特許第5722110号(P5722110)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パワー・インテグレイションズ・インコーポレイテッドの特許一覧

特許5722110絶縁された電源変換器の出力電圧の変化を検出するための装置および方法
<>
  • 特許5722110-絶縁された電源変換器の出力電圧の変化を検出するための装置および方法 図000002
  • 特許5722110-絶縁された電源変換器の出力電圧の変化を検出するための装置および方法 図000003
  • 特許5722110-絶縁された電源変換器の出力電圧の変化を検出するための装置および方法 図000004
  • 特許5722110-絶縁された電源変換器の出力電圧の変化を検出するための装置および方法 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5722110
(24)【登録日】2015年4月3日
(45)【発行日】2015年5月20日
(54)【発明の名称】絶縁された電源変換器の出力電圧の変化を検出するための装置および方法
(51)【国際特許分類】
   H02M 3/28 20060101AFI20150430BHJP
【FI】
   H02M3/28 H
【請求項の数】22
【外国語出願】
【全頁数】14
(21)【出願番号】特願2011-93920(P2011-93920)
(22)【出願日】2011年4月20日
(65)【公開番号】特開2011-234611(P2011-234611A)
(43)【公開日】2011年11月17日
【審査請求日】2014年4月18日
(31)【優先権主張番号】12/770,500
(32)【優先日】2010年4月29日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】511098541
【氏名又は名称】パワー・インテグレイションズ・インコーポレイテッド
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100064908
【弁理士】
【氏名又は名称】志賀 正武
(74)【代理人】
【識別番号】100089037
【弁理士】
【氏名又は名称】渡邊 隆
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(72)【発明者】
【氏名】アレックス・ビー・ジェンゲリアン
(72)【発明者】
【氏名】アーサー・ビー・オデール
(72)【発明者】
【氏名】ヘンソン・ウ
【審査官】 松本 泰典
(56)【参考文献】
【文献】 特開2009−165316(JP,A)
【文献】 特開2009−106029(JP,A)
【文献】 特開2008−283787(JP,A)
【文献】 特開2000−209854(JP,A)
【文献】 米国特許出願公開第2010/0165666(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 3/28
(57)【特許請求の範囲】
【請求項1】
電源変換器に用いられるコントローラにおいて、
エネルギー転送素子および電源変換器の入力に接続されるべき電源スイッチによって受信されるように接続されたスイッチング信号を生成して、電源変換器の入力から出力へのエネルギーの転送を制御する駆動回路と、
前記駆動回路に接続され、かつ電源変換器の出力を表すフィードバック信号を受信するように接続された出力電圧センサとを備えていて、
前記出力電圧センサは、第1および第2パルスサンプラ回路を有していて、
前記第1パルスサンプラ回路は、フィードバック信号における1回目のフィードバック信号のリンギング電圧の第2ピークを表す第1ピーク電圧を捕捉するように接続されていて、
前記第2パルスサンプラ回路は、フィードバック信号における2回目のフィードバック信号のリンギング電圧の第2ピークを表す第2ピーク電圧を捕捉するように接続されていて、
前記出力電圧センサは、第1および第2ピーク電圧に応じて、駆動回路に変化信号を出力するように接続されていることを特徴とするコントローラ。
【請求項2】
前記出力電圧センサは、第1ピーク電圧と第2ピーク電圧を比較するように接続された比較回路を更に有していて、
前記比較回路は、第1ピーク電圧と第2ピーク電圧の比較に応じて、駆動回路に変化信号を出力するように接続されていることを特徴とする請求項1に記載のコントローラ。
【請求項3】
前記出力電圧センサは、第1サンプル信号生成器および第2サンプル信号生成器を更に有していて、
前記第1および第2サンプル信号生成器は、駆動回路から第1および第2制御信号を受信して、それぞれフィードバック信号における1回目および2回目のフィードバック信号の第1および第2サンプリングを開始するように接続されていて、
前記第1パルスサンプラ回路は、第1サンプル信号生成器に応じて、第1ピーク電圧を捕捉するように接続されていて、
前記第2パルスサンプラ回路は、第2サンプル信号生成器に応じて、第2ピーク電圧を捕捉するように接続されていることを特徴とする請求項1に記載のコントローラ。
【請求項4】
前記フィードバック信号は、電源スイッチのオフ状態の間の電源の出力を表す反映信号であることを特徴とする請求項1に記載のコントローラ。
【請求項5】
前記第1および第2パルスサンプラ回路は、第1および第2ピーク電圧をそれぞれ保存するように接続された第1および第2キャパシタをそれぞれ有していることを特徴とする請求項1に記載のコントローラ。
【請求項6】
