特許第5722270号(P5722270)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アーエムエス アクチエンゲゼルシャフトの特許一覧

<>
  • 特許5722270-増幅装置及び信号の増幅方法 図000012
  • 特許5722270-増幅装置及び信号の増幅方法 図000013
  • 特許5722270-増幅装置及び信号の増幅方法 図000014
  • 特許5722270-増幅装置及び信号の増幅方法 図000015
  • 特許5722270-増幅装置及び信号の増幅方法 図000016
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5722270
(24)【登録日】2015年4月3日
(45)【発行日】2015年5月20日
(54)【発明の名称】増幅装置及び信号の増幅方法
(51)【国際特許分類】
   H03F 1/34 20060101AFI20150430BHJP
【FI】
   H03F1/34
【請求項の数】12
【全頁数】14
(21)【出願番号】特願2012-94558(P2012-94558)
(22)【出願日】2012年4月18日
(62)【分割の表示】特願2009-552160(P2009-552160)の分割
【原出願日】2008年2月21日
(65)【公開番号】特開2012-138963(P2012-138963A)
(43)【公開日】2012年7月19日
【審査請求日】2012年5月14日
(31)【優先権主張番号】102007011715.0
(32)【優先日】2007年3月9日
(33)【優先権主張国】DE
(73)【特許権者】
【識別番号】505325040
【氏名又は名称】アーエムエス アクチエンゲゼルシャフト
【氏名又は名称原語表記】ams AG
(74)【代理人】
【識別番号】110000305
【氏名又は名称】特許業務法人青莪
(72)【発明者】
【氏名】トーマス フレーリヒ
(72)【発明者】
【氏名】ニコール ホイル
【審査官】 柳下 勝幸
(56)【参考文献】
【文献】 特開平06−209219(JP,A)
【文献】 実開昭59−056824(JP,U)
【文献】 特開2001−177356(JP,A)
【文献】 実開平02−118316(JP,U)
【文献】 特開昭58−092113(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H03F 1/34
(57)【特許請求の範囲】
【請求項1】
信号入力、帰還入力及び信号出力を有する増幅器と、
第1のインピーダンス素子を有し、且つ、前記帰還入力を前記信号出力に接続する第1の結合路と、
直列に接続したフィルタ装置、バッファ回路、第2のインピーダンス素子及び電圧源を有し、且つ、前記帰還入力を前記信号出力又は前記信号入力に接続する第2の結合路とを備え、
前記直列に接続した回路が前記電圧源を介して信号出力又は信号入力にそれぞれ結合され、
前記第1のインピーダンス素子及び前記第2のインピーダンス素子が前記帰還入力に共通に接続され、この共通接続は、固定基準電位接続点に結合されておらず、
前記増幅器が、前記信号入力及び前記信号出力に接続されたトランジスタを有する入力段と、入力側で前記トランジスタに接続され、出力側で前記信号出力に接続された少なくとも1個の出力段とを含み、
前記入力段が、前記トランジスタに接続されるバイアス電流源を含むことを特徴とする増幅装置。
【請求項2】
前記第1のインピーダンス素子の抵抗値をRとし、前記第2のインピーダンス素子の抵抗値をRとしたときに、前記増幅装置の交流増幅係数AACは次式で表されることを特徴とする請求項1記載の増幅装置。
【数1】
【請求項3】
前記バッファ回路と前記第2のインピーダンス素子との間の連結節点が、仮想基準電位用の基準端子を形成することを特徴とする請求項1又は2記載の増幅装置。
【請求項4】
前記電圧源は、前記電圧源の電圧に基づいて前記信号出力でオフセット電圧を生成するように構成されていることを特徴とする請求項1〜3のいずれか1項に記載の増幅装置。
