(58)【調査した分野】(Int.Cl.,DB名)
キレート剤、還元剤、または、前記キレート剤と前記還元剤との混合物である防錆剤を含む洗浄液が、ヘマタイトが付着した部材を有する洗浄対象機器に供給される洗浄液供給工程と、
前記部材中の少なくとも前記ヘマタイトが付着した領域が前記洗浄液に浸漬され、前記洗浄液の酸化還元電位が前記洗浄液に前記ヘマタイトが溶出する値に維持されて、前記ヘマタイトが前記部材から除去される洗浄工程とを有し、
前記キレート剤が、アミノカルボン酸系キレート剤、オキシカルボン酸系キレート剤及び有機リン系キレート剤のいずれかであり、
前記還元剤が、金属イオン、亜硫酸塩、シュウ酸、蟻酸、アスコルビン酸、ピロガロール、ヒドラジン、水素のいずれかであり、
前記洗浄液のpHが4〜8の範囲内である化学洗浄方法。
前記洗浄工程中の前記洗浄液の温度が、前記部材の周辺の環境温度以上前記環境温度よりも10℃高い温度以下の範囲内である請求項1乃至請求項3のいずれかに記載の化学洗浄方法。
前記洗浄工程中に、前記洗浄液が前記部材から排出される工程と、排出された前記洗浄液が前記部材に送給される工程とを繰り返して、前記領域の近傍で前記洗浄液の液面の高さを移動させる請求項1乃至請求項4のいずれかに記載の化学洗浄方法。
前記洗浄工程中に、前記洗浄液が前記部材に通過して前記部材の上流側端部から排出され、排出された前記洗浄液が、前記部材の下流側端部に直接的に循環される請求項1乃至請求項4のいずれかに記載の化学洗浄方法。
前記部材に供給された前記洗浄液の温度が、前記部材の周辺の環境温度以上前記環境温度よりも10℃高い温度以下の範囲内である請求項10乃至請求項12のいずれかに記載の化学洗浄装置。
洗浄中に、前記部材への前記洗浄液の供給及び前記部材からの前記洗浄液の排出を停止して、前記洗浄液を静置させる請求項10乃至請求項14のいずれかに記載の化学洗浄装置。
水を収容する水タンクと、前記水タンクと前記洗浄対象機器とを連結する水供給ラインと、前記水供給ラインに設置される水張ポンプとを備える水供給部を更に備える請求項10乃至請求項15のいずれかに記載の化学洗浄装置。
洗浄中に、前記薬液排出ラインを通じて前記部材内の洗浄液を前記薬液タンクに向かって排出させることと、前記薬液供給ラインを通じて前記薬液タンク中の前記洗浄液を前記部材に送給させることとを繰り返させる請求項10乃至請求項13のいずれかに記載の化学洗浄装置。
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1のように従来の化学洗浄では、設置した循環路内が洗浄液で満たされる必要があった。また、酸性の洗浄液を使用することにより洗浄中に水素ガスが発生するので、化学洗浄は火気を用いる機械・電気工事と並行して作業することができなかった。このように、化学洗浄を実施している間は、洗浄液に浸漬されている機器だけでなく他の機器でもメンテナンス作業を行うことができず、メンテナンスを効率良く行うことができないという問題があった。
【0008】
従来の化学洗浄方法では、鉄系酸化物からなるスケールを除去するために速い流速で洗浄液を流通させる必要があった。また、十分な流量を得るためには大径の配管に接続する必要があるが、貫流ボイラ10の上流側配管及び下流側配管は小径配管であり、化学洗浄装置を接続するには不適切である。このため、具体的に特許文献1に示すように節炭器26の上流側配管と、気水分離器30内の配管に循環路を接続するしかなく、装置上の制約があった。
【0009】
ヘマタイトは難溶性酸化物であり、従来の酸性の洗浄液(例えば塩酸系やクエン酸系)では、洗浄液中に溶解しにくく、化学洗浄によりスラッジが発生する。
また、配管や特許文献3の金属製フィルタの表面に、自然酸化スケールであるマグネタイト層が形成されている。特許文献3の方法では付着した鉄酸化物スケールを全て溶解させることなくマグネタイト層だけを溶解させてスケールを剥離させることになる。従って、特許文献3に開示される方法を用いれば、スラッジが発生する。
【0010】
火力発電システム1中の貫流ボイラ10の火炉壁管などは配管形状が長く複雑なために、スラッジが発生すると配管の途中の一部に集積して配管内を閉塞する場合がある。
このため、従来の化学洗浄では洗浄液からスラッジを除去する必要があった。スラッジを除去する方法としては、洗浄液が通過する部分の途中にフィルタを設けて洗浄液中に浮遊するスラッジを捕集する方法や、化学洗浄後に洗浄対象機器の配管等の一部を切断して管内部を点検して、吸引清掃など物理的方法により除去してから再度配管を溶接する方法などがある。
【0011】
また、酸性の洗浄液を用いた従来の化学洗浄では、上述のように洗浄液を加熱する必要があり、洗浄液を加熱する昇温設備を別途設置する必要があった。また、酸性の洗浄液に浸漬された機器内を洗浄後に中和しなければならず、多量の中和水が必要とされていた。
【0012】
図13に示す火力発電システムのように、気水分離器30の下流側にステンレス製の部品を有する過熱器31がある場合、ステンレス製部品が塩酸などの酸性の洗浄液に接触すると腐食する恐れがある。このため、従来の化学洗浄では、洗浄対象となる機器の下流側に隣接する非洗浄系統内に水を張り加圧して、洗浄液の侵入を防止する必要があり、水張・加圧用のポンプが設置されていた。
【0013】
このように、従来の化学洗浄を行う場合には、多量の洗浄液と水張用及び中和用の水とが必要な上、大掛かりな設備とその設置工事が必要であり、工期が長期に亘るため、メンテナンスコストが高いことが問題となっていた。
【0014】
本発明は上記事情に鑑みなされたものであり、ヘマタイトを除去する化学洗浄を低コストで短期間に実施することができる化学洗浄方法、及び、当該化学洗浄方法を実施するための化学洗浄装置を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明の第1の態様に係る化学洗浄方法は、キレート剤、還元剤、または、前記キレート剤と前記還元剤との混合物である防錆剤を含む洗浄液が、ヘマタイトが付着した部材を有する洗浄対象機器に供給される洗浄液供給工程と、前記部材中の少なくとも前記ヘマタイトが付着した領域が前記洗浄液に浸漬され、前記洗浄液の酸化還元電位が前記洗浄液に前記ヘマタイトが溶出する値に維持されて、前記ヘマタイトが前記部材から除去される洗浄工程とを有し、前記キレート剤が、アミノカルボン酸系キレート剤、オキシカルボン酸系キレート剤及び有機リン系キレート剤のいずれかであり、前記還元剤が、金属イオン、亜硫酸塩、シュウ酸、蟻酸、アスコルビン酸、ピロガロール、ヒドラジン、水素