前記第2パルスサンプラ回路は、予め決められた時間遅延後に第2キャパシタをリセットするように接続されたリセット回路を有していることを特徴とする請求項5に記載のコントローラ。
【請求項7】
電源変換器を制御する方法において、
電源スイッチをスイッチングして、電源変換器の入力から出力へのエネルギーの転送を制御するステップと、
電源変換器の出力を表すフィードバック信号を生成するステップと、
フィードバック信号における1回目のフィードバック信号のリンギング電圧の第2ピークを表す第1ピーク電圧を捕捉するステップと、
フィードバック信号における2回目のフィードバック信号のリンギング電圧の第2ピークを表す第2ピーク電圧を捕捉するステップと、
第1および第2ピーク電圧に応じて、電源変換器の入力から出力へのエネルギーの転送を変化させるステップとを有していることを特徴とする方法。
【請求項8】
第1ピーク電圧と第2ピーク電圧の比較に応じて変化信号を生成するステップを更に有していて、エネルギーの転送の変化は、変化信号に応じることを特徴とする請求項7に記載の電源変換器を制御する方法。
【請求項9】
予め決められた時間遅延後に第2ピーク電圧をリセットするステップを更に有していることを特徴とする請求項7に記載の電源変換器を制御する方法。
【請求項10】
前記フィードバック信号を生成するステップは、電源変換器のエネルギー転送素子を通して電源変換器の出力電圧を反映するステップを有していることを特徴とする請求項7に記載の電源変換器を制御する方法。
【請求項11】
前記フィードバック信号を生成するステップは、電源変換器の電源スイッチをオフにして、電源変換器のエネルギー転送素子を通して電源変換器の出力電圧を反映するステップを有していることを特徴とする請求項7に記載の電源変換器を制御する方法。
【請求項12】
前記フィードバック信号を生成するステップは、短い導通時間の間、電源変換器の電源スイッチをオンにして、次にオフにすることにより、反映出力電圧においてリンギング波形が減衰振動になるステップを有していることを特徴とする請求項11に記載の電源変換器を制御する方法。
【請求項13】
電源変換器の入力と出力の間に接続されたエネルギー転送素子と、
エネルギー転送素子および電源変換器の入力に接続された電源スイッチと、
電源スイッチによって受信されるように接続されたスイッチング信号を生成するための駆動回路を有していて、電源変換器の入力から出力へのエネルギーの転送を制御するコントローラと、
コントローラに含まれていて、駆動回路に接続されている出力電圧センサとを備えていて、
前記出力電圧センサは、電源変換器の出力を表すフィードバック信号を受信するように接続されていて、
前記出力電圧センサは、第1および第2パルスサンプラ回路を有していて、
前記第1パルスサンプラ回路は、フィードバック信号における1回目のフィードバック信号のリンギング電圧の第2ピークを表す第1ピーク電圧を捕捉するように接続され、
前記第2パルスサンプラ回路は、フィードバック信号における2回目のフィードバック信号のリンギング電圧の第2ピークを表す第2ピーク電圧を捕捉するように接続され、
前記出力電圧センサは、第1および第2ピーク電圧に応じて駆動回路に変化信号を出力するように接続されていることを特徴とする電源変換器。
【請求項14】
前記出力電圧センサは、第1ピーク電圧と第2ピーク電圧を比較するように接続された比較回路を更に有していて、
前記比較回路は、第1ピーク電圧と第2ピーク電圧の比較に応じて駆動回路に変化信号を出力するように接続されている
ことを特徴とする請求項13に記載の電源変換器。
【請求項15】
前記出力電圧センサは、第1サンプル信号生成器および第2サンプル信号生成器を更に有していて、
前記第1および第2サンプル信号生成器は、駆動回路から第1および第2制御信号を受信して、それぞれフィードバック信号における1回目および2回目のフィードバック信号の第1および第2サンプリングを開始するように接続されていて、
前記第1パルスサンプラ回路は、第1サンプル信号生成器に応じて第1ピーク電圧を捕捉するように接続されていて、
前記第2パルスサンプラ回路は、第2サンプル信号生成器に応じて第2ピーク電圧を捕捉するように接続されていることを特徴とする請求項13に記載の電源変換器。
【請求項16】
前記フィードバック信号は、電源スイッチのオフ状態の間の電源の出力を表すエネルギー転送素子を通して受信される反映信号であることを特徴とする請求項13に記載の電源変換器。
【請求項17】
前記第1および第2パルスサンプラ回路は、第1および第2ピーク電圧をそれぞれ保存するように接続された、第1および第2キャパシタをそれぞれ有していることを特徴とする請求項13に記載の電源変換器。
【請求項18】
前記第2パルスサンプラ回路は、予め決められた時間遅延後に第2キャパシタをリセットするように接続されたリセット回路を有していることを特徴とする請求項17に記載の電源変換器。
【請求項19】
電源変換器のコントローラに用いられる出力電圧センサにおいて、
電源変換器の出力を表すフィードバック信号を受信するように接続された第1パルスサンプラ回路を備えていて、前記第1パルスサンプラ回路は、フィードバック信号における1回目のフィードバック信号のリンギング電圧の第2ピークを表す第1ピーク電圧を捕捉するように接続され、
更に、電源変換器の出力を表すフィードバック信号を受信するように接続された第2パルスサンプラ回路を備えていて、前記第2パルスサンプラ回路は、フィードバック信号における2回目のフィードバック信号のリンギング電圧の第2ピークを表す第2ピーク電圧を捕捉するように接続され、出力電圧センサは、第1および第2ピーク電圧に応じて、電源変換器のコントローラの駆動回路に変化信号を出力するように接続されている
