【実施例】
【0046】
以下の実施例は上に開示した種々の態様を例示しているが、どの点も本発明を制限していると解釈してはならない。
実施例1
A.PBC、PKSおよび関連したウリカーゼcDNAの構築
標準法、および試薬の製造元により供給されている適用可能な使用説明書が尿酸オキシダーゼcDNAのPCR増幅のための(米国特許第4,683,195および4,683,202、4,965,188&5,075,216号)、およびこれらのcDNAのクローニングおよび配列決定のための(Erlich 1989;Sambrook et al.1989;Ausubel 1998)総細胞RNAの調製に使用された。ブタおよびヒヒ尿酸オキシダーゼのPCRプライマー(表1)は報告されているコード配列(Wu et al.1989)およびPRIMEソフトウェアープログラム(Genetics Computer Group,Inc.)に基づいて設計された。
【0047】
【表1】
【0048】
プライマーの末端に導入された制限酵素配列(小文字)はセンス(ブタおよびヒヒ)EcoRIおよびNcoI;アンチセンス(ブタ)NcoI、HindIII、XbaI;アンチセンス(ヒヒ)NcoIである。ヒヒセンスプライマーにおいて、ヒヒ尿酸オキシダーゼ中に存在する第三のコドンGAC(アスパラギン酸)(Wu et al.1992)は、ヒト尿酸オキシダーゼ偽遺伝子コード配列のこの位置に存在しているコドンであるCAC(ヒスチジン)(Wu et al.1992)に置き換えられている。このため、これらのプライマーの使用により発生された組換え体ヒヒ尿酸オキシダーゼはD3Hヒヒ尿酸オキシダーゼと名付けられている。
【0049】
ブタおよびヒヒ肝臓からの総細胞RNAは1st strandキット(Pharmacia Biotech Inc.Piscataway,NJ)を使用して逆転写された。Taq DNAポリメラーゼ(GibcoBRL,Life Technologies,Gaithersburg,MD)を使用するPCR増幅は、熱サイクラー(Ericomp,San Diego,CA)中、[30秒、95℃;30秒、55℃;60秒、70℃]20サイクル続いて[30秒、95℃;60秒、70℃]10サイクルのプログラムで実施された。尿酸オキシダーゼPCR生成物はEcoRIおよびHindIIIで切断してpUC18(ブタ)内へクローン化され、およびまたTAクローニングシステム(Invitrogen,Carlsbad,CA)を使用して直接的にクローン化された(ブタおよびD3Hヒヒ)。cDNAクローンで大腸菌株XL1−Blue(Stratagene,La Jolla,CA)を形質転換させた。クローン化ウリカーゼcDNAを含んでいるプラスミドが調製され、cDNA挿入配列は標準ジデオキシ技術により分析された。報告されている尿酸オキシダーゼDNAコード配列(表1で説明したヒヒ尿酸オキシダーゼ中のD3H置換を除いて)を持っていたクローンが構築され、標準組換えDNA方法論による一連の続いての工程により確認された。
【0050】
完全長コード配列を含んでいるブタおよびD3HヒヒcDNAは以下のようにpET発現ベクター(Novagen,Madison,WI)内へ導入された。D3HヒヒウリカーゼcDNAはNcoIおよびBamHI制限酵素でTAプラスミドから切り出され、次に発現プラスミドpET3dおよびpET9dのNcoIおよびBamHIクローニング部位内へサブクローン化された。完全長ブタウリカーゼcDNAはEcoRIおよびHindIII制限酵素でpUCプラスミドクローンから切り出され、pET28dのEcoRIおよびHindIII部位内へサブクローン化された。ブタcDNAコード領域もまたpET28dのNcoIおよびBlpI部位から切り出した後、発現プラスミドpET9dのNcoIおよびBlpI部位内へ導入された。
【0051】
ブタ−ヒヒキメラ(PBC)cDNAはpET3d−D3H−ヒヒクローンからD3HヒヒウリカーゼcDNAの624bp NcoI−ApaI制限断片を切り出し、次にこのD3Hヒヒセグメントを対応するブタcDNAの624bp NcoI−ApaI制限断片で置き換えることにより構築した。得られたPBC尿酸オキシダーゼcDNAは読み枠内でヒヒ尿酸オキシダーゼのコドン226−304へ連結されたブタ尿酸オキシダーゼコドン1−225から成っている。
【0052】