のいずれかであり、前記洗浄液のpHが4〜8の範囲内である。
【0016】
本発明の第2の態様に係る化学洗浄装置は、ヘマタイトスケールが付着した部材を有する洗浄対象機器を化学洗浄するための化学洗浄装置であって、キレート剤、還元剤、または、前記キレート剤と前記還元剤との混合物であり、前記キレート剤が、アミノカルボン酸系キレート剤、オキシカルボン酸系キレート剤及び有機リン系キレート剤のいずれかであり、前記還元剤が、金属イオン、亜硫酸塩、シュウ酸、蟻酸、アスコルビン酸、ピロガロール、ヒドラジン、水素
のいずれかである防錆剤を含み、pHが4〜8の範囲内である洗浄液を収容する薬液タンクと、前記洗浄対象機器と前記薬液タンクとを連結し、前記部材に前記洗浄液を供給する薬液供給ラインと、前記薬液供給ラインに設置されるポンプと、前記洗浄対象機器と前記薬液タンクとを連結し、前記洗浄液を前記部材から排出する薬液排出ラインと、前記部材中の少なくとも前記ヘマタイトが付着した領域を前記洗浄液に浸漬させる手段と、洗浄中の前記洗浄液の酸化還元電位を前記洗浄液に前記ヘマタイトが溶出する値に維持する手段とを備え、前記薬液タンク、前記薬液供給ライン及び前記ポンプが、前記部材に前記洗浄液を供給する手段である。
【0017】
上記態様の化学洗浄方法及び化学洗浄装置では、洗浄対象機器のみに洗浄液を送給するので、化学洗浄に要する洗浄液量を大幅に削減することができる。
更に、
防錆剤を含む洗浄液を用いるため、洗浄対象機器の下流側にステンレス製部品を有する機器が配置される場合でも、部材の腐食を防止するための水張等を実施する必要が無く、水張のための設備が不要となり、装置構成が簡略化する。また、洗浄時に水素が発生しないので火気を用いる機械工事や電気工事と並行して化学洗浄を実施することができるとともに、各部の点検やメンテナンス作業を並行して実施することができることから、メンテナンス工期を短縮することができる。
このように本発明の化学洗浄方法及び化学洗浄装置を用いれば、設備費や薬品代などのメンテナンスに要するコストを大幅に削減することができるので有利である。
【0018】
上記化学洗浄方法において、前記値が銀−塩化銀電極基準で−0.8V以上−0.4V以下の範囲内に維持されて前記洗浄工程が実施される。
上記化学洗浄方法において、前記洗浄対象機器に還元雰囲気ガスが供給されることによって前記値が調整されても良い。
【0019】
上記化学洗浄装置は、洗浄中の前記洗浄液の酸化還元電位を、銀−塩化銀電極基準で−0.8V以上−0.4V以下の範囲内の値に調整する還元雰囲気調整部を備える。
上記化学洗浄装置において、前記還元雰囲気調整部が、前記洗浄対象器に還元雰囲気ガスを供給しても良い。
【0020】
上記の酸化還元電位として還元状態を維持することによりヘマタイトが洗浄液中に溶解して除去される。洗浄によりスラッジなどの固形物がほとんど発生することなく、また若干の固形物の発生があった場合でも、洗浄対象機器から洗浄液とともに容易に排出することができる。また、スラッジを除去する設備が不要であるので、設備費を削減することが可能である。
【0021】
上記化学洗浄方法において、前記洗浄工程中の前記洗浄液の温度が、前記部材の周辺の環境温度以上前記環境温度よりも10℃高い温度以下の範囲内であることが好ましい。
【0022】
上記化学洗浄装置において、前記部材に供給された前記洗浄液の温度が、前記部材の周辺の環境温度以上前記環境温度よりも10℃高い温度以下の範囲内であることが好ましい。
上記化学洗浄装置は、前記ポンプを挟んで上流側の前記薬液供給ラインと下流側の前記薬液供給ラインとを連結する循環ループを更に備え、前記ポンプを通過した前記洗浄液の一部が前記循環ループを介して前記ポンプの上流側に搬送されることが好ましい。
【0023】
本発明に依れば酸性の洗浄液を使用した場合よりも低温でヘマタイトの除去が可能であり、洗浄液を積極的に昇温させる必要が無く、環境温度のままの温度維持は極めて容易である。
洗浄液を環境温度より10℃高い温度以下に昇温すれば、更に洗浄力を高めることも可能である。例えばポンプ運転時に発生する熱を利用して、洗浄液を容易に昇温することができる。本発明の構成は積極的な冷却がないので長時間に亘り洗浄液の温度を環境温度よりも高く維持することが可能である。
本発明に依れば酸性洗浄液を用いた従来法よりも低温で洗浄を行うことができる結果、設備費及び洗浄コストを削減することが可能である。
【0024】
上記化学洗浄方法において、前記洗浄液が静置した状態で領域が前記洗浄液に浸漬される。
上記化学洗浄装置は、洗浄中に、前記部材への前記洗浄液の供給及び前記部材からの前記洗浄液の排出を停止して、前記洗浄液を静置させる。
上記化学洗浄方法及び化学洗浄装置に依れば、洗浄液の大掛かりな循環路などの設置が不要となり、簡易な工程で洗浄を実施することになるので有利である。
【0025】
上記化学洗浄方法において、前記洗浄液送給工程と前記洗浄工程との間に水供給工程を更に含み、前記洗浄液供給工程において所定量の前記洗浄液が前記洗浄対象機器に供給され、前記水供給工程において所定量の水が前記洗浄対象機器に供給されて、前記領域が前記洗浄液に浸漬される。
上記化学洗浄装置は、水を収容する水タンクと、前記水タンクと前記洗浄対象機器とを連結する水供給ラインと、前記水供給ラインに設置される水張ポンプとを備える水供給部を更に備える。
【0026】
本化学洗浄方法及び化学洗浄装置に依れば、洗浄対象機器内で洗浄液の層と水の層とが分離した状態とすることができる。ヘマタイトが付着した領域が洗浄液に浸漬され、その他の部分は水に浸漬されるようにすれば、化学洗浄に使用する洗浄液の量を大幅に削減することが可能である。
【0027】
上記化学洗浄方法において、前記洗浄液が水溶性高分子からなるカプセル内に収容され、前記カプセルが前記洗浄対象機器に供給されても良い。
【0028】
上記化学洗浄装置において、前記洗浄液が水溶性高分子からなるカプセル内に収容され、前記薬液タンクが前記カプセルを収容し、前記カプセルが前記洗浄液タンクから前記洗浄対象機器に供給されても良い。
【0029】
本化学洗浄方法及び化学洗浄装置によって、例えば、特にヘマタイトが多く発生した領域を洗浄液に容易に浸漬することができるので、使用する洗浄液の量を大幅に削減することが可能となる。
【0030】
上記化学洗浄方法において、前記洗浄工程中に、前記洗浄液が前記部材から排出される工程と、排出された前記洗浄液が前記部材に送給される工程とを繰り返して、前記領域の近傍で前記洗浄液の液面の高さを移動させる。