【請求項5】
前記入力段が、前記トランジスタのドレイン端子の接続点を供給電位接続点又は基準電位接続点に結合する抵抗を含むことを特徴とする請求項1〜4のいずれか1項に記載の増幅装置。
【請求項6】
記入力段のバイアス電流源、トランジスタ及び抵抗が共通の電流路に配設されていることを特徴とする請求項1〜5のいずれか1項に記載の増幅装置。
【請求項7】
第1のループ信号及び第2のループ信号に応じて入力信号を増幅し、該入力信号から発生した出力信号を提供し、
第1のインピーダンスに応じて前記出力信号から前記第1のループ信号を生成し、
前記入力信号又は前記出力信号に対してオフセット信号を適用し、
適用された入力信号又は適用された出力信号をフィルタリング及びバッファリングして中間信号を生成し、
前記中間信号から第2のインピーダンスに応じて前記第2のループ信号を生成し、
前記第1のループ信号及び前記第2のループ信号は、少なくとも直接には固定基準電位の影響を受けず、
前記増幅と提供が、トランジスタで入力信号を増幅し、増幅した入力信号から生成された中間信号を更に提供し、この中間信号を増幅し、増幅した中間信号から生成された出力信号を提供し、前記第1及び第2のループ信号が前記トランジスタに帰還され、
バイアス電流が前記トランジスタに供給されることを特徴とする信号の増幅方法。
【請求項8】
前記第1のインピーダンスをRとし、前記第2のインピーダンスをRとしたときに、前記入力信号と前記増幅された出力信号との間の交流増幅係数AACは、次式で表されることを特徴とする請求項記載の信号の増幅方法。
【数1】
【請求項9】
前記中間信号は仮想の基準電位を形成することを特徴とする請求項又は記載の信号の増幅方法。
【請求項10】
前記オフセット信号は、前記オフセット信号に基づいて前記増幅された出力信号でオフセット電圧を生成するために加えることを特徴とする請求項のいずれか1項に記載の信号の増幅方法。
【請求項11】
前記増幅した中間信号が前記トランジスタのソース端子の接続点でタップされ、
前記第1及び第2のループ信号が前記トランジスタのソース端子の異なる接続点で帰還されることを特徴とする請求項記載の信号の増幅方法。
【請求項12】
前記トランジスタを含む入力段の増幅が、前記トランジスタに接続された抵抗を使用して調整可能であること特徴とする請求項11のいずれか1項に記載の信号の増幅方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、増幅装置及び信号の増幅方法に関する。
【背景技術】
【0002】
例えば、MEMS(微少電子機械システム)の応用例では、狭小空間要件、低入力容量、高入力インピーダンス、低電流要件、及び低ノイズを有する増幅器が頻繁に要求される。線間AB級出力段(rail-to-rail AB output stage)、電流帰還及び入力信号のレベルが供給電圧にまで上昇すること、例えば、入力信号が負電位又は供給電位を基準とすることも望ましい。
【0003】
代表的には、出力側に帰還を備えた分圧器を含む差動増幅器に十分な利得を供給できる。
【0004】
しかしながら、代表的な応用例では、電圧オフセットあるいは低周波ノイズが増幅器の入力にある程度存在する。例えば、そのような増幅器では、変化する入力信号の変動電圧偏差も増幅される。その結果、中でも増幅後の出力信号の信号品質の低下につながる。加えて、低周波ノイズ又は電圧オフセットの増幅のために増幅器での電流消費が増加する。
【0005】
低周波成分は、例えば、容量性デカップリングにより抑制することができる。しかしながら、そのためには、所望の周波数抑制に応じて比較的大きな容量値を使用しなければならない。これは、増幅回路のコストを引き上げるか、あるいは、分圧器の抵抗値を大きくし、このことが増幅回路のノイズ性能に悪影響を与える。
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の課題は、増幅装置及び信号の増幅方法であって、周波数依存の信号増幅が低ノイズと低コストで達成できるものを開示することである。
【0007】