ことを特徴とする出力電圧センサ。
【請求項20】
電源変換器のコントローラにおいて、
エネルギー転送素子および電源変換器の入力に接続された電源スイッチのスイッチングを制御するように接続されていて、電源変換器の入力から出力へのエネルギーの転送を制御する駆動回路と、
それぞれ第1および第2ピーク電圧を捕捉するように接続された、第1および第2パルスサンプラ回路を有する出力電圧センサとを備えていて、前記第1および第2ピーク電圧は、電源変換器の出力を表すフィードバック信号のリンギング電圧の第2ピークを表していて、前記第1パルスサンプラ回路は、フィードバック信号における1回目の第1ピーク電圧を捕捉するように接続され、前記第2パルスサンプラ回路は、フィードバック信号における2回目の第2ピーク電圧を捕捉するように接続され、前記駆動回路は、第1および第2ピーク電圧に応じて出力電圧センサから変化信号を受信するように接続されている
ことを特徴とする電源変換器のコントローラ。
【請求項21】
電源変換器のコントローラにおいて、
電源変換器の入力から出力へのエネルギーの転送を制御するために、エネルギー転送素子および電源変換器の入力に接続された電源スイッチのスイッチングを制御するように接続された駆動回路と、
前記駆動回路に接続された電圧センサとを備えていて、前記電圧センサは、電源変換器の出力を表すフィードバック信号を受信するように接続されていて、かつパルスサンプラ回路を有していて、前記パルスサンプラ回路は、第1イネーブルスイッチングサイクル内のフィードバック信号のリンギングの第1ピーク以外のピークのうちの1つを表す第1電圧をサンプリングするように接続されていて、さらに、次のイネーブルスイッチングサイクル内のフィードバック信号のリンギングの同じピークを表す第2電圧をサンプリングするように接続されていて、前記パルスサンプラ回路は、さらに、第1電圧のサンプルを第2電圧のサンプルと比較して、この比較に基づいて変化信号を出力するように接続されていて、前記駆動回路は、さらに、前記変化信号に応じて電源スイッチのスイッチングを制御するように接続されている
ことを特徴とする電源変換器のコントローラ。
【請求項22】
電源変換器の入力と出力の間に接続されたエネルギー転送素子と、
エネルギー転送素子および電源変換器の入力に接続された電源スイッチと、
電源スイッチによって受信されるように接続されたスイッチング信号を生成するように接続された駆動回路を有していて、電源変換器の入力から出力へのエネルギーの転送を制御するコントローラと、
コントローラに含まれていて、駆動回路に接続されている電圧センサとを備えていて、前記電圧センサは、電源変換器の出力を表すフィードバック信号を受信するように接続されていて、前記電圧センサは、パルスサンプラ回路を有していて、前記パルスサンプラ回路は、第1イネーブルスイッチングサイクル内のフィードバック信号のリンギングの第1ピーク以外のピークのうちの1つを表す第1電圧をサンプリングするように接続されていて、さらに、次のイネーブルスイッチングサイクル内のフィードバック信号のリンギングの同じピークを表す第2電圧をサンプリングするように接続されていて、前記パルスサンプラ回路は、さらに、第1電圧のサンプルを第2電圧のサンプルと比較して、この比較に基づいて前記駆動回路に変化信号を出力するように接続されている
ことを特徴とする電源変換器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して、絶縁された電源変換器の出力電圧の変化を検出することに関し、詳細には、絶縁された電源変換器のバイアス巻線からリンギング電圧を検出して、出力電圧の変化を検出することに関する。
【背景技術】
【0002】
携帯電話、パーソナル携帯情報機器(PDA)、ラップトップなどのような多くの電気装置は、比較的低電圧の直流電源によって駆動される。電源は、通常、高電圧交流電源として壁面コンセントを通して供給される。一般にスイッチング電源変換器と呼ばれる装置は、通常、高電圧交流電源を低電圧直流電源に変換するために用いられる。特定のアプリケーションにおいて、電気装置は、電源変換器から供給される一定出力電圧および/または最小動作電圧を必要とする可能性がある。動作において、電源変換器は、電源変換器の出力で一定電圧を維持するために、コントローラを用いて、電源変換器の入力側から出力側にエネルギーを転送するスイッチを制御することができる。
【発明の概要】
【課題を解決するための手段】
【0003】
電源変換器の1つの特性は、電源変換器の入力と出力の間の直流電気の絶縁を提供することであってもよく、これは、電流が電源変換器の入力側から出力側に流れることを可能にする直流電流経路がないことを意味する。一例において、電源変換器は、例えば結合されたインダクタのようなエネルギー転送素子を備えていてもよく、それは、電源変換器の入力側を出力側から直流電気的に絶縁する。動作中、電源変換器は、出力電圧を調整するために、センサに接続されたコントローラを用いて電源変換器の出力からフィードバックを供給することにより、電源変換器の出力での出力電圧を調整することができる。詳細には、コントローラは、センサからのフィードバック情報に応じてスイッチをオンおよびオフに制御して、例えば電源線のような入力電源から出力へ絶縁素子を通してエネルギーパルスを転送することによって、電源変換器の出力での出力電圧を調整することができる。
【0004】