ブタ−KS尿酸オキシダーゼ(PigKS)cDNAはpET3d−D3H−ヒヒクローンからのD3HヒヒウリカーゼcDNAの864bp NcoI−NdeI制限断片を切り出し、次にこのD3Hヒヒセグメントを対応するブタcDNAの864bp NcoI−NdeI制限断片で置き換えることにより構築した。得られたPKS尿酸オキシダーゼcDNAは読み枠内でヒヒ尿酸オキシダーゼのコドン289−304へ連結されたブタ尿酸オキシダーゼコドン1−288から成っている。
【0053】
D3Hヒヒ、ブタ、PBCおよびPKS尿酸オキシダーゼのアミノ酸配列は
図5および配列表に示されている。これらの形質転換体の各々の15%グリセロール保存液の調製には標準技術が使用され、これらは−70℃で保存された。これらの化学種が発現されおよび組換え酵素が単離された場合(表2)、ブタ、PBCキメラおよびPigKSウリカーゼは非常に類似した比活性を持っており、それは組み換えヒヒウリカーゼの比活性よりも約4−5倍高かった。この順序はいくつかの他の実験で確認された。いくつかの異なった方法で調製されたPBCウリカーゼの比活性は2−2.5倍の範囲にわたって変動した。
【0054】
【表2】
【0055】
*タンパク質はローリー法により決定された。ウリカーゼ活性は分光学的に決定された(Priest and Pitts 1972)。アッセイは1mlの反応混合物(0.1Mホウ酸ナトリウム、pH8.6、0.1mM尿酸)を含んでいる1cmの石英キュベット中、23−25℃で実施された。尿酸の消失は292nmでの吸光度の減少によりモニターされた。ウリカーゼの1国際単位(IU)は分当たり1マイクロモルの尿酸消失を触媒する。
【0056】
表2に示されている4つのウリカーゼcDNA−pET構築物の大腸菌BL21(DE3)pLysS形質転換体は、pETシステムマニュアル(Novagen,Madison WI)に示されているように選択抗生物質(pET3d(pigKS)に対してカルベニシリンおよびクロラムフェニコール;pET9d(PBC、ブタ、ヒヒ)に対してカナマイシンおよびクロラムフェニコール)を含んでいるLB寒天に播種した。5mlの培養液(LB+抗生物質)を単一形質転換コロニーに加え、37℃で3時間増殖させた。次に、その0.1mlを、選択抗生物質および0.1%ラクトースを含んでいる100mlのLB培地に移した(ウリカーゼ発現を誘導するため)。37°で一夜増殖させ、培養液0.5mlからの細菌細胞をSDS−PAGE添加緩衝液内に抽出し、SDS−メルカプトエタノールPAGEにより分析した;このことにより4つの培養物の各々で同等のレベルのウリカーゼタンパク質が発現されていたことが確立された(データは示されていない)。各々の100ml培養液の残りの細胞は遠心分離により集め、PBSで洗浄した。細胞は次に1mM AEBSFプロテアーゼインヒビター(Calbiochem,San Diego,CA)を含んでいる25mlのリン酸緩衝液、pH7.4(PBS)、に再び懸濁し、Bacterial Cell Disruptor(Microfluidics,Boston MA)中、氷上で溶菌させた。不溶性物質(ウリカーゼを含んでいる)を遠心分離(20,190xg、4°、15分)によりペレット化した。ペレットは10mlのPBSで洗浄し、2mlの1M Na2CO3、pH10.2、により4°で一夜抽出した。抽出物は10mlの水で希釈して遠心分離した(20,190xg、4°、15分)。ウリカーゼ活性およびタンパク質濃度が続いて決定された。
実施例2
組換え体PBCウリカーゼの発現および単離(4リットル発酵器法)
Novagen pETシステムマニュアルに示されているように、pET3d−PBCウリカーゼ形質転換体がグリセロール保存液からカルベニシリンおよびクロラムフェニコール含有LB寒天プレートへ播種された。pETプラスミド保持を最大にするためにpETシステムマニュアルで推薦されている方法を用いて、単一コロニーから出発した200ml接種物が37°で回転振盪機(250rpm)上のLB−抗生物質液体培地に調製された。OD525が2.4で、この200ml培養物から細胞を遠心分離により集め、50mlの新鮮培地に再懸濁した。この懸濁液を、4リットルのカルベニシリンおよびクロラムフェニコール含有SLBH培地(SLBH培地の組成、および発酵器の設計および操作はSadler et al.1974、に説明されている)を含んでいる高密度発酵器に移した。O2下、32°で20時間増殖させた後(OD525=19)、ウリカーゼ生成を誘導するためにイソプロピルチオガラクトシド(IPTG)を0.4mMまで加えた。さらに6時間後(OD525=37)、細菌細胞を遠心分離により集め(10,410xg、10分、4℃)、PBSで一度洗浄し、−20℃で凍結保存した。
【0057】