この課題は、独立クレームの主題により解決される。発明の更なる態様及び改良は、それぞれの従属請求項の主題である。
【課題を解決するための手段】
【0008】
本発明の一の態様によれば、増幅装置は、信号入力と、帰還入力と、信号出力とを備えた増幅器を有する。更に、増幅装置は、第1のインピーダンス素子を備え、且つ、前記帰還入力を前記信号出力に接続する第1の結合路と、直列に接続したフィルタ装置、バッファ回路、第2のインピーダンス素子及び電圧源を備え、前記帰還入力を前記信号出力または前記信号入力に接続する第2の結合路とを有する。前記直列に接続した回路が前記電圧源を介して信号出力又は信号入力にそれぞれ結合され、前記第1のインピーダンス素子及び前記第2のインピーダンス素子が前記帰還入力に共通に接続され、この共通接続は、固定基準電位接続点に結合されていない。前記第1のインピーダンス素子の抵抗値をRとし、前記第2のインピーダンス素子の抵抗値をRとしたときに、前記増幅装置の交流増幅係数AACは次式で表される。
【0009】
【数1】
【0010】
伝達関数、例えば、増幅装置の利得は、第1及び第2の結合路の第1及び第2のインピーダンス素子を介して規定可能である。第1及び第2のインピーダンス素子は、それぞれ抵抗器を含むことができる。あるいは、インピーダンス素子は、容量特性を備えることができ、あるいは、容量特性と抵抗特性あるいはオーミック特性の組み合わせを備えていてもよい。更に、第2の結合路のフィルタ装置は、増幅器の帰還入力に供給される個々の信号の望ましくない周波数成分を抑制することができる。第2の結合路のバッファ回路は、第1の結合路の第1ループ信号が第2の結合路の第2ループ信号に最低限の影響しか与えないことを可能にする。
【0011】
増幅装置のノイズレベルも小さく抑えられるように、第1及び第2のインピーダンス素子のインピーダンス値、あるいは抵抗値は、比較的小さく選択することができる。
【0012】
第2の結合路は、帰還路として構成でき、増幅装置の信号出力を形成するか、あるいは増幅装置に結合される、増幅器の出力を帰還入力に接続する。あるいは、第2の結合路は、増幅器の信号入力を帰還入力に接続する前方結合(forward coupling)として構成することもできる。このように、入力信号の適切な処理により、あるいは、増幅装置の出力信号の処理により、入力信号の周波数依存増幅(frequency dependent amplification)が達成できる。
【0013】
一の態様では、フィルタ装置が低域通過フィルタを備えている。ここで、低域通過フィルタは、例えば、RC回路を含むことができる。しかし、低域通過フィルタは、能動フィルタとして構成することもできる。
【0014】
別の態様のフィルタ装置では、低域通過フィルタ以外のフィルタ特性を備えていてもよい。例えば、フィルタ装置は、高域通過フィルタ、帯域通過フィルタ、あるいは帯域阻止フィルタとして構成することもできる。また、別の態様では、フィルタ装置が任意のフィルタ機能を有することもできる。別の態様では、フィルタ装置は、能動フィルタ並びに受動フィルタで構成することもできる。
【0015】
更に別の態様では、第2の結合路は、電圧源を有する。この電圧源は、前記電圧源の電圧に基づいて前記信号出力でオフセット電圧を生成するように構成されている。この電圧源によって、例えば、増幅装置の出力信号において、固定の所定電圧オフセットを達成することができる。従って、増幅装置への入力信号が振動を有する場合には、2つのインピーダンス素子によって、また、信号入力でのDC入力レベルによって、電圧源により指定される電圧値を中心に振動する出力信号を発生できる。この態様の増幅器は、線間出力(rail-to-rail output)を備えた増幅器と呼ぶことができる。
【0016】