【0031】
上記化学洗浄装置において、洗浄中に、前記薬液排出ラインを通じて前記部材内の洗浄液を前記薬液タンクに向かって排出させることと、前記薬液供給ラインを通じて前記薬液タンク中の前記洗浄液を前記部材に送給させることとを繰り返させる。
【0032】
本化学洗浄方法及び化学洗浄装置に依れば、ヘマタイトが付着した領域で洗浄液に流速が与えられるとともに洗浄液が撹拌されるので、洗浄力が向上するので有利である。
【0033】
上記化学洗浄方法において、前記洗浄工程中に、前記洗浄液が前記部材に通過して前記部材の上流側端部から排出され、排出された前記洗浄液が、前記部材の下流側端部に直接的に循環される。
【0034】
上記化学洗浄装置において、前記部材の上流側端部と下流側端部とを連絡する循環ラインと、前記循環ラインに設置される循環ポンプとを備える循環部を有し、洗浄中に前記循環ラインを通じて、前下流側端部から排出された前記洗浄液を前記上流側端部に循環させる。
【0035】
本化学洗浄方法及び化学洗浄装置によっても、ヘマタイトが付着した領域で洗浄液に流速が与えられるとともに洗浄液が撹拌されるので、洗浄力が向上する。また、ポンプを通過する際に洗浄液が加温され、部材の周辺の環境温度よりも高い状態で洗浄が実施されるため、洗浄力が向上する。
【発明の効果】
【0036】
本発明に依れば、従来の化学洗浄方法よりも洗浄液の使用量を削減できるとともに化学洗浄装置の装置構成が簡略化するので、化学洗浄に要するコストを大幅に削減することが可能である。
また、本発明では他の機器に洗浄液が送給されず、洗浄時に水素が発生しないため、化学洗浄と同時に他の作業を行うことが可能である。このため本発明は、従来技術と比較してメンテナンス工期が短縮するという有利な効果を奏する。
【発明を実施するための形態】
【0038】
本発明の化学洗浄方法及び化学洗浄システムで使用される洗浄液は、
防錆剤を含む水溶液である。
防錆剤は、キレート剤、還元剤、またはキレート剤と還元剤の混合剤である。キレート剤は、例えばEDTA、BAPTA、DOTA、EDDS、INN、NTA、DTPA、HEDTA、TTHA、PDTA、DPTA-OH、HIDA、DHEG、GEDTA、CMGA、EDDSなどのアミノカルボン酸やこれらの塩などのアミノカルボン酸系キレート剤、クエン酸、グルコン酸、ヒドロキシ酢酸などのオキシカルボン酸やこれらの塩などのオキシカルボン酸系キレート剤、ATMP、HEDP、NTMP、PBTC、EDTMP等の有機リン酸やこれらの塩などの有機リン系キレート剤である。還元剤は、例えば、Fe
2+、Sn
2+などの各種金属イオン、亜硫酸ナトリウムなどの
亜硫酸塩、シュウ酸、蟻酸、アスコルビン酸、ピロガロールなどの有機化合物、ヒドラジン、水素などである。
防錆剤を含む洗浄液は、pHが4〜8であり、好ましくはpHが5〜7である。
【0039】
防錆剤には腐食抑制剤が添加されていても良い。洗浄液は、所望の洗浄力及び洗浄時間が得られるように、キレート剤、還元剤及び腐食抑制剤の濃度が適切に調整されている。
【0040】
また洗浄液は、発泡を防止するための消泡剤を含んでいても良いし、含まなくても良い。本実施形態では公知の消泡剤を使用することができる。
【0041】
以下では火力発電システムを例に挙げて本発明の化学洗浄方法及び化学洗浄装置の実施形態を説明する。但し、本発明は火力発電システムに限定されず、ヘマタイトが付着する他の機器に対しても適用可能である。
【0042】
[第1実施形態]
図1は第1実施形態に係る化学洗浄装置を説明する概略図である。
図1は、メンテナンス時において火力発電システム1に化学洗浄装置100が設置された場合を示す。火力発電システム1の構成は
図13と同じである。火力発電システム1では、貫流ボイラ10の火炉壁管などの伝熱配管内部に粉状スケールであるヘマタイトが付着して伝熱配管の熱伝導率が低下している。従って、伝熱性能の回復のために、貫流ボイラ10が洗浄対象機器となっている。
【0043】
第1実施形態の化学洗浄装置100は、薬液タンク101、薬液タンク101と貫流ボイラ10とを連結する薬液供給ライン102、薬液タンク101と貫流ボイラ10とを連結する薬液排出ライン103、及び、制御部104を有する。薬液タンク101は上述の洗浄液を収容する。制御部104は例えばコンピュータである。
【0044】
図2は貫流ボイラの一例である。
図2(a)は貫流ボイラの概略図であり、
図2(b)は、
図2(a)において丸印Aで囲まれた部分の拡大図である。
図2(a)の貫流ボイラ10aは、壁面12aで囲まれた燃焼室11aと、複数の火炉壁管とにより構成される。貫流ボイラ10aの火炉壁管13aは直線状の管が壁面12aに沿って燃焼室11a横断面に対して垂直方向に延在する。複数の火炉壁管13aが壁面12aに沿って水平方向に配列されている。燃焼室11aの下部に下部管寄せ14aが設置され、複数の火炉壁管13aの下端部が下部管寄せ14aに接続する。燃焼室11aの上部に上部管寄せが設置され、複数の火炉壁管13aの上端部が上部管寄せ15aに接続する。
【0045】
図3は貫流ボイラの別の例である。
図3(a)は貫流ボイラの概略図であり、
図3(b)は、
図3(a)において丸印Bで囲まれた部分の拡大図である。
図3の貫流ボイラ10bは、火炉壁管の形状が
図2の貫流ボイラ10aと異なる。貫流ボイラ10bにおいて、燃焼室11bの下側では複数の火炉壁管13bがスパイラル状に壁面12bに沿って配設される。燃焼室11bの垂直方向途中位置(分岐部16)で火炉壁管13bが複数の管に分岐する。分岐後の火炉壁管13bは直線状であり、壁面12bに沿って燃焼室11a横断面に対して垂直方向上方に延びる。
燃焼室11bの下部に下部管寄せ14bが設置され、複数の火炉壁管13bの下端部が下部管寄せ14bに接続する。燃焼室11bの上部に上部管寄せが設置され、複数の火炉壁管13bの上端部が上部管寄せ15bに接続する。
【0046】
第1実施形態の化学洗浄装置100では、貫流ボイラ10(10a,10b)の下部管寄せ14a,14bに薬液供給ライン102及び薬液排出ライン103が接続する。
薬液供給ライン102には、ポンプ105及びバルブV1が設置される。薬液排出ライン103にはバルブV2が設置される。ポンプ105、バルブV1,V2は制御部104に連絡する。
【0047】
火炉壁管の配設方法によりヘマタイトが付着する場所が異なる。ヘマタイトは火炉壁管内でボイラ給水の流速が変化する場所に付着し易い傾向がある。例えば
