系統、例えば、IGROV(既知の細胞系統)、A549-クローン-4(ヒト葉酸受容体cDNAをトランスフェクトされたA549細胞)、新規系統-01(インビボにおいて葉酸受容体発現について選択された系統-01突然変異株)、M109、4T1クローン-2(げっ歯類葉酸受容体cDNAをトランスフェクトされた4T1細胞)、および、HeLa細胞を含む細胞系統等、を用いた、このタイプのアッセイにおいても同様の結果が得られた。