更に別の態様では、増幅器は、多段増幅段を含む。増幅器は、例えば、信号入力と、インピーダンス素子を介して信号出力とに接続されたトランジスタを有する入力段と、入力側でトランジスタに接続され、出力側で信号出力に接続された少なくとも1個の出力段を含む。入力信号は、入力側では、例えば、制御入力において信号入力を介してトランジスタに供給できる。トランジスタの更なる接続点で形成された入力段の出力は、適切な場合には、更なる機器や機能ブロックを介して、出力段の入力に接続される。出力段は、入力段の入力信号から得られる出力信号を提供し、増幅される。出力段の出力は、少なくとも第1の結合路を介して、例えば、トランジスタを更に接続することにより形成される入力段の帰還入力に結合される。このようにして、第1とおそらく第2の結合路は、出力段を含むだけでなく、出力段の出力をトランジスタへ接続する。
【0017】
この態様では、信号の増幅により、入力段において既にノイズが大幅に削減される。このような制御閉回路(closed control loop)により、直線性は高い。温度に依存する変化、工程に依存する変化、供給電圧に依存する変化は低い。
【0018】
好ましくは、入力段のトランジスタは、増幅装置の入力信号供給のための入力が、トランジスタの制御入力に形成されるように接続される。トランジスタの制御部の接続点は、接続点の1つが入力段の出力を形成するように接続し、出力段に接続されることが望ましく、トランジスタの制御部の更なる接続点は、第1及び第2の結合路に接続されることが望ましい。
【0019】
トランジスタは、pMOSトランジスタとして構成されることが望ましい。しかし、nMOSトランジスタを使用した実施も可能である。
【0020】
出力段も同様に少なくとも1つのトランジスタを含むことができる。一の態様において、例えば、出力段は、AB級段(class AB stage)である。別の態様では、入力段が抵抗器を有し、この抵抗器はトランジスタのドレイン端子の接続点を供給電位接続点又は基準電位接続点に結合する。抵抗を使用すると、例えば、入力段の利得は調節可能である。入力段は、更に又は代案として、トランジスタに接続されるバイアス電流源を含むことができる。
【0021】
一の態様では、入力段は、供給及び基準電位接続点の間で切り替えられる電流路を含む。例えば、入力段のバイアス電流源、トランジスタ、及び抵抗器は、同一の電流路に配設される。
【0022】
信号増幅方法の一の態様において、入力信号が第1のループ信号及び第2のループ信号に応じて増幅され、この入力信号から発生した出力信号が得られる。第1のループ信号は、第1のインピーダンスに応じて出力信号から得られる。中間信号は、入力信号又は出力信号をフィルタリング及びバッファリングして得られる。第2のループ信号は、第2インピーダンスに応じて中間信号から得られる。
【0023】
第1及び第2のループ信号に応じて入力信号を増幅することにより、増幅された出力信号と入力信号との間の伝達関数が、ループ信号の適切な処理により制御可能である。特に、入力信号又は出力信号のフィルタリング及びその後のバッファリングによって得られる第2のループ信号は、入力信号の周波数依存増幅に使用できる。例えば、フィルタリングにより、入力信号又は出力信号の周波数成分は、特に第2のループ信号が、入力信号の増幅中に好ましい周波数特性を起こす程に抑制されている。このバッファリングにより、フィルタリングされた信号又は信号のフィルタリングは、それぞれ増幅から又はループ信号のインピーダンスに基づく入手から分離(decoupling)される。前記第1のループ信号及び前記第2のループ信号は、少なくとも直接には固定基準電位の影響を受けない。前記第1のインピーダンスをRとし、前記第2のインピーダンスをRとしたときに、前記入力信号と前記増幅された出力信号との間の交流増幅係数AACは、次式で表される。
【0024】
【数1】
【0025】
この方法の一の態様において、第1及び第2のループ信号のいずれか一方又は両方の入手は、抵抗に基づいて起こる。このように、第1及び第2のループ信号のいずれか一方又は両方は、それぞれの抵抗値に基づいて得られる。例えば、増幅装置の利得係数等増幅特性は、第1及び第2のインピーダンスの比率あるいは第1及び第2の抵抗値の比率に依存する。ここで、インピーダンス又は抵抗値は、ノイズを増幅中にできるだけ小さくできるように、なるべく小さな値を選択する。
【0026】