図2の貫流ボイラ10aでは燃焼室11a下方に位置する火炉壁管13a内面に、他部よりもヘマタイトが多く付着する。
図3の貫流ボイラ10bでは分岐部16の火炉壁管13b内面に、他部よりもヘマタイトが多く付着する。
【0048】
第1実施形態の化学洗浄装置100は更に還元雰囲気調整部を備える。第1実施形態の化学洗浄装置100において還元雰囲気調整部は還元雰囲気ガス供給部110である。
図1における還元雰囲気ガス供給部110は、還元雰囲気ガス貯留部111、給気ライン112を備える。化学洗浄装置100は排気ライン113を備える。給気ライン112及び排気ライン113には、各々バルブV3,V4が設置される。給気ライン112及び排気ライン113は、貫流ボイラ10(10a,10b)の上部管寄せ15a,15bに接続する。バルブV3,V4は制御部104に接続する。
【0049】
還元雰囲気ガス貯留部111は還元雰囲気ガスを収容するボンベである。還元雰囲気ガスは洗浄液を還元状態に調整するためのガスである。具体的に、還元雰囲気ガスは窒素、アルゴン、蒸気、二酸化炭素、燃焼排ガスなどである。還元雰囲気ガスの純度は高純度ガスである必要はなく、後述する洗浄工程中の洗浄液の酸化還元電位を所定範囲に維持できるものであれば良い。還元雰囲気ガスとして窒素を用いる場合は、還元雰囲気ガス供給部110として火力発電システム1に既設される窒素注入設備が利用可能であるし、窒素注入設備を仮設または新設しても良い。還元雰囲気ガスとしての蒸気や燃焼排ガスは、隣接した別の火力発電システムのボイラで発生する蒸気や燃焼排ガスとすることができる。
【0050】
第1実施形態の化学洗浄装置100を用いて貫流ボイラ内に付着したヘマタイトを洗浄除去する化学洗浄方法を以下で説明する。
本実施形態の化学洗浄方法は例えば、火力発電システムの定期点検時において、炉内足場を架設する工程や洗浄対象機器(貫流ボイラ10)以外の機器を工事する工程の期間中に実施される。
本実施形態の化学洗浄方法を実施するに当たり、貫流ボイラ10と節炭器26とを連結する配管に設置されるバルブは閉鎖される。
【0051】
<ガス供給工程>
制御部104はバルブV2,V3を開放する。還元雰囲気ガス(窒素ガスなど)が、還元雰囲気ガス貯留部111から給気ライン112を介して貫流ボイラ10の火炉壁管13a,13bに送給される。火炉壁管13a,13b内の空気が薬液排出ライン103を介して系外に排出される。この工程により、貫流ボイラ10内の火炉壁管13a,13b内の空気が薬液排出ライン103を介して排出される。ガス供給工程により、火炉壁管13a,13b内が還元雰囲気ガスで充填される。
ガスの置換に十分な時間が経過した後、制御部104はバルブV2,V3を閉鎖する。
【0052】
<洗浄液供給工程>
制御部104はポンプ105を起動させるとともにバルブV1を開放する。制御部104はバルブV4を開放する。薬液タンク101内の洗浄液が薬液供給ライン102を介して貫流ボイラ10に送給される。これにより、火炉壁管13a,13b内面が洗浄液に浸漬し、供給された洗浄液に相当する体積の窒素など火炉壁管13a,13b内のパージガスが排気ライン113を介して系外に排出される。
【0053】
本実施形態では貫流ボイラ10と節炭器26とを連結する配管のバルブが閉鎖されているため、薬液供給ライン102から下部管寄せ14a,14bに供給された洗浄液が節炭器26に流入することはない。
【0054】
本実施形態では、少なくとも火炉壁管13a,13b内面のヘマタイトが付着した領域が洗浄液に浸漬される。特に火炉壁管13a,13b内面で、他の部分よりもヘマタイトが多量に付着した領域は必ず洗浄液に浸漬される。例えば、
図4に示すように、他部よりもヘマタイトが多く付着した領域17の上方に洗浄液の液面18が位置するように、制御部104が洗浄液を供給する。化学洗浄のコストを考慮すると、洗浄液は複数の火炉壁管13a,13bの上端部(上部管寄せ15a,15bとの接続部)を上限として充填される。本実施形態では洗浄液が貫流ボイラ10を超えて下流側の気水分離器30には到達しない。すなわち、本実施形態では洗浄液は洗浄対象機器である貫流ボイラ10のみに供給される。
【0055】
ヘマタイトが付着する領域、特に、他部よりもヘマタイトが多く付着する領域17の場所が予め特定されることにより、火炉壁管13a,13bの各サイズからヘマタイト付着領域を浸漬することができる洗浄液の必要量が決定できる。制御部104は洗浄液の必要量を格納しており、洗浄液供給工程で蒸気必要量に応じた所定量の洗浄液を貫流ボイラ10に送給する。
【0056】
<洗浄工程>
ヘマタイトが付着した領域が洗浄液に浸漬されると、制御部104はポンプ105を停止するとともにバルブV1,V4を閉鎖する。洗浄液が静置された状態で、ヘマタイトが洗浄液に漬け置きされて洗浄工程が実施される。
漬け置き時間(洗浄時間)はヘマタイトの発生量にも依るが、例えば24時間以上である。この洗浄工程中は、火炉壁管13a,13b内の圧力はほとんど変化することがなく、一定である。
【0057】
本実施形態では洗浄工程中に洗浄液が静置されるので、洗浄工程中の洗浄液温度は火炉壁管13a,13bの周辺の環境温度と同程度になる。例えば、火炉壁管13a,13bの周辺の環境温度は20〜40℃程度である。環境温度は外気温度に近く、洗浄工程中は大きく変化することはないので、洗浄液温度も環境温度とほぼ同程度に維持される。
【0058】
ガス供給工程によって火炉壁管13a,13b内部の空間に還元雰囲気ガスが充填されているため、洗浄工程中の洗浄液は還元状態に維持される。具体的に、洗浄工程中の洗浄液の酸化還元電位は、例えば薬液排出ライン103の途中で、酸化還元電位計を用いて計測することができる。酸化還元電位は、銀−塩化銀電極基準で−0.8V以上−0.4V以下に維持される。pH−電位線図によると、酸化還元電位を−0.4V以下とすることで鉄酸化物の溶解反応効率を高まりヘマタイトが洗浄液中に溶解する。一方、酸化還元電位が低くなる程Fe
0が生じる。酸化還元電位が−0.8V未満になるとFe
0が生じ、スラッジが沈殿したり火炉壁管13a,13bに鉄が付着する。
【0059】
酸化還元電位が所定範囲から外れた場合、洗浄液の酸化還元電位を維持するように、還元雰囲気ガスを再充填する。具体的に、バルブV2,V3が開放される。これにより、還元雰囲気ガス貯留部111から還元雰囲気ガスが貫流ボイラ10に供給されて洗浄液が薬液排出ライン103を介して薬液タンク101に送給される。その後、バルブV2,V3が閉鎖され、バルブV1,V4が開放されるとともにポンプ105が起動することにより、薬液タンク101中の洗浄液が貫流ボイラ10に送給される。あるいは、バルブV1,V2が閉鎖された状態でバルブV3,V4が開放されて、還元雰囲気ガス貯留部111から還元雰囲気ガスが貫流ボイラ10に供給されて、還元雰囲気ガスが再充填される。