細菌細胞(189g)を200mlのPBSに再懸濁し、氷/塩浴で冷却しながら超音波処理(Heat Systems Sonicator XL、プローブモデルCL,Farmingdale,NY)により(100%強度で4x40秒バースト、バースト間に1分の休止)溶菌した。PBS不溶性物質(ウリカーゼを含む)を遠心分離(10,410xg、10分、4℃)によりペレット化し、200mlのPBSで5回洗浄した。PBS不溶性ペレット中のウリカーゼは1mMのフェニルメチルスルホニルフルオリド(PMSF)および130μg/mlアプロチニンを含んでいる80mlの1M Na2CO3、pH10.2、に抽出した。不溶性細胞破片は遠心分離(20,190xg、2時間、4℃)により除去した。以下のすべての精製工程は4℃で実施された(結果は表3に要約されている)。
【0058】
pH10.2抽出物は1mM PMSFで1800mlまで希釈した(Na2CO3を0.075Mに減少させる)。これは、0.075M Na2CO3、pH10.2、で平衡化されている新しいQ−Sepharose(Pharmacia Biotech,Inc.,Piscataway,NJ)のカラム(2.6x9cm)に加えた。負荷した後、カラムを1)溶出液のA280での吸光度がバックグラウンドに到達するまで0.075M Na2CO3、pH10.2、;2)溶出液のpHが8.5へ落ちるまで10mM NaHCO3、pH8.5;3)50mlの10mM NaHCO3、pH8.5、0.15M NaCl;4)10mM NaHCO3、pH8.5中、0.15Mから1.5M NaClの濃度勾配で100ml;5)150mlの10mM NaHCO3、pH8.5、1.5M NaCl;6)10mM NaHCO3、pH8.5;7)溶出液のpHが11に上昇するまで0.1M Na2CO3、pH11で連続的に洗浄した。最後に、ウリカーゼを0.1M Na2CO3、pH11中、0から0.6MのNaClの500ml濃度勾配液で溶出させた。活性は二つのA280吸収ピークに溶出し、それらは別々にプールされた(分画Aおよび分画B、表3)。これらのプール各々のウリカーゼは、1M酢酸を徐々に加えてpHを7.1に低下させ、続いての遠心分離(7000xg、10分)により沈殿させた。得られたペレットは50mlの1M Na2CO3、pH10.2、に溶解し、4℃で保存した。
【0059】
【表3】
【0060】
実施例3
組換え体PBCウリカーゼの小規模製造およびPEG化
この実施例は精製組換え体PBCウリカーゼがPEG化ウリカーゼを製造するために使用できることを示している。この反応において、すべてのウリカーゼサブユニットは修飾されており(
図1、レーン7)、触媒活性の約60%を保持していた(表4)。
A.PBCウリカーゼの小規模発現および単離(表4、図1)。
【0061】
pET3d−PBC cDNAで形質転換された大腸菌BL2l(DE3)pLysSの4リットル培養液を回転振盪機(250rpm)上、37°でインキュベートした。0.7OD525の時点で、培養物はIPTGにより誘導された(0.4mM、6時間)。細胞を集め、−20℃で凍結させた。細胞(15.3g)は凍結および融解により破壊し、1M Na2CO3、pH10.2、1M PMSFで抽出した。遠心分離後(12,000xg、10分、4℃)、上清(85ml)を水で1:10に希釈し、実施例1で説明した方法と同じ様式でQ−Sepharoseでクロマトグラフィーを行った。この工程でプールされたウリカーゼ活性はPM30膜(Amicon,Beverly,MA)を使用した加圧限外濾過により濃縮した。濃縮液は0.1M Na2CO3、pH10.2で平衡化および溶出するSephacryl S−200(Pharmacia Biotech,Piscataway,NJ)のカラム(2.5x100cm)でクロマトグラフィーを行った。ウリカーゼ活性を含んでいる分画をプールし、上記のような加圧限外濾過により濃縮した。
B.PEG化
100mgの濃縮Sephacryl S−200 PBCウリカーゼ(5mg/ml、2.9マイクロモル酵素;84.1マイクロモルリジン)の0.1M Na2CO3、pH10.2、溶液を2倍過剰(PEGのモル:ウリカーゼリジンのモル)のPEGの活性化形と、4°で60分間反応させた。PEG化ウリカーゼは接線方向流ディアフィルトレーションにより未反応または加水分解PEGを除いた。この工程において、反応液は0.1M Na2CO3、pH10.2、溶液に1:10で希釈され、3.5容量の0.1M Na2CO3、pH10.2、に対して、続いて3.5容量の0.05Mリン酸ナトリウム、0.15M NaCl、pH7.2、に対してディアフィルトレーションされた濾過滅菌酵素は、4°で少なくとも1ヶ月は安定であった。