1つのタイプの電源変換器は、一次側制御電源変換器であってもよい。このタイプの電源変換器は、直流電気的に絶縁された電源変換器の出力側に間接的に結合されたフィードバックメカニズムを用いる。一例において、一次側制御電源変換器は、出力巻線に磁気的に結合されたバイアス巻線を用いて出力電圧を検出することができる。
【0005】
本発明の非限定的かつ非網羅的な実施形態が、以下の図に関して記載されている。そこにおいて、特に明記しない限り、様々な図の全体にわたって、同じ参照番号は同じ部分を指す。
【図面の簡単な説明】
【0006】
図1】本発明の教示による駆動回路および出力電圧センサ(OVS)を有するコントローラを備えている電源変換器の一例を一般的に示している概略図である。
図2】本発明の教示による一例としてのコントローラを更に示しているブロック図である。
図3】本発明の教示による一例としてのコントローラ内の信号の例としての波形を示している。
図4】本発明の教示による一例としての出力電圧センサの概略図を一般的に示している。
【発明を実施するための形態】
【0007】
電源変換器の絶縁された出力の出力電圧の変化を検出するための方法および装置が開示される。以下の説明において、多数の具体的な詳細は、本発明の完全な理解を提供するために記載される。しかし、具体的な詳細が本発明を実施するために用いられる必要はないことは、当業者にとって明らかである。他の例において、周知の材料または方法は、本発明を不明瞭にすることを避けるために詳述しなかった。
【0008】
この明細書全体にわたる「一実施形態」、「実施形態」、「一例」または「例」に対する言及は、実施形態または例と関連して記載された特定の特徴、構成または特性が、本発明の少なくとも1つの実施形態に含まれていることを意味する。従って、この明細書の全体にわたる様々な場所における「一実施形態において」、「実施形態において」、「一例」または「例」という句の出現は、全てが、必ずしも同じ実施形態または例を指しているというわけではない。さらに、特定の特徴、構成または特性は、1つ以上の実施形態または例における任意の適切な組合せ及び/又は下位の組合せに組み込まれ得る。特定の特徴、構成または特性は、記載されている機能を提供する集積回路、電子回路、組合せ論理回路、または他の適切な素子内に含まれ得る。加えて、これと共に提供されている図面が、この分野の通常の技術を有する人に対する説明のためであり、図面が必ずしも一定の比率で描かれているわけではないことは、認められる。
【0009】
図1は、電源とも呼ばれ得る電源変換器100の一例を一般的に示している概略図であり、本発明の教示による駆動回路104および出力電圧センサ(OVS)106を有するコントローラ102を備えている。一例において、コントローラ102は、集積回路に含まれていてもよい。示したように、電源変換器100は、入力端子103で直流入力電圧VINを受け取る。エネルギー転送素子116が、電源変換器100の入力端子103と出力端子118の間に接続されている。この例において、エネルギー転送素子116は、入力端子103を、出力電圧VOUTを維持する出力端子118から直流電気的に絶縁している。エネルギー転送素子116によって出力端子118から直流電気的に絶縁された入力端子103により、電流が電源変換器100の入力側から出力側に流れることを可能にする直流電流経路はない。示したように、入力帰還(return)129は、入力端子103に接続された入力側に対する基準であり、出力帰還131は、出力端子118に接続された出力側に対する基準である。一実施形態において、エネルギー転送素子116は、入力巻線122および出力巻線124を有している。「入力巻線」は「一次巻線」と呼ばれることもあり、「出力巻線」は「二次巻線」と呼ばれることもある。示したように、クランプ回路125が、エネルギー転送素子116の入力巻線122に接続されていて、入力巻線122に接続されている電源スイッチ108の両端の最高電圧を制限する。
【0010】
図示した例に示されているように、コントローラ102は、入力巻線122および入力帰還129に接続された電源スイッチ108に接続されている。一例において、電源スイッチ108およびコントローラ102は、同じモノリシックデバイス内に集積され得る。他の例では、電源スイッチ108は、ハイブリッドデバイス内に集積されたコントローラ102と共にパッケージされたディスクリートのスイッチであってもよい。動作において、電源スイッチ108は、エネルギー転送素子116を通して入力端子103から出力端子118へのエネルギーの転送を制御して、電源スイッチ108をオン状態とオフ状態の間でスイッチングすることによって電源変換器100の出力を調整するように接続されている。詳細には、電源スイッチ108がオンのとき、スイッチ電流ISWが入力巻線122を通して流れ、電源スイッチ108がオフのとき、スイッチ電流ISWが電源スイッチ108を通して流れることが実質的に阻止される。一例において、電源スイッチ108は、トランジスタ、例えば、高電圧の金属酸化膜半導体の電界効果トランジスタ(MOSFET)である。他の様々な例において、コントローラ102は、以下のものに限定されるわけではないが、オン/オフ制御、電流制限レベルを変化させることを伴うオン/オフ制御、パルス幅変調(PWM)等を含む、任意の様々な調節方法を用いるための特徴を有していてもよい。
【0011】