酸化還元電位が所定値から外れた場合に、洗浄液中に上述の還元剤を追加してもよい。具体的に、上記と同様に薬液タンク101に洗浄液を戻し、薬液タンク101内で還元剤が添加された後に、洗浄液が貫流ボイラ10に送給される。
酸化還元電位の維持は、酸化還元電位をモニタリングする制御部104からの指示に基づいて自動化されていても良いし、作業員が酸化還元電位の検出と維持とを手動で実施しても良い。
【0060】
図5,6は、実機から採取した火炉壁管で本実施形態の化学洗浄方法の効果を検証した結果である。ヘマタイトが付着した火炉壁管を実機から採取し、上述の洗浄液(pH5〜7)に25℃に維持しながら浸漬(漬け置き)した。洗浄液の成分はキレート剤が3〜5重量%、還元剤が1.5〜2.5重量%の間で適宜条件を選定している。
洗浄液浸漬前の火炉壁管内面は赤色であり、SEM写真(
図5)では自己酸化スケール(マグネタイト(Fe
3O
4))とヘマタイトが確認された。一方、化学洗浄後の火炉壁管内面は黒色であり、SEM写真(
図6)では自己酸化スケールのみが確認できた。
【0061】
ヘマタイトを用いて洗浄液の洗浄効果を検証した。ヘマタイト粉末を添加した洗浄液(pH5〜7)を容器に入れ、洗浄液の上方を窒素パージしてから密封した。試験期間中の酸化還元電位は、銀−塩化銀電極基準で−0.8V〜−0.4Vの範囲内にあった。洗浄液の成分はキレート剤が3〜5重量%、還元剤が1.5〜2.5重量%の間で適宜条件を選定している。洗浄液を8時間静置しながら25℃に保持させた結果、洗浄液が不透明な赤茶色からほぼ透明に変化した。このことは、漬け置きによって洗浄液にヘマタイトが溶解したことを意味する。
【0062】
<排出工程>
洗浄工程が所定時間実施された後、制御部104はバルブV2を開放する。火炉壁管13a,13b内の洗浄液は下部管寄せ14a,14bから薬液排出ライン103を介して薬液タンク101に送給されて回収される。これにより、本実施形態の化学洗浄方法が終了する。
回収された洗浄液は
防錆剤が残存していれば、洗浄成分(防錆剤の濃度)を再調整して次の化学洗浄に再利用しても良い。
【0063】
上記方法に依れば、中性防錆剤を含む洗浄液を使用しているので、漬け置き状態で洗浄工程が実施されたとしても、洗浄液に浸漬される火炉壁管13a,13bの内面が腐食することなく、ヘマタイトを洗浄液に溶解することができる。
図5,6を用いて説明したように、本実施形態では自然酸化スケールであるマグネタイトの層を溶出させてヘマタイトを剥離除去する方法ではないので、スラッジの発生が抑制される。特に火力発電システム1では、貫流ボイラ10の火炉壁管の配管形状が長く複雑なために、スラッジが発生すると配管の途中にスラッジが集積して配管内を閉塞する場合がある。本実施形態のように洗浄液にヘマタイトを溶解させて火炉壁管13a,13bから除去すれば、化学洗浄後に洗浄液の排出とともに溶出したヘマタイトを排出することができる。従って、例えば本実施形態を採用した火力発電システム1では、フィルタ等のスラッジを除去する設備が不要であるし、スラッジを除去するための別の洗浄などの工程も不要である。
【0064】
[第2実施形態]
図7は第2実施形態に係る化学洗浄装置を説明する概略図である。
第2実施形態の化学洗浄装置200は、第1実施形態と同様に、薬液供給ライン202及び薬液排出ライン203が貫流ボイラ10の下部管寄せ14a,14bに接続する。薬液供給ライン202及び薬液排出ライン203は薬液タンク201に接続する。貫流ボイラの上部管寄せ15a,15bに排気ライン213が接続する。
【0065】
化学洗浄装置200は、薬液供給ライン202のポンプ205の下流側に還元雰囲気調整部として還元雰囲気ガス供給部210を備える。還元雰囲気ガス供給部210は制御部204に接続する。
【0066】
第2実施形態の還元雰囲気ガス供給部210はマイクロバブル発生装置である。マイクロバブル発生装置は液体中に気泡を注入する装置である。本実施形態において、液体(洗浄液)に気泡として注入される気体は、第1実施形態で列挙した還元雰囲気ガスである。
【0067】
図7では図示されていないが、
図1と同様に貫流ボイラ10に接続される還元雰囲気ガス貯留部及び給気ラインが設置されていても良い。
【0068】
第2実施形態の化学洗浄装置200を用いた化学洗浄方法を以下で説明する。本実施形態においても、化学洗浄方法を実施するに当たり、貫流ボイラ10と節炭器26とを連結する配管に設置されるバルブは閉鎖される。
【0069】
<洗浄液供給工程・ガス供給工程>
制御部204はバルブV2を閉鎖する。制御部204はポンプ205及び還元雰囲気ガス供給部210を起動するとともにバルブV1を開放する。薬液タンク201内の洗浄液は薬液供給ライン202を介して還元雰囲気ガス供給部210に搬送される。還元雰囲気ガス供給部210は、洗浄液中に還元雰囲気ガスの気泡を注入する。気泡を含む洗浄液が薬液供給ライン202を介して貫流ボイラ10の火炉壁管13a,13bに供給される。
【0070】
洗浄液中の気泡は火炉壁管13a,13b内で洗浄液から放出され、火炉壁管13a,13b内に供給された洗浄液の上部空間に貯留される。制御部204はバルブV4を開放し、火炉壁管13a,13b内の空気は排気ライン213を介して系外に放出される。こうして、火炉壁管13a,13b内がパージガス雰囲気から還元雰囲気ガスに置換される。
【0071】
このように、第2実施形態では、第1実施形態のように独立したガス供給工程が不要であり、火炉壁管13a,13b内のガスの置換は洗浄液供給工程とともに行なわれる。
【0072】
<洗浄工程>
少なくともヘマタイトが付着した領域(特にヘマタイトが他部よりも多く付着した領域17)が洗浄液に浸漬されると、制御部204はポンプ205及び還元雰囲気ガス供給部210を停止するとともにバルブV1,V4を閉鎖する。洗浄液が静置された状態で、ヘマタイトの漬け置き洗浄処理が実施される。本実施形態においても、火炉壁管13a,13b内の洗浄液は火炉壁管13a,13bの周辺の環境温度と同程度であり、酸化還元電位が銀−塩化銀電極基準で−0.8V以上−0.4V以下に維持される。
【0073】
<排出工程>