【0062】
【表4】
【0063】
図1は組換え体ブタ−ヒヒキメラ(PBC)ウリカーゼの精製およびPEG化の間に得られた分画のSDS−メルカプトエタノールPAGE(12%ゲル)分析を示している。レーン1=MWマーカー;2=非誘導pET3d−PBC cDNA−形質転換細胞のSDS抽出物;3=IPTG誘導pET3d−PBC cDNA−形質転換細胞のSDS抽出物;4=粗抽出物(表5参照);5=濃縮Q−sepharoseウリカーゼプール;6=濃縮Sephacryl S−200ウリカーゼプール;7=PEG化Sephacryl S−200組換え体PBCウリカーゼ。
【0064】
表4に示した結果は精製PBCウリカーゼが触媒活性の約60%を保持して修飾できたことを示している。このPEG化反応において、すべてのウリカーゼサブユニットが修飾されていた(
図1、レーン7)。ここには示されていない研究において、PEG化酵素は非修飾PBCウリカーゼと類似の動力学的特性を持っていた(KM10−20μM)。重要なことには、修飾酵素は生理学的pHにおいて非修飾酵素よりもさらに可溶性であった(PBS中、>5mg/mlに対して<1mg/ml)。PEG化酵素はまた、ほとんど活性を損失することなく凍結乾燥でき、PBS(pH7.2)で再構築できた。別の実験において、PEG−PBCウリカーゼのこの調製試料とA.フラーブス ウリカーゼ臨床製剤の活性を比較した。ホウ酸緩衝液中、pH8.6で、A.フラーブス酵素は10−14倍高いVmaxおよび2倍高いKMを持っていた。しかしながら、PBS、pH7.2、において、PEG−PBCおよび非修飾真菌酵素はウリカーゼ活性において<2倍の相違であった。
実施例4
非修飾およびPEG化PBCウリカーゼのマウスにおける循環寿命
図2は天然およびPEG化PBCウリカーゼの循環寿命を示している。一群のマウス(時点当たり3匹)に1単位の天然(丸)またはPEG修飾(四角)組換え体PBCウリカーゼ(実施例3に説明したように調製)がIPで注射された。示されている時間に、血清ウリカーゼ活性を測定するために3匹のマウスの組から血液を得た。PEG化ウリカーゼ(実施例3に説明したような)は約48時間の循環寿命を持っていたのに対し、非修飾酵素は<2時間であった(
図2)。
実施例5
本発明のPEG化ウリカーゼの有効性
図3は尿酸の血清および尿濃度に対する血清ウリカーゼ活性の関係を示している。この実験において、ホモ接合性ウリカーゼ欠損ノックアウトマウス(Wu et al.1994)に、すでにPEG化されている0.4IUの組換え体PBCウリカーゼが0および72時間目に2回注射された。ウリカーゼ欠損ノックアウトマウスがこの実験で使用された。なぜならウリカーゼを持っている正常マウスと異なり、これらのノックアウトマウスは(ヒトのように)その血液および体液に高レベルの尿酸を持っており、尿に高レベルの尿酸を排泄するからである。これらの高レベルの尿酸はこれらのマウスに重度の障害を起こし、それはしばしば致死的である(Wu et al.1994)。
【0065】
図3に示された実験は、組換え体PBCウリカーゼのPEG化製剤の腹腔内注射が血清ウリカーゼ活性を増加させたことを示しており、それはウリカーゼ欠損マウスにおいて、尿酸の血清および尿濃度の著しい減少を伴った。
実施例6
構築物−担体複合体の非免疫原性
PEG化組換え体PBCウリカーゼがホモ接合性ウリカーゼ欠損マウスに反復して注射されたが、促進されたクリアランスを誘導することはなく、有意な免疫原性が存在しないことと矛盾しない。このことはELISAにより確認された。
図4は反復注射後のウリカーゼ活性(血清で測定された)の循環寿命の維持を示している。PEG化PBCウリカーゼは6−10日間隔で腹腔内注射により投与された。血清ウリカーゼ活性は注射24時間後に決定された。
実施例7
突然変異的に導入されたリジンへの共有結合
精製組換え体PBCウリカーゼのPEG化は新規リジン(残基291)へのPEGの結合を生じなければならない。この実験において、PBCウリカーゼ調製試料はPEG化により修飾できた。新規リジン(残基291)を含んでいるペプチドがPEG化により修飾されたかどうかは本分野では既知の手段により決定できた。
参考文献
【0066】
【表5】
【0067】
【表6】
【0068】
【表7】
【0069】
【表8】
【0070】
【表9】
【0071】
【表10】
【0072】
【表11】
【0073】
【表12】
【0074】
上に引用したすべての論文は、全体が本明細書において援用される。