別の態様において、フィルタリングは、低域通過特性を有する。あるいは、フィルタリングは、その他、高域通過、帯域通過、帯域阻止特性やこれらを組み合わせた、所望のフィルタ特性を有することができる。従って、信号の増幅は、周波数に任意に依存して発生できる。
【0027】
この方法の別の態様において、中間信号の入手には、中間信号のオフセット信号への適用が伴う。例えば、オフセット電圧又はオフセット電流であるオフセット信号を使用すれば、例えば、増幅出力信号における振動用基準値の働きをする固定基準値を増幅出力信号において発生できる。前記オフセット信号は、前記オフセット信号に基づいて前記増幅された出力信号でオフセット電圧を生成するために加えられる。
【0028】
この方法の一の態様において、増幅と提供は、トランジスタによる入力信号の増幅と、入力信号から入手された更なる中間信号の提供と、中間信号の更なる増幅と、前記更なる中間信号から入手された出力信号の提供を含む。ここで、第1及び第2のループ信号は、トランジスタへと帰還される。
【0029】
例えば、更なる中間信号は、トランジスタのソース端子の接続点にタップされる。この場合、第1及び第2のループ信号は、トランジスタのソース端子の別な接続点に帰還される。
【0030】
一の態様において、バイアス電流は、増幅のためにトランジスタに供給される。更に、トランジスタに接続された抵抗を使って、トランジスタを含む入力段の利得が調節可能である。
【0031】
以下、図面に基づく実施形態を用いて本発明をより詳細に説明する。尚、同等の機能を有する要素又は同一の作用を有する要素には、同一の符号を付す。
【図面の簡単な説明】
【0032】
図1】増幅装置の第1の実施形態を示す図である。
図2】増幅装置の第2の実施形態を示す図である。
図3】増幅装置の周波数特性を示す図である。
図4】増幅装置の第3の実施形態を示す図である。
図5】増幅装置の第4の実施形態を示す図である。
【発明を実施するための形態】
【0033】
図1は、本発明の増幅装置の第1の実施形態を示す。増幅装置は、増幅装置の入力1に接続された信号入力31と、帰還入力32と、増幅装置の出力2に接続された信号出力33とを有する増幅器3を備えている。
【0034】
抵抗としてインピーダンスR1を組み込んだ第1の結合路FB1は、信号出力33を帰還入力32に接続する。更に、この実施形態では、信号出力33を帰還入力32に接続する第2の結合路FB2が設けられている。
【0035】
この実施形態において、第1及び第2の結合路FB1、FB2は、増幅器の出力信号を処理した後に増幅器3の帰還入力32に帰還させる帰還路として設計されている。
【0036】
第2の結合路FB2は、直列接続されたフィルタ装置4、バッファ回路5、及び抵抗として組み込まれたインピーダンスR2とを含む。第2の抵抗R2とバッファ回路5との連結節点(connection node)は、仮想基準電位のための基準節点AGNDを表す。
【0037】
好ましくはフィルタ装置の後に配設されるバッファ回路5は、例えば、実質的に係数1に相当する利得を有するユニット増幅器を含む。あるいは、バッファ回路は、異なる固定利得を有する増幅器を含んでいてもよい。更に別の実施形態では、バッファ回路5は、異なる構成にしてもよく、主にフィルタ装置4と帰還入力32の電流を互いに分離させる役割を果たす。その結果、バッファ回路5によって、抵抗R2がフィルタ装置4から分離され、フィルタ装置4のフィルタリングの影響が抵抗R1、R2を介して直通路に及ばないようにする。
【0038】
例えば、増幅器で抑制されていない周波数を有する信号用の増幅装置のベース利得は、抵抗R1、R2の抵抗比を利用して調整できる。
【0039】
従来の増幅装置では、適切な抵抗R2は、抵抗R1と、固定基準電位を有する、代表的には接地電位である接続点とに接続されている。従来の増幅装置の合計利得は、使用されている増幅器の状況によって変わらない。本実施形態で示される増幅装置では、抵抗R2は、出力信号によって電位が変化するAGND接続点に接続されている。
【0040】