洗浄工程が所定時間実施された後、第1実施形態と同様の工程で火炉壁管13a,13b内の洗浄液が薬液タンク201に回収される。これにより、本実施形態の化学洗浄方法が終了する。
【0074】
第1及び第2実施形態の化学洗浄方法で消泡剤を含まない洗浄液を使用した場合、洗浄液を火炉壁管13a,13bに送給することによって洗浄液が発泡し、ヘマタイトが発生した領域に泡状の洗浄液が付着する。ヘマタイトと泡状の洗浄液とが接触する時間が長くなることで、洗浄力が向上する。また、洗浄液を泡状とすることで、洗浄液の使用量が低減する。
【0075】
[第3実施形態]
図8は第3実施形態に係る化学洗浄装置を説明する概略図である。
第3実施形態の化学洗浄装置300は、第1実施形態と同様に、薬液供給ライン302及び薬液排出ライン303が貫流ボイラ10の下部管寄せ14a,14bに接続する。薬液供給ライン302及び薬液排出ライン303は薬液タンク301に接続する。
【0076】
化学洗浄装置300は、還元雰囲気調整部として還元雰囲気調整剤供給部310を備える。還元雰囲気調整剤供給部310は、還元雰囲気調整剤貯留部311及び還元雰囲気調整剤供給ライン312を備える。還元雰囲気調整剤貯留部311は還元雰囲気調整剤を収容する。還元雰囲気調整剤は例えばヒドラジン、L-アスコルビン酸、硫黄系還元剤等である。
還元雰囲気調整剤供給部310はポンプ305の下流側で薬液供給ライン302に接続する。還元雰囲気調整剤供給ライン312にバルブV5が設置される。バルブV5は制御部304に接続する。
【0077】
図8では図示されていないが、
図1と同様に貫流ボイラ10に接続される還元雰囲気ガス貯留部、給気ライン及び排気ラインが設置されていても良い。
【0078】
第3実施形態の化学洗浄装置300を用いて貫流ボイラ内に付着したヘマタイトを洗浄除去する化学洗浄方法を以下で説明する。本実施形態の化学洗浄方法を実施するに当たり、貫流ボイラ10と節炭器26とを連結する配管に設置されるバルブは閉鎖される。
【0079】
<洗浄液供給工程>
制御部304はバルブV2を閉鎖する。制御部304はポンプ305を起動するとともにバルブV1,V5を開放する。薬液タンク301内の洗浄液が薬液供給ライン302を通過する間に、還元雰囲気調整剤供給部310から洗浄液中に還元雰囲気調整剤が投入される。還元雰囲気調整剤が投入された洗浄液が貫流ボイラ10の火炉壁管13a,13bに送給される。
【0080】
<洗浄工程>
少なくともヘマタイトが付着した領域が洗浄液に浸漬されると、制御部304はポンプ305を停止するとともにバルブV1,V5を閉鎖する。洗浄液が静置された状態で、ヘマタイトの漬け置き洗浄処理が実施される。
【0081】
本実施形態においても、火炉壁管13a,13b内の洗浄液は火炉壁管13a,13bの周辺の環境温度と同程度である。還元雰囲気調整剤供給部310から洗浄液に還元雰囲気調整剤が投入されることにより、洗浄液の酸化還元電位が銀−塩化銀電極基準で−0.8V以上−0.4V以下に維持される。制御部304は蒸気酸化還元電位が得られる還元剤投入量にするために、バルブV5の開度を調整する。
【0082】
<排出工程>
洗浄工程が所定時間実施された後、第1実施形態と同様の工程で火炉壁管13a,13b内の洗浄液が薬液排出ライン303を介して薬液タンク301に回収される。これにより、本実施形態の化学洗浄方法が終了する。
【0083】
ヘマタイトが大量に付着している場合には、ヘマタイトの溶解による酸化還元電位の変動が大きくなる。本実施形態のように洗浄液に還元雰囲気調整剤を追加投入することにより、酸化還元電位を−0.8〜−0.4Vの範囲内に容易に調整することができる。
【0084】
[第4実施形態]
図9は第4実施形態に係る化学洗浄装置を説明する概略図である。
第4実施形態に係る化学洗浄装置400は第1実施形態の化学洗浄装置と同様に、薬液タンク401、薬液供給ライン402、薬液排出ライン403、制御部404、ポンプ405、還元雰囲気ガス供給部410として還元雰囲気ガス貯留部411及び給気ライン412、排気ライン413を備える。
化学洗浄装置400において、薬液供給ライン402のポンプ405を跨いで循環ループ406が設置される。
なお、第2実施形態及び第3実施形態の化学洗浄装置に対しても循環ループを設けることができる。
【0085】
洗浄液供給工程においてポンプ405を通過することにより洗浄液の温度が上昇する。ポンプ405を通過した洗浄液の一部が循環ループ406に流入し、ポンプ405上流側の薬液共有ラインに搬送される。こうすることにより、貫流ボイラ10の火炉壁管13a,13bに昇温された洗浄液が送給されることになり、第1実施形態乃至第3実施形態よりも高温(具体的に、火炉壁管13a,13bの周辺の環境温度より高く、環境温度+10℃以下)で洗浄工程が実施される。
【0086】
洗浄工程の温度を高くするほど、洗浄液とヘマタイトとの反応や洗浄液中への溶解が促進される。本実施形態に依れば、昇温設備を設置することなく簡易な構成で洗浄液の昇温を実現することができる。また、環境温度と洗浄液温度の温度差が小さいので、本実施形態の構成では長時間に渡り洗浄液の温度を環境温度よりも高く維持することが可能である。この結果、更に洗浄力を高めることが可能となる。
【0087】
[第5実施形態]
図10は第5実施形態に係る化学洗浄装置を説明する概略図である。
第5実施形態に係る化学洗浄装置500は第1実施形態の化学洗浄装置と同様に、薬液タンク501、薬液供給ライン502、薬液排出ライン503、制御部504、ポンプ505、還元雰囲気ガス供給部510として還元雰囲気ガス貯留部511及び給気ライン512、排気ライン513を備える。
化学洗浄装置500は、更に水供給部520を備える構成である。水供給部520は、水タンク521及び水供給ライン522を備える。水タンク521は内部に水を収容する。水供給ライン522には水張ポンプ523及びバルブV6が設置される。水供給ライン522は、下部管寄せ14a,14bに接続する。
【0088】
第5実施形態の化学洗浄装置500を用いて貫流ボイラ内に付着したヘマタイトを洗浄除去する化学洗浄方法を以下で説明する。本実施形態の化学洗浄方法を実施するに当たり、貫流ボイラ10と節炭器26とを連結する配管に設置されるバルブは閉鎖される。
【0089】
<ガス供給工程>
第1実施形態と同様の工程で、還元雰囲気ガス貯留部511から給気ライン512を介して火炉壁管13a,13b内に還元雰囲気ガスが供給され、火炉壁管13a,13b内が還元雰囲気ガスで充填される。
【0090】
<洗浄液供給工程>
