(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5723455
(24)【登録日】2015年4月3日
(45)【発行日】2015年5月27日
(54)【発明の名称】希薄燃料吸入ガスタービン
(51)【国際特許分類】
F02C 9/40 20060101AFI20150507BHJP
F02C 9/28 20060101ALI20150507BHJP
F23R 3/40 20060101ALI20150507BHJP
F23R 3/28 20060101ALI20150507BHJP
F23R 3/36 20060101ALI20150507BHJP
【FI】
F02C9/40 A
F02C9/28 C
F23R3/40 Z
F23R3/28 A
F23R3/28 F
F23R3/36
【請求項の数】4
【全頁数】7
(21)【出願番号】特願2013-539632(P2013-539632)
(86)(22)【出願日】2012年10月15日
(86)【国際出願番号】JP2012076596
(87)【国際公開番号】WO2013058209
(87)【国際公開日】20130425
【審査請求日】2014年4月9日
(31)【優先権主張番号】特願2011-227642(P2011-227642)
(32)【優先日】2011年10月17日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000000974
【氏名又は名称】川崎重工業株式会社
(74)【代理人】
【識別番号】100087941
【弁理士】
【氏名又は名称】杉本 修司
(74)【代理人】
【識別番号】100086793
【弁理士】
【氏名又は名称】野田 雅士
(74)【代理人】
【識別番号】100112829
【弁理士】
【氏名又は名称】堤 健郎
(74)【代理人】
【識別番号】100154771
【弁理士】
【氏名又は名称】中田 健一
(74)【代理人】
【識別番号】100155963
【弁理士】
【氏名又は名称】金子 大輔
(72)【発明者】
【氏名】黒坂 聡
(72)【発明者】
【氏名】梶田 眞市
(72)【発明者】
【氏名】山崎 義弘
(72)【発明者】
【氏名】堂浦 康司
【審査官】
寺町 健司
(56)【参考文献】
【文献】
特開2011−196355(JP,A)
【文献】
米国特許第6269625(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
F02C 9/40
F02C 7/22
F02C 3/22
(57)【特許請求の範囲】
【請求項1】
2種類の相異なる燃料濃度の燃料ガスを混合した可燃限界濃度以下の混合ガスを作動ガスとする希薄燃料吸入ガスタービンであって、
前記作動ガスを圧縮して圧縮ガスを生成する圧縮機と、
前記圧縮ガスを触媒反応によって燃焼させる触媒燃焼器と、
前記触媒燃焼器からの燃焼ガスによって駆動されるタービンと、
前記2種類の相異なる燃料濃度の燃料ガスのうちの燃料濃度の低い第1燃料ガスに燃料濃度の高い第2燃料ガスを混合して第1次混合ガスを生成する第1混合器と、
前記第1次混合ガスにさらに前記第2燃料ガスを混合して前記作動ガスである第2次混合ガスを生成する第2混合器と、
を備える希薄燃料吸入ガスタービン。
【請求項2】
請求項1に記載の希薄燃料吸入ガスタービンにおいて、前記第1混合器が生成する第1次混合ガスの燃料濃度を、当該ガスタービンが負荷を駆動するために必要な最低限の濃度に調整し、前記第2混合器が生成する第2次混合ガスの燃料濃度を、当該ガスタービンの定格出力を得るために必要な濃度に調整する制御装置を備える希薄燃料吸入ガスタービン。
【請求項3】
請求項2に記載の希薄燃料吸入ガスタービンにおいて、前記第1混合器から前記第2混合器までの燃料流路の距離が、前記制御装置による濃度調整の遅延時間の間に前記第1次混合ガスが前記燃料流路を移動する距離よりも大きく設定されている希薄燃料吸入ガスタービン。
【請求項4】
請求項2に記載の希薄燃料吸入ガスタービンにおいて、前記制御装置が、前記第1燃料ガスに混合される前記第2燃料ガスの総流量の上限値を規制する手段を有する希薄燃料吸入ガスタービン。
【発明の詳細な説明】
【0001】
本出願は、2011年10月17日出願の特願2011−227642の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
【技術分野】
【0002】
本発明は、炭鉱で発生するCMM(Coal Mine Methane;炭鉱メタン)などの低カロリーガスを空気と混合するなどして、圧縮機での圧縮によって着火しないように可燃限界濃度以下の混合気として、エンジンに吸入し、含まれている可燃成分を燃料として利用する、希薄燃料吸入ガスタービンに関する。