従って、AGND接続点の電位を生じさせる中間信号は、フィルタ装置4及びバッファ回路5によって接続点33での出力信号から得られる。第1のループ信号は、抵抗R1を介して出力信号から得られる。同様に、第2のループ信号は、抵抗R2を介して中間信号から得られる。第1及び第2のループ信号は、増幅器3の帰還入力32に共に供給される。従って、入力31における入力信号の増幅又は処理は、第1及び第2のループ信号に基づいて発生し、信号出力33において増幅された出力信号を形成する。
【0041】
フィルタ装置4によって、中間信号では出力信号の特定の周波数成分は抑制され、中間信号は、接続点AGNDでの電位にはほとんど影響がない。従って、増幅された出力信号の周波数依存の影響は、主にフィルタ装置4のそれぞれの通過帯域の信号成分により、すなわち、抑制されない中間信号の周波数成分により発生する。
【0042】
換言すれば、帰還路FB2に配設されたフィルタ装置4の周波数特性は、増幅装置の周波数特性に逆の影響を与える。例えば、フィルタ装置4が低域通過特性を有すると、増幅装置にとって高域通過の結果となる。
【0043】
このように、フィルタ装置4のフィルタ特性を適切に選択することにより、増幅装置の伝達特性が設定できる。帯域通過領域の増幅装置のベース利得は、抵抗R1、R2の抵抗比によって決定される。抵抗R1、R2は、低い抵抗で実行でき、それにより増幅装置の改良されたノイズ特性につながる。
【0044】
図2は、図1の回路を更に進展させたものを示し、設計、使用部品、互いの接続及び有利な操作方法が高度なものに相当する。しかし、その他に、フィルタ装置4が、抵抗R3と容量素子C1とを有するRC回路R3、C1で構成されている。ここで、抵抗R3は、結合路FB2内に接続されており、コンデンサC1は結合路FB2から基準電位接続点GNDに至る横断路(transverse path)を形成する。この実施形態では、帰還路として実施されている結合路FB2は、電圧源6を更に含む。
【0045】
RC回路R3、C1の低域通過特性は、増幅装置の高域通過特性を結果としてもたらす。電圧がフィルタ装置4とその下流のバッファ回路5の影響を受けない電圧源6によって、接続点AGNDでの変動基準電位が固定のベース値に設定されている。このように、入力信号の基準電位に対する増幅済み出力信号の電圧オフセットは、信号入力31で発生する。例えば、ゼロボルトの基準電位を中心に振動する入力信号は、増幅装置によって増幅され、電圧源6の電圧から得られる電圧で振動する出力電圧になる。例えば、振動の平均値は、電圧源6の電圧をR1/(R1+R2)で乗じた電圧に相当する(R1、R2は抵抗R1、R2の抵抗値を表す)。これにより、例えば、出力信号が正の電圧範囲にのみ存在する電圧値を取ることができる。そのために、例えば、出力信号の振動振幅は、電圧源6の電圧よりも小さい。このため、増幅装置は、とりわけ線間増幅器(rail-to-rail amplifier)として使用できる。
【0046】
例えば、MEMS(微少電子機器システム)への応用では、所望の振幅に加えて、入力信号が低周波で変化するDC信号成分を有することがあり得る。従来の増幅装置では、この定常信号成分、あるいはDCオフセット、が出力信号において望まざる結果、例えば、信号成分の切り落としという結果につながる増幅範囲の超過をもたらすことがある。
【0047】
一実施形態では、RC回路R3、C1の遮断周波数の選択は、帰還路FB2において入力信号のDC信号成分の低周波電圧変化に相当する周波数成分のみが通過するように行われる。これにより、これらの周波数成分はAGND接続点での電位にのみ影響を与え、増幅装置3での増幅には関係ないという結果を達成する。先に説明したように、帰還路FB2での低域通過は、増幅装置での高域通過として働き、その結果、入力信号における変動DCオフセットは増幅された出力信号では抑制される。
【0048】
抵抗R3は、この実施形態では高い抵抗として選択でき、その結果、RC成分の一定の遮断周波数では、コンデンサC1の容量は、小さいものを選択できる。
【0049】
図3は、低域通過特性のフィルタ装置4が帰還路FB2に設けられた増幅装置の実施形態における代表的な周波数特性を示す。ここで、低域通過は、図2の実施形態で抵抗R3とコンデンサC1との成分値で決定される第1の遮断周波数f1を有する。第2の遮断周波数f2以上では、低域通過がブロックとしての働きをする、すなわち、遮断周波数f2以上の周波数を有する周波数成分は通過しない。