制御部504はポンプ505を起動するとともにバルブV1,V4を開放する。薬液タンク501内の洗浄液が薬液供給ライン502を介して貫流ボイラ10に送給される。
【0091】
所定量の洗浄液が送給された後、制御部504はポンプ505を停止しバルブV1を閉鎖する。次いで、制御部504は、水張ポンプ523を起動するとともにバルブV6を開放する。これにより水タンク521内の水が水供給ライン522を介して貫流ボイラ10の火炉壁管13a,13bに送給される。
【0092】
洗浄液及び水の流速を調整することにより、洗浄液の層が鉛直方向上側にあり、水の層が鉛直方向下側となり、洗浄液の層と水の層とが少なくとも一部が分離した状態で火炉壁管13a,13b内の水位が上昇する。本実施形態では、火炉壁管13a,13b内でヘマタイトが他部よりも多く付着している領域17が洗浄液の層に浸漬するように、制御部504は所定量の洗浄液及び水を、それぞれ薬液タンク501及び水タンク521から火炉壁管13a,13bに送給する。
【0093】
<洗浄工程>
ヘマタイトが他部よりも多く付着した領域17が洗浄液に浸漬されると、制御部504は水張ポンプ523を停止するとともにバルブV4,V6を閉鎖する。洗浄液が静置された状態で、ヘマタイトの漬け置き洗いが実施される。本実施形態においても、洗浄工程中の洗浄液温度は火炉壁管13a,13bの周辺の環境温度と同程度であり、洗浄工程中の洗浄液の酸化還元電位が−0.8V以上−0.4V以下(銀−塩化銀電極基準)に維持される。
【0094】
<排出工程>
洗浄工程が所定時間実施された後、第1実施形態と同様の工程で火炉壁管13a,13b内の洗浄液が薬液タンク501に送給される。これにより、本実施形態の化学洗浄方法が終了する。
薬液タンク501に回収された洗浄液は
防錆剤濃度が低下している。このため、新たな洗浄液を追加して洗浄液を再利用するか、薬液タンク501から洗浄液を排出して廃棄する。
【0095】
本実施形態の方法に依れば、ヘマタイトが他部よりも多く付着した領域17が洗浄液に浸漬されて集中的に除去されるので、使用する洗浄液の量を大幅に削減することができるため、洗浄コストを削減することが可能である。
【0096】
[第6実施形態]
第6実施形態の化学洗浄装置は、洗浄液がマイクロカプセルに収容される以外は、第1実施形態と同じ構成である。
マイクロカプセルは、上述の洗浄液が水溶性のカプセルに包装されたものである。マイクロカプセルのカプセル材質は、例えばデキストリン、加工でんぷん、ゼラチン、アラビアガム、アルギン酸ソーダ、カラギーナン等の水溶性の高分子である。マイクロカプセルの大きさは例えば直径0.5mm〜2mm程度である。マイクロカプセルは、例えば噴霧乾燥法、スプレークーリング法等により作製される。
【0097】
第6実施形態の化学洗浄装置では、薬液供給ライン102のポンプ105上流側に、マイクロカプセル供給部が設置される。マイクロカプセル供給部はマイクロカプセルを収容するタンクを有している。マイクロカプセルは搬送用液体(例えば水)に分散された状態でタンクに収容される。
【0098】
第6実施形態では、第1実施形態と同様にして、ガス供給工程、洗浄液供給工程、洗浄工程及び排出工程が実施される。第6実施形態の洗浄液供給工程では、マイクロカプセル供給部と薬液供給ライン102とを連結する流路に設置されたポンプの起動によりマイクロカプセルを含む搬送用液体が薬液供給ライン102を流通する洗浄液中に供給され、マイクロカプセルを含む洗浄液が火炉壁管13a,13bに供給される。火炉壁管13a,13b内でマイクロカプセルが上方に向かって移動し、液面近傍に堆積する。マイクロカプセルのカプセルが搬送用液体に溶解することで洗浄液が放出され、液面近傍に泡状の洗浄液の層が形成される。特にヘマタイトが他部よりも多く付着した領域17が洗浄液の層に浸漬するように、マイクロカプセルの分散濃度(洗浄液量)及び液面高さ(制御部104が供給する搬送用液体の量)が適宜調整される。
【0099】
本実施形態の方法によれば、ヘマタイトが他部よりも多く発生した領域を洗浄液に容易に浸漬することができるので、使用する洗浄液の量を更に大幅に削減することができ、洗浄コストを更に削減することが可能である。
【0100】
なお、第6実施形態は第2実施形態〜第5実施形態の化学洗浄方法及び化学洗浄装置に対しても適用可能である。
【0101】
[第7実施形態]
第7実施形態に係る化学洗浄方法を、
図1の化学洗浄装置100を用いて説明する。第7実施形態の化学洗浄方法では、洗浄工程以外は第1実施形態と同様にして、ガス供給工程、洗浄液供給工程及び排出工程が実施される。
【0102】
第7実施形態の化学洗浄方法における洗浄工程では、ヘマタイトが付着した領域が洗浄液に浸漬されると、制御部104はポンプ105を停止するとともにバルブV1,V4を閉鎖する。
【0103】
制御部104はバルブV2を開放する。バルブV2の開放により洗浄液が薬液排出ライン103を介して薬液タンク101に戻るように送給されるので、火炉壁管13a,13b内の洗浄液の液面が低下する。次いで制御部104は、バルブV2を閉鎖するとともにバルブV1を開放し、ポンプ105を起動させる。これにより、薬液タンク101中の洗浄液が薬液供給ライン102を介して貫流ボイラ10の火炉壁管13a,13bに送給されて、火炉壁管13a,13b内の洗浄液の液面が上昇する。制御部104は、この洗浄液の排出と送給とを所定の周期で実施する。
【0104】
ここでの洗浄液の排出量は洗浄液の一部でも良いし全部でも良い。洗浄液の排出量を変えれば、液面の変化量を変えることができる。洗浄液の排出量、すなわち、液面の変化量は、ヘマタイトが他部よりも多く付着した領域の大きさや洗浄効率等を考慮して適宜設定されることが好ましい。制御部104は、液面変化量に対応させて、所定量の洗浄液を排出及び送給する。
また、洗浄液の排出と送給とを繰り返す期間と、静置期間とを周期的に交互に実施されてもよい。
【0105】
洗浄液の排出と送給とを繰り返すと、火炉壁管13a,13b内での液面付近での洗浄液の撹拌が発生するとともに、洗浄液に流速が与えられることになる。この結果、洗浄力が向上し、ヘマタイトの洗浄効率が上昇する。
【0106】
なお、本実施形態の化学洗浄方法は、第2実施形態〜第4実施形態の化学洗浄装置を用いた場合にも適用可能である。
【0107】
[第8実施形態]
図11は第8実施形態に係る化学洗浄装置を説明する概略図である。