一例において、エネルギー転送素子116は、更に、出力整流器126が導通して二次電流ISECが出力巻線124を通して流れることを可能にする時の出力電圧VOUTを表すことができる、反映(reflected)電圧VREFLECTを提供するバイアス巻線136を有している。一例において、反映電圧VREFLECTは、電源スイッチ108がオフである時間の少なくとも一部の間の出力電圧VOUTを表すことができる。示したように、ノード111でのリンギング電圧110は、反映電圧VREFLECTの変えられたバージョンであり得る。示したように、ノード111でのリンギング電圧110は、コントローラ102によって正の状態を保つようにクランプされる。詳細には、反映電圧VREFLECTが負になると、ノード111の電圧は、コントローラ102のダイオード基板を順方向バイアスすることによって実質的にゼロにクランプされ、反映電圧VREFLECTが正になると、ノード111の電圧は、反映電圧マイナス直流電圧オフセットになる。
【0012】
一例において、電源スイッチ108がオン状態からオフ状態に移行すると、スイッチ電流ISWITCHが電源スイッチ108を通って流れることが実質的に阻止され、入力巻線122に蓄積されていたエネルギーが出力巻線124に転送され、出力電圧VOUTを表す反映電圧VREFLECTが供給される。反映電圧VREFLECTの一部は、バイアス巻線136の巻数が出力巻線124の巻数と同じ比率であることによって、出力電圧VOUTと比例し得る。バイアス巻線136は、時々「補助」巻線と呼ばれることがある。
【0013】
無負荷状態の間、それは例えばエネルギーが実質的に出力端子118に接続された負荷によって引き込まれない時に起こるが、電源変換器100の出力側に供給されるエネルギーは最小限でよく、従って出力整流器126の導通時間を減らす。一例において、出力整流器126の短い導通時間の間、例えば漏れインダクタンスのような寄生素子およびエネルギー転送素子116に接続された素子によって生じる他の寄生が、リンギング電圧110の『第1』ピークの全期間の間、生成され得る。結果として、リンギング電圧110の『第1』ピークは、かなりの歪み成分を持ち得る。本発明の教示によれば、リンギング電圧110の『第2』ピークのサンプリングは、それは一例においてより少ない歪みを持ち得るが、出力電圧VOUTのより正確な表現を提供し得る。代替実施形態では、本発明の教示に従って『第3』『第4』または任意のその後のピークもサンプリングされ得る。
【0014】
図1に示した例の説明を続けると、バイアス巻線136は、第1および第2抵抗140および142を有する分圧器に接続されていて、コントローラ102のフィードバック端子144が、第1および第2抵抗140および142の間のノード111に接続されている。一例において、第1および第2抵抗140および142のための値は、所望の出力電圧VOUTを設定するために選ばれ得る。フィードバック信号UFBは、コントローラ102の出力電圧センサOVS 106によって受信され、電源スイッチ108がオフされる時のリンギング電圧110を受信する。
【0015】
動作において、コントローラ102は、図示した例ではダイオードを含む出力整流器126内で脈動電流を発生させ、それはキャパシタ154によってフィルタリングされ、実質的に一定の出力電圧VOUTを発生する。動作において、出力電圧センサOVS 106は、リンギング電圧110の『第2』ピークを検出して、出力電圧VOUTの変化を判定する。一例において、出力電圧センサ106は、出力電圧VOUTを調整するために用いることはできないが、本発明の教示による無負荷状態から負荷状態への移行の間の出力端子118での出力電圧VOUTの有意の変化を判定するために用いることはできる。コントローラ102が、出力端子118に負荷が接続された時に、出力電圧VOUTを実質的に一定の出力電圧VOUTに調整するために、出力電圧センサOVS 106以外の追加の既知の回路(図示せず)を有していてもよいことは認められ得る。他の例では、出力電圧センサOVS 106は、出力電圧VOUTを調整するために用いることもできる。更に示されているように、駆動回路104は、出力電圧VOUTの変化を示し得る出力電圧センサ106からの変化信号UCHGを受信するように接続されている。次に、コントローラ102の駆動回路104は、電源の供給を増やすように電源スイッチ108をスイッチングするスイッチング信号USWを出力することによって応答することができ、出力電圧VOUTが、負荷によって要求される最小限の出力電圧以下に下がるのを防止するのを助ける。
【0016】
図2は、本発明の教示による例としてのコントローラ200を更に一般的に示しているブロック図である。一例において、コントローラ200は、図1のコントローラ102を置き換えることができる。示したように、コントローラ200は、駆動回路204および出力電圧センサ(OVS)206を有している。更に示したように、出力電圧センサ206は、例えば図1に示したバイアス巻線136のようなバイアス巻線からフィードバック信号UFBを受信することができる。一例において、フィードバック信号UFBは、電源変換器の出力電圧VOUTを表す減衰振動のリンギング電圧110を有している。動作において、出力電圧センサ206は、フィードバック信号UFBに応じて出力電圧変化信号UCHGを出力する。駆動回路204は、出力電圧センサ206に接続されていて、信号UCHGに応じてスイッチング信号を出力し、電源変換器の出力電圧が下がり過ぎるのを防止するのを助ける。
【0017】