【0050】
図3の周波数特性において、ゼロの周波数から第1の遮断周波数f1までは、均一な利得1が結果として生じる。第1の遮断周波数f1と第2の遮断周波数f2との間の範囲では、低域通過フィルタでの抑制が増加する。その結果、増幅装置の利得gが相応に増加する。第2の遮断周波数f2において、2(R1/R2)+1のベース利得あるいは最大利得が達成される(R1、R2は抵抗R1、R2の抵抗値を表す)。
【0051】
増幅器3の遮断周波数により結果として発生する第3の遮断周波数以上では、増幅装置の利得は再び減少する。しかしながら、第3の遮断周波数f3は、増幅器3の第1及び第2の結合路FB1、FB2への接続とは大いに独立している。
【0052】
図3の周波数特性は、遮断周波数f2とf3の間では実質的に透過する帯域通過の特性を有する。特に、第1の遮断周波数f1以下の周波数は抑制される。
【0053】
図4は、増幅装置の他の実施形態を示す。ここでは、増幅器3は、入力段A1と2個の出力段A2、A3とを有し、従って、多段増幅器として設計されている。入力段A1は、pMOSトランジスタM1を有し、その制御接続点は、増幅装置の入力1に結合されるか又は増幅装置に接続された信号入力31を形成する。トランジスタM1の制御部の第1接続点は、帰還入力32とバイアス電流源I1とに結合されている。トランジスタM1の制御部の第2接続点は、抵抗R4を介して基準電位接続点GNDに接続されると共に、出力段A2の入力に直接接続されている。このように、バイアス電流源I1、トランジスタM1、及び抵抗R4は、共通の電流路に配設されている。出力段A3の出力は、信号出力33に結合されている。
【0054】
図2の実施形態に示すように、信号出力33は、RC回路として組み込まれた電圧源6及びフィルタ装置4を介して、バッファ回路5に結合されている。この実施形態では、バッファ回路5は、制御接続がフィルタ装置4の出力に接続された別のpMOSトランジスタM2を有する。トランジスタM2の制御部の第1接続点は、バッファ回路5の出力を形成し、可変電位を備えた節点AGNDに接続される。また、トランジスタM2の制御部の第1接続点は、第2バイアス電流源I2に接続される。トランジスタM2の制御部の第2接続点は、抵抗R5を介して基準電位接続点GNDに接続され、増幅器7の反転入力(−)に直接接続される。増幅器7の非反転入力(+)には、別の電圧源8からの電圧が供給される。増幅器7の出力は、第1及び第2のバイアス電流源I1、I2のそれぞれの制御入力に結合されている。例えば、バイアス電流源I1、I2は、整合pMOS電流ミラー(matched PMOS current mirrors)として実施されており、いずれの場合も供給電位接続点VCCに結合されている。電流制御は、増幅器7で実施される。
【0055】
トランジスタM1は、入力1に存在する入力信号を増幅し、増幅した入力信号を出力段A2の入力において追加の中間信号の形で供給する。この既に増幅された追加中間信号は、出力段A2、A3によって、更に増幅される。
【0056】
第1のループ信号は、抵抗R1のために再度生成される。接続点AGNDでの中間信号は、信号出力33での出力信号からフィルタ装置4及びバッファ回路5を介して入手され、中間信号の入手は、中間信号へオフセット信号を電圧源6の電圧の形で加えることを含む。このオフセット信号は、電圧源6の電圧の形で供給される。第2のループ信号は、中間信号から抵抗R2を介して得られる。
【0057】
接続点1での入力信号及び帰還入力32で帰還されたループ信号は、増幅器の差分信号入力成分と解釈することができる。このように、入力段A1は、差分信号入力を含み、その差分信号入力に対して1つの接続点31において入力信号が、そして第2接続点32において出力信号から入手したループ信号が供給される。
【0058】
閉ループによって、回路は優れた直線性を有する。温度変動、生産パラメータの変動、及び供給電圧の変動によるばらつきが小さい。
【0059】