【背景技術】
【0003】
従来の希薄燃料吸入ガスタービンでは、燃料濃度の異なるVAM(Ventilation Air Methane;炭鉱通気メタン)とCMMとを、1つの混合器によって均一な燃料濃度に混合し、混合した燃料を圧縮機の吸気入口に投入している。さらに、混合器は、始動時および負荷変動時の応答性確保のため、吸気入口の近傍に配置されている。このため、CMM燃料濃度計の計測遅れおよびCMM燃料制御弁の動作遅れにより、制御動作がCMM燃料濃度の変動に追随できず、燃料濃度が過度に高くなった場合は圧縮機内で爆発が発生し、低くなった場合は触媒燃焼器が失火する可能性がある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−019247号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
その対策として、従来は、CMM燃料濃度が所定の値を超えた場合に燃料供給を停止してガスタービンの運転を停止していた。また、CMM燃料濃度が所定の値を下回った場合には、触媒の温度測定値から触媒燃焼状態を判定し、失火と判断されれば燃料供給を停止してガスタービンの運転を停止していた。したがって、CMM燃料濃度が頻繁に変動する場合、ガスタービンの停止が頻発して安定的な操業が困難であった。
【0006】
そこで、本発明の目的は、上記の課題を解決するために、混合される燃料ガスの燃料濃度が変動した場合においても、ガスタービンの運転を停止することなく圧縮機内の爆発および触媒燃焼器の失火を回避して、安定的に運転することが可能な希薄燃料吸入ガスタービンを提供することにある。
【課題を解決するための手段】
【0007】
上記目的を達成するために、本発明に係る希薄燃料吸入ガスタービンは、2種類の相異なる燃料濃度の燃料ガスを混合した可燃濃度限界以下の混合ガスを作動ガスとする希薄燃料吸入ガスタービンであって、前記作動ガスを圧縮して圧縮ガスを生成する圧縮機と、前記圧縮ガスを触媒反応によって燃焼させる触媒燃焼器と、前記触媒燃焼器からの燃焼ガスによって駆動されるタービンと、前記2種類の相異なる燃料濃度の燃料ガスのうちの燃料濃度の低い第1燃料ガスに燃料濃度の高い第2燃料ガスを混合して第1次混合ガスを生成する第1混合器と、前記第1次混合ガスにさらに前記第2燃料ガスを混合して前記作動ガスである第2次混合ガスを生成する第2混合器とを備えている。
【0008】
この構成によれば、燃料濃度の高い第2燃料ガスを、2つの混合器によって2段階に分けて混合することができるので、第2燃料ガスの燃料濃度の変動に対して、作動ガス全体の濃度調整を行うことが容易となる。したがって、第2燃料ガス(例えばCMM)の燃料濃度が変動した場合にも、圧縮機内の爆発および触媒燃焼器の失火を回避して安定的に運転することが可能となる。
【0009】
本発明の一実施形態において、前記第1混合器が生成する第1次混合ガスの燃料濃度を、当該ガスタービンが負荷を駆動するために必要な最低限の濃度に調整し、前記第2混合器が生成する第2次混合ガスの燃料濃度を、当該ガスタービンの定格出力を得るために必要な濃度に調整する制御装置を備えることが好ましい。この構成によれば、第1混合器において負荷駆動のための最低限必要な燃料濃度が確保されるので、第2燃料ガスの燃料濃度が高くなった場合に第2混合器に流入する第2燃料ガスの流量を減らしても、確実に触媒燃焼器の失火を回避できる。したがって、第2燃料ガスの燃料濃度の変動に対して一層安定的に運転することが可能となる。
【0010】
本発明の一実施形態において、前記第1混合器から前記第2混合器までの燃料流路の距離が、前記制御装置による濃度調整の遅延時間の間に前記第1次混合ガスが前記燃料流路を移動する距離よりも大きく設定されていることが好ましい。この構成によれば、第2燃料ガスの燃料濃度変動が生じた場合に、第1燃料ガスと第2燃料ガスとの第1次混合ガスが最終的な作動ガスを生成する第2混合器に達する前に濃度調整制御を行うことができるので、圧縮機内爆発および触媒燃焼器の失火をより確実に回避することができる。
【0011】
本発明の一実施形態において、前記制御装置が、前記第1燃料ガスに混合される前記第2燃料ガスの総流量の上限値を規制する手段を有することが好ましい。この構成によれば、第2燃料ガスの燃料濃度が急激に上昇した場合でも、確実に圧縮機内爆発を回避することができる。
【0012】
請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
【図面の簡単な説明】
【0013】
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