図2の例に示すように、出力電圧センサ206は、互いに接続された第1パルスサンプラ回路208、第1サンプル信号生成器210、第2パルスサンプラ回路212、第2サンプル信号生成器214、および比較回路216を有している。動作において、出力電圧センサは、出力電圧VOUTの変化がいつ起こるかを検出するために用いられる。例示のために、第1サンプル信号生成器210は、駆動回路204から制御信号UCON1を受信するように接続され、出力電圧VOUTを表すフィードバック信号UFBの第1サンプリングを開始する。動作において、駆動回路204は、フィードバック信号UFBに変化がある時に検出のプロセスを起動する制御信号UCON1を生成する。一例において、制御信号UCON1は、最小のエネルギーが電源変換器の出力に転送されている、電源変換器が負荷状態から無負荷状態に最初に移行する時に生成される。動作において、第1サンプル信号生成器210は、ウィンドウ上でサンプリングを行う第1パルスサンプラ回路208に第1サンプルパルス信号UFSPを出力して、図1に示したフィードバック信号UFBにおける1回目のリンギング電圧110の『第2』ピークを表す第1ピーク電圧を捕捉する。示したように、第1パルスサンプラ回路208は、第1サンプルパルス信号UFSPに応じて、フィードバック信号UFBにおけるリンギング電圧110の『第2』ピークを表す第1ピーク電圧を捕捉する。動作において、第1パルスサンプラ回路は、フィードバック信号UFBにおける1回目のリンギング電圧110の『第2』ピークのピーク電圧を表す第1ピーク電圧信号UPK1を出力する。
【0018】
同様に、第2サンプル信号生成器214は、駆動回路204から制御信号UCON2を受信して、フィードバック信号UFBの第2サンプリングを開始する。動作において、駆動回路204は、フィードバック信号UFBが制御信号UCON1に応じて以前に捕捉された時と比較して変化したかどうかを検出するために、制御信号UCON2を生成する。一例において、制御信号UCON2は、電源変換器のコントローラが、例えば無負荷状態から負荷状態への移行の間のような、いつ現在の状態が初期状態からはずれたかを検出するために、初期状態からの出力電圧VOUTのフィードバック状態を現在の状態と比較したい時に、生成される。動作において、第2サンプル信号生成器214は、ウィンドウ上でサンプリングを行う第2サンプル信号生成器214に第2サンプルパルス信号USSPを出力して、図1に示したフィードバック信号UFBにおける2回目のリンギング電圧110の『第2』ピークを表す第2ピーク電圧を捕捉する。示したように、第2パルスサンプラ回路212は、第2サンプルパルス信号USSPに応じて、フィードバック信号UFBにおけるリンギング電圧110の『第2』ピークを表す第2ピーク電圧を捕捉する。動作において、第2パルスサンプラ回路212は、フィードバック信号UFBにおける2回目のリンギング電圧110の『第2』ピークのピーク電圧を表す第2ピーク電圧信号UPK2を出力する。
【0019】
示したように、比較回路216は、フィードバック信号UFBにおける1回目のリンギング電圧110の『第2』ピークのピーク電圧を表す第1ピーク電圧信号UPK1を受信するように接続されている。比較回路216は、また、フィードバック信号UFBにおける2回目のリンギング電圧110の『第2』ピークのピーク電圧を表す第2ピーク電圧信号UPK2を受信するように接続されている。動作において、比較回路216は、ピーク電圧信号UPK1およびUPK2に応じて電圧変化信号UCHGを出力する。一例において、比較回路216は、ピーク電圧信号UPK1をUPK2と比較して、出力電圧VOUTに変化があるかどうかを判定する。図示した例では、リセット信号URESETが、第1パルスサンプラ回路208によって受信され、第1ピーク電圧信号UPK1を例えばゼロのような初期値にリセットする。動作において、リセット信号URESETは、フィードバック信号UFBが第1パルスサンプラ回路208によってサンプリングされ得る前に、駆動回路204によって出力される。一例において、リセット信号URESETは、出力電圧変化信号UCHGに応じて出力されてもよく、出力電圧センサ206の初期状態をリセットする。
【0020】
図3は、本発明の教示による例としてのコントローラ200内の例としての信号波形を示している。示したように、電源変換器の4つの『イネーブル(enabled)』スイッチングサイクル(「ESW」)が示されている。開示のため、イネーブルスイッチングサイクルは、電源スイッチ108のスイッチングが起こって、電源変換器100の出力に電力を供給するサイクルとして定義され得る。図3に示したように、第1イネーブルスイッチングサイクル1st ESW CYCLEで、駆動信号USWは、電源スイッチ108が、全スイッチングサイクル1st ESW CYCLEのうちの一部だけの間、導通することを許可している。これは、1st ESW CYCLEの間、少量の電力だけが電源変換器100の出力に転送されるという結果になり得る。示したように、スイッチ電流ISWは、オン状態の間、電源スイッチ108を通る電流を表している。一例において、スイッチ電流ISWは、指定された値に制限される。フィードバック信号UFBは、電源スイッチ108がディスエーブルにされ、エネルギーが二次巻線124に転送された後にノード111で発生するリンギング電圧110を示している。更に示したように、第1ピーク電圧信号UPK1は、第1イネーブルスイッチングサイクル1st ESW CYCLEの間におけるリンギング電圧の『第2』ピークのピーク電圧PKAを表している。更に示したように、第1サンプルパルス信号UFSPは、第1イネーブルスイッチングサイクル1st ESW CYCLEの間のリンギング電圧の『第2』ピークの継続期間の間、ロウ信号である。一例において、第1サンプルパルス信号UFSPがロウ値である時、フィードバック信号UFBのサンプリングを許可する。
【0021】