現在の図面には記載されていないが、トランジスタM1、M2の各バルク接続点は、各トランジスタのソース接続点かあるいは異なる回路節点に接続することができる。ソース接続点への接続は、実効ゲート容量(effective gate bulk capacitance)がそこで減少するという利点を有する。
【0060】
帰還入力32からの信号入力31の遮断を良くすることで、非常に低い入力キャパシタンスを達成するか、あるいはそれを更に減少することができる。このように、入力31における実効ゲート・ソース間容量(effective parasitic gate-source capacitance)を実質的に除去することができる。
【0061】
図1、2及び4に基づいて例示されている提案回路は、特にアナログ信号増幅器として適している。この回路は、低い実効入力容量、高い入力インピーダンス、低い電力消費、及び低い入力ノイズにより、優れている。
【0062】
図4の回路は、交流電源で操作する場合、同じ定電流がトランジスタM1、M2の各々に流れるように設計されている。従って、入力1における電圧の増加に伴って、帰還入力32での電圧は同じ量だけ増加する。それに関連した電圧差が、抵抗R2を流れる電流によって実行される。しかしながら、トランジスタM2を流れる電流は、先に説明したように、実質的に一定なので、抵抗R2を流れる電流は、電流源I2によって供給される。しかしながら、電源I1、I2の結合により、電流源I1を流れる電流が変化する。交流に関して、抵抗R2の両端の電圧は、増幅装置の入力1での電圧と同じである。交流に関し、抵抗R2を流れる電流をiR2とすると、次式が得られる。
【0063】
【数2】
【0064】
ここで、Vinpは入力1における電圧、R2は抵抗R2の抵抗値、iiは電流源I1、I2を流れる電流である。同様に、次式が得られる。
【0065】
【数3】
【0066】
IRiを抵抗R1を流れる交流とすると、式(1)から次式が得られる。
【0067】
【数4】
【0068】
抵抗R1にかかる交流電圧をVRiとし、出力2での電圧をVoutとすると、次式が得られる。
【0069】
【数5】
【0070】
この式と式(1)乃至(3)とを用いて、抵抗R1の抵抗値をR1とすると、次式が得られる。
【0071】
【数6】
【0072】
交流増幅係数AACを求める次式が得られる。
【0073】
【数7】
【0074】
この装置のループ利得は、従来の増幅装置のものよりも2倍も大きいことが判る。図3を参照して、この増幅係数AACは、基本的に図示した増幅装置の通過帯域に当てはまる。
【0075】
図5は、増幅装置の別の実施形態を示す。図1に示す増幅装置と比較して、この実施形態の第2の結合路FB2は、信号入力31と帰還入力32との間に配設されている。従って、接続点AGNDにおける可変の電位は、入力1での入力信号に直接左右される。換言すれば、中間信号は、フィルタ装置4によるフィルタリングとその後のバッファ回路5によるバッファリングを介して、入力1における入力信号から得られる。中間信号は、接続点AGNDにおける電位を決定する。図5の増幅装置での増幅係数は、基本的に抵抗R1、R2によって規定される。RC低域通過フィルタR3、C1として実施されているフィルタ装置4は、入力信号の低域成分が基本的に接続点AGNDでの基準電位に対する影響を結果的にもたらすという効果がある。
【0076】
第2の結合路FB2は、この実施形態では、前方結合路(forward coupling path)として設計されている。フィルタ装置4の低域通過特性に従って、図5に示されている増幅装置は、増幅器の伝達特性を考慮すると、帯域通過特性を有する。
【符号の説明】
【0077】
1 入力
2 出力
3 増幅器
31 信号入力
32 帰還入力
33 信号出力
4 フィルタ装置
5 バッファ回路
6 電圧源
7 増幅器
8 電圧源
R1、R2、R3、R4、R5 抵抗
C1 容量素子、コンデンサ
I1、I2 電圧源
A1、A2、A3 増幅段
M1、M2 トランジスタ
VCC 供給電位接続点
GND 基準電位接続点
AGND 接続点
FB1、FB2 結合路
f1、f2、f3 遮断周波数
図1
図2
図3
図4
図5