第8実施形態に係る化学洗浄装置600は第1実施形態の化学洗浄装置と同様に、薬液タンク601、薬液供給ライン602、薬液排出ライン603、制御部604、ポンプ605、還元雰囲気ガス供給部610として還元雰囲気ガス貯留部611及び給気ライン612、排気ライン613を備える。化学洗浄装置600は更に、薬液排出ライン603にポンプ606を備える。
第8実施形態に係る化学洗浄方法を、
図11を用いて説明する。第8実施形態の化学洗浄方法では、洗浄工程以外は第1実施形態と同様にして、ガス供給工程、洗浄液供給工程及び排出工程が実施される。
【0108】
第8実施形態の化学洗浄方法における洗浄工程では、ヘマタイトが付着した領域が洗浄液に浸漬されると、制御部604は薬液供給ライン602のポンプ605を停止するとともにバルブV1,V4を閉鎖する。
【0109】
制御部604はバルブV2,V3を開放するとともにポンプ606を作動させる。バルブV3の開放により還元雰囲気ガス貯留部111から給気ライン112を介して貫流ボイラ10の火炉壁管13a,13bに還元雰囲気ガスが送給され、洗浄液液面上部の空間内のガス圧力が上昇する。同時に、バルブV2の開放とポンプ606の起動により、火炉壁管13a,13b内部の洗浄液が薬液排出ライン603を介して薬液タンク601に送給され、火炉壁管13a,13b内の洗浄液の液面が低下する。
【0110】
次いで制御部604は、バルブV2,V3を閉鎖するとともにバルブV1,V4を開放する。制御部はポンプ606を停止させ、ポンプ605を起動させる。これにより、薬液タンク601中の洗浄液が薬液供給ライン602を介して貫流ボイラ10の火炉壁管13a,13bに送給されて、火炉壁管13a,13b内の洗浄液の液面が上昇する。
【0111】
ガスによる洗浄液液面の加圧とポンプを用いた洗浄液の排出を利用するので、第7実施形態に比べて洗浄液排出時の流速が高く、火炉壁管13a,13b内での液面付近で洗浄液が撹拌されやすい。このため、第7実施形態よりも洗浄力が向上し、ヘマタイトの洗浄効率が上昇する。
【0112】
本実施形態の化学洗浄装置及び化学洗浄方法は、第2実施形態〜第4実施形態に対して薬液排出ラインにポンプを設置する場合にも適用可能である。
【0113】
[第9実施形態]
図12は第9実施形態に係る化学洗浄装置を説明する概略図である。
第9実施形態に係る化学洗浄装置700は第1実施形態の化学洗浄装置と同様に、薬液タンク701、薬液供給ライン702、薬液排出ライン703、制御部704、ポンプ705、還元雰囲気ガス供給部710として還元雰囲気ガス貯留部711及び給気ライン712、排気ライン713を備える。化学洗浄装置700は更に循環ライン720を備える。なお、第2実施形態〜第4実施形態の化学洗浄装置に対しても同様の循環ラインを設置することが可能である。
【0114】
循環ライン720は、貫流ボイラの一端側として下部管寄せ14a,14bと、他端側として上部管寄せ15a,15bとに接続する。循環ライン720の途中位置に循環ポンプ721が設置される。循環ライン720及び循環ポンプ721は仮設として設置されても良い。
【0115】
洗浄液の循環方向は特に限定されない。
図12の構成では火炉壁管13a,13b内を下から上に向かって洗浄液が流通するように循環されるが、上から下に向かって洗浄液が流通するように循環される構成としても良い。
【0116】
本実施形態では洗浄液の温度は環境温度付近であり、また循環流量も洗浄工程の間に少なくとも1回は循環する程度の小流量でよい。従って、循環ポンプ721の吐出し圧力は低くて良い。
【0117】
第9実施形態の化学洗浄装置700を用いた化学洗浄方法を以下で説明する。第9実施形態の化学洗浄方法では、第1実施形態と同様にして、ガス供給工程及び排出工程が実施される。
【0118】
<洗浄液供給工程>
制御部704はポンプ705を起動させるとともにバルブV1,V4を開放する。薬液タンク701内の洗浄液が薬液供給ライン702を介して貫流ボイラ10に送給される。第9実施形態では、貫流ボイラ10内の下部管寄せ、火炉壁管、上部管寄せ、及び循環ライン720の全てに洗浄液が供給される。制御部704は下部管寄せ、火炉壁管、上部管寄せ、及び循環ライン720の全てを浸漬できる洗浄液量を格納しており、洗浄液供給工程で所定量の洗浄液を貫流ボイラ10に送給する。
【0119】
ここで、貫流ボイラ10と気水分離器30とを連結する配管に設置されるバルブは閉鎖される。こうすることにより洗浄液が貫流ボイラ10の下流側で隣接する機器である気水分離器30に洗浄液が流入することを防止できる。
【0120】
<洗浄工程>
所定量の洗浄液が貫流ボイラ10に送給されると、制御部704はポンプ705を停止するとともにバルブV1,V4を閉鎖する。次いで制御部704は循環ポンプ721を起動する。循環ポンプ721の起動により、洗浄液が下部管寄せ14a,14b、火炉壁管13a,13b、上部管寄せ15a,15a及び循環ライン720を通過する。すなわち、本実施形態では貫流ボイラ10に隣接する他の機器(節炭器26、気水分離器30)に洗浄液が流入することなく循環される。循環は、洗浄工程期間中に洗浄液が貫流ボイラ10〜循環ライン720の間を少なくとも1周回るだけの流量で実施される。なお、循環ポンプ721の回転数を所定の周期で増減させても良い。こうすることにより、火炉壁管13a,13b内部を流通する洗浄液の流速が変動し、洗浄能力が更に向上する。
【0121】
また、循環ポンプ721を通過する際に洗浄液が昇温される。このため、例えば第1実施形態のように洗浄工程中に洗浄液を静置した場合と比較して高い温度(具体的に、火炉壁管13a,13bの周辺の環境温度より高く、環境温度+10℃以下)で洗浄工程が実施される。
【0122】
洗浄工程中において洗浄液の流通路(下部管寄せ14a,14b、火炉壁管13a,13b、上部管寄せ15a,15b及び循環ライン720)は閉空間を構成するので、洗浄工程中の洗浄液の酸化還元電位は−0.8V以上−0.4V以下(銀−塩化銀電極基準)に維持される。
【0123】
本実施形態に依れば、洗浄液に流速が与えられ、洗浄液が撹拌され、更に洗浄工程中に洗浄液が加熱されるため、循環ラインを設けない第1実施形態よりも洗浄力が向上し、ヘマタイトの洗浄効率が上昇する。
【解決手段】中性の防錆剤を含む洗浄液が、薬液供給ライン102を通じて、ヘマタイトが付着した部材を有する洗浄対象機器10に直接的に供給される。少なくともヘマタイトが付着した領域が洗浄液に浸漬され、洗浄液の酸化還元電位が洗浄液にヘマタイトが溶出する値に維持されて化学洗浄が実施されることにより、ヘマタイトが部材から溶出して除去される。