第2ピーク電圧信号UPK2は、第2イネーブルスイッチングサイクル2nd ESW CYCLEの間におけるフィードバック信号UFBのリンギング電圧の『第2』ピークのピーク電圧PKAを表している。一例において、第2ピーク電圧信号UPK2は、その後の電圧リンギングがサンプリングされ得るように、特定の時間遅延tD後にリセットされる。更に示したように、第2サンプルパルス信号USSPは、2nd ESW CYCLEのリンギング電圧の『第2』ピークの継続期間の間、ロウ信号である。
【0022】
図示した例に示すように、第1イネーブルスイッチングサイクル1st EWS CYCLEにおけるリンギング電圧の『第2』ピークの値を、第2イネーブルスイッチングサイクル2nd ESW CYCLEにおけるリンギング電圧の『第2』ピークの値と比較した時に、出力電圧における検出可能な変化はなかった。従って、この例では、図2の比較回路216から出力される電圧変化信号UCHGは、第1および第2イネーブルスイッチングサイクル間で、変化しない。示したように、第1イネーブルスイッチングサイクル1st EWS CYCLEと第2イネーブルスイッチングサイクル2nd EWS CYCLEとの間に、いくつかの『ディスエーブル(disabled)』スイッチングサイクルがあってもよい。これは、図3に示したように、ごくわずかな電力しか出力に供給されることを要求されない無負荷状態のために起こり得る。
【0023】
更に図3の例に示したように、いくつかの『ディスエーブル』スイッチングサイクルは、第2イネーブルスイッチングサイクル2nd EWS CYCLEと第3イネーブルスイッチングサイクル3rd EWS CYCLEとの間に起こり得る。この例に示したように、出力電圧VOUTは、第3イネーブルスイッチングサイクル3rd EWS CYCLEの直前の短い時間に著しく低下する。この例において、これは、おそらく、出力電圧VOUTが低下する時に、無負荷状態から負荷状態への変化を示している。図3に示した例としての第3イネーブルスイッチングサイクル3rd EWS CYCLEの間の第2ピーク電圧信号UPK2は、ピーク電圧PKBを表している。この時点で、第1および第2ピーク電圧信号UPK1(電圧PKAを表す)およびUPK2(電圧PKBを表す)が互いと比較され、差が測定される。それに応じて、図2の比較回路216から出力されるUCHG信号は変化し、駆動回路204に対して電源変換器100の出力電圧VOUTが変化したことを知らせる。このようにして、コントローラ102は、本発明の教示に従って、電源変換器100の出力電圧VOUTの変化が起こったことを判断して、電源変換器の出力に対するエネルギーの供給を調整することができる。
【0024】
図4は、本発明の教示による一例としての出力電圧センサの概略図を一般的に示している。一例において、電圧センサ400は、図1中の出力電圧センサ106または図2中の出力電圧センサ206を置き換えることができる。示したように、出力電圧センサ400は、第1サンプル信号生成器SG1 402、第2サンプル信号生成器SG2 404、第1パルスサンプラ回路406、第2パルスサンプラ回路408、および比較回路410を有している。図示した例に示すように、第1パルスサンプラ回路406は、第1pチャネルトランジスタ414に接続された電流源412を有している。動作において、第1サンプルパルス信号UFSPがロウになると、トランジスタ414はオンし、電流源412からの一定電流ICSがトランジスタ414およびバイポーラ接合トランジスタ416およびpチャネルトランジスタ418を通って流れることを許可する。示したように、トランジスタ418のゲートはフィードバック信号UFBを受信して、トランジスタ418のソースにおける電圧を制御する。更に示したように、バイポーラ接合トランジスタ420がトランジスタ416のベースに接続されていて、これによりトランジスタ420のエミッタにおける電圧はトランジスタ416のエミッタにおける電圧に実質的に追従し、これはトランジスタ418のゲートにおけるフィードバック信号UFBの電圧を表している。トランジスタ416のエミッタにおける電圧は、フィードバック信号UFBの電圧とpチャネルトランジスタ418のゲート−ソース間電圧との合計である。
【0025】
動作において、第1サンプル信号生成器SG1 402は、制御信号UCON1を受信すると、カウントを開始し、それが予め決められたカウント数に達した後に、第1サンプルパルス信号UFSPを出力する。電源変換器の特定の設計パラメータのために、第1サンプル信号生成器SG1 402は、第1サンプルパルスUFSPがフィードバック信号UFBにおけるリンギング電圧の第2ピークの間に生成されるように、特定のカウント数を持つように設計され得る。一例において、第1サンプル信号生成器SG1 402は、第1サンプルパルスUFSPがフィードバック信号UFBにおけるリンギング電圧の第2ピークの間に生成されるような電源変換器の様々な設計パラメータのために、様々なカウント数に設定され得る。動作において、第1サンプルパルス信号UFSPは、トランジスタ414および422によって受信され、リンギング電圧の『第2』ピークのサンプリングを可能にする。第1サンプルパルス信号UFSPがロウになると、キャパシタ424は、フィードバック信号UFBにおけるリンギング電圧の『第2』ピークのピーク電圧まで充電される。トランジスタ422がオフすると、キャパシタ424は、フィードバック信号UFBにおけるリンギング電圧の『第2』ピークのピーク電圧を保存する。
【0026】
動作において、第2サンプル信号生成器SG2 404は、第2制御信号UCON2を受信すると、カウントを開始して、それが予め決められたカウント数に達した後に、第2サンプルパルス信号USSPを出力する。電源変換器の特定の設計パラメータのために、第2サンプル信号発生器SG2 404は、フィードバック信号UFBにおけるリンギング電圧の第2ピークの間に第2サンプルパルスUSSPが生成されるように、特定のカウント数を持つように設計され得る。一例において、第2サンプル信号発生器SG2 404は、電源変換器の様々な設計パラメータのために、フィードバック信号UFBにおけるリンギング電圧の第2ピークの間に第2サンプルパルスUSSPが生成されるように、様々なカウント数に設定され得る。示したように、第2パルスサンプラ回路408は、pチャネルトランジスタ428に接続された電流源426を有している。動作において、第2サンプルパルス信号USSPがロウになると、トランジスタ428がオンして、電流がトランジスタ428およびバイポーラ接合トランジスタ430およびpチャネルトランジスタ432を通って流れることを許可する。示したように、トランジスタ432のゲートは、フィードバック信号UFBを受信して、トランジスタ432のソースにおける電圧を制御する。更に示したように、バイポーラ接合トランジスタ434がトランジスタ430のベースに接続されていて、これによりトランジスタ434のエミッタにおける電圧は、トランジスタ430のエミッタにおける電圧に実質的に追従し、これはトランジスタ432のゲートにおけるフィードバック信号UFBを表す。トランジスタ430のエミッタにおける電圧は、フィードバック信号UFBの電圧とpチャネルトランジスタ432のゲート−ソース間電圧との合計である。
【0027】
動作において、第2サンプルパルス信号USSPが、トランジスタ428および436によって受信され、リンギング電圧の『第2』ピークのサンプリングを可能にする。第2サンプルパルス信号USSPがロウになると、キャパシタ438は、フィードバック電圧UFBにおけるリンギング電圧の『第2』ピークのピーク電圧まで充電される。トランジスタ436がオフすると、キャパシタ438は、フィードバック電圧UFBにおけるリンギング電圧の『第2』ピークのピーク電圧を保存する。図示した例では、キャパシタ438は、リセット回路440およびnチャネルトランジスタ442によって設定される予め決められた時間遅延tD後にリセットされ、その後のフィードバック電圧サンプルを受信する。一例において、第1パルスサンプラ回路406内の全ての素子のサイズは、第2パルスサンプラ回路408内のそれぞれの素子のサイズと同一である。
【0028】
一例において、第1パルスサンプラ回路406は、初期状態における出力電圧をサンプリングすることができ、第2パルスサンプラ回路408は、初期状態から出力電圧の変化があったかどうかを判定するために、周期的に出力電圧をサンプリングすることができる。示したように、比較回路410は、nチャネルトランジスタ444のゲートで、第1パルスサンプラ回路406によってサンプリングされたピーク電圧を表す電圧VFBPK1を受信する。比較回路410は、また、nチャネルトランジスタ446のゲートで、第2パルスサンプラ回路408によってサンプリングされたピーク電圧を表す電圧VFBPK2を受信する。
【0029】
動作において、コンパレータ448は、トランジスタ444のソースにおけるVFBPK1およびトランジスタ446のソースにおけるVFBPK2を表す電圧に応じて電圧変化信号UCHGを出力し、それは図1の駆動回路104または図2の駆動回路204によって受信されるように接続されている。一例において、VFBPK1とVFBPK2の差が、トランジスタ444に接続された抵抗R1の両端の電圧によって定められる閾値より大きい場合に、UCHGは、出力電圧に有意の変化があったことを示す。上述したように、電圧変化信号UCHGが、図1の駆動回路104または図2の駆動回路204に、出力電圧VOUTに有意の変化があったことを知らせると、駆動回路は、本発明の教示に従って、出力電圧VOUTが、出力に接続された負荷によって要求される最小限の出力電圧以下に落ちるのを防止するのを助けるために、エネルギー転送素子116を通しての電源変換器100の入力から出力へのエネルギーの転送を増やすように、電源スイッチ108をスイッチングするスイッチング信号USWを出力することによって応答することができる。
【0030】
要約に記載されていることを含む、本発明の図示された例の上記記載は、網羅的であること又は開示した正確な形に限定されることを意図していない。本発明の特定の実施形態および例は、例示目的のためにここに記載されていて、様々な等価な変更が、本発明のより広い精神および範囲から逸脱することなく、可能である。実際、特定の電圧、電流、周波数、電源範囲値、時間などは、説明目的のために提供されていて、他の値もまた、本発明の教示による他の実施形態および例の中で用いられ得ることは認められる。
【0031】
これらの変更は、上記の詳細な説明に照らして、本発明の例に対してなされ得る。請求項の中で用いられている用語は、本発明を、明細書および請求項の中で開示されている特定の実施形態に限定すると解釈されるべきではない。むしろ、範囲は、完全に請求項によって決定されるべきであり、それは、請求項の解釈の確立した教義に従って解釈されるべきである。従って、本明細書および図面は、限定的ではなく例示的なものと見なされるべきである。
【符号の説明】
【0032】
100 電源変換器
102 コントローラ
104 駆動回路
106 出力電圧センサ(OVS)
108 電源スイッチ
116 エネルギー転送素子
208 第1パルスサンプラ回路
210 第1サンプル信号生成器
212 第2パルスサンプラ回路
214 第2サンプル信号生成器
216 比較回路
図1
図2
図3
図4