【
図1】本発明の一実施形態に係る希薄燃料吸入ガスタービンの概略構成を示すブロック図である。
【
図2】
図1のガスタービンの制御装置の概略構成を示すブロック図である。
【
図3】
図1の実施形態の変形例に係る希薄燃料吸入ガスタービンの概略構成を示すブロック図である。
【
図4】
図1の実施形態の他の変形例に係る希薄燃料吸入ガスタービンの概略構成を示すブロック図である。
【発明を実施するための形態】
【0014】
以下、本発明の好ましい実施形態を図面に基づいて説明する。
図1は本発明の一実施形態にかかる希薄燃料吸入ガスタービンGTを示す概略構成図である。このガスタービンGTは、圧縮機1、白金やパラジウムなどの触媒を含む触媒燃焼器2、およびタービン3を有している。このガスタービンGTの出力により、発電機4のような負荷Lが駆動される。
【0015】
このガスタービンGTで用いる低カロリーガスとして、例えば、炭鉱で発生するVAMと、これよりも可燃成分(メタン)濃度が高いCMMのような、2種類の相異なる燃料濃度の燃料ガスを混合して得られた作動ガスG1が、圧縮機1の吸気入口を介してガスタービンGT内に導入される。燃料ガスの供給系統については後に詳述する。作動ガスG1は、圧縮機1で圧縮され、その高圧の圧縮ガスG2が触媒燃焼器2に送られる。この圧縮ガスG2が触媒燃焼器2の白金やパラジウムなどの触媒による触媒反応によって燃焼され、これにより発生する高温・高圧の燃焼ガスG3がタービン3に供給されて、タービン3を駆動する。タービン3は圧縮機1および発電機4に回転軸5を介して連結されており、このタービン3により圧縮機1および発電機4が駆動される。
【0016】
ガスタービンGTは、さらに、タービン3からの排ガスG4によって圧縮機1から触媒燃焼器2に導入される圧縮ガスG2を加熱する熱交換器6を備えている。熱交換器6から流出した排ガスG5は、図示しないサイレンサを通って消音されたのち、外部に放出される。
【0017】
ガスタービンGTへの燃料供給系統の構成について詳述する。燃料供給系統は、より希薄なメタン濃度(通常0.5%程度)を有する第1燃料ガス(この例ではVAM)に、これよりもメタン濃度の高い(通常20〜30%)第2燃料ガス(この例ではCMM)を適量混合して圧縮機1に供給する。具体的には、燃料供給系統は、VAM供給源11から圧縮機1に接続する燃料主供給路13と、CMM供給源15から後述する各種の弁を介して主供給路11に連通する燃料副供給路17を有している。燃料副供給路17から燃料主供給路13へのCMMの混合は、2つの混合器、すなわち燃料主供給路13における上流側に設けられた第1混合器21と、燃料主供給路13における第1混合器21の下流側であって圧縮機1の吸気入口の近傍に設けられた第2混合器23とによって行われる。換言すれば、第1混合器21が、2種類の相異なる燃料濃度の燃料ガスのうちの燃料濃度の低いVAMに燃料濃度の高いCMMを混合して第1次混合ガスG6を生成し、第2混合器23が、第1次混合ガスにさらにCMMを混合して、作動ガスG1である第2次混合ガスを生成する。
【0018】
燃料副供給路17を第1混合器21に連通させる第1接続路25の中途には、CMM燃料の流量を調節する第1燃料制御弁27が設けられており、燃料副供給路17から第2混合器23に連通させる第2接続路29の中途には、同じくCMM燃料の流量を調節する第2燃料制御弁31が設けられている。さらに、燃料副供給路17における第1接続路25への分岐点の上流側には、CMM燃料の流通を遮断する燃料遮断弁33が設けられている。また、CMM供給源15、第1混合器21および第2混合器23の各下流側には、メタン濃度を計測する第1〜第3のメタン濃度計35,37,39がそれぞれ配設されている。
【0019】
第1〜第3メタン濃度計35,37,39で検出された各濃度値は、制御装置41に送られる。また、発電機4の発電出力値も制御装置41に送られる。制御装置41は、これらの入力値に基づいて、燃料遮断弁33、第1燃料制御弁27および第2燃料制御弁31を調整することにより、圧縮機1の吸気入口に供給する燃料の濃度を制御する。
【0020】
次に、制御装置41の具体的な制御ロジックを説明する。
図2に示すように、第1混合器21では、第2メタン濃度計37が検出する燃料濃度値に基づいて第1燃料制御弁27の開度を調整することにより、負荷Lを駆動するために(この例では発電状態を維持するために)必要な最低限の燃料濃度(例えば1%)に制御する。一方、第2混合器23では、発電電力値および第3メタン濃度計39が検出する燃料濃度値に基づいて第2燃料制御弁31を調整することにより、定格出力を発電するのに必要な燃料濃度(例えば2%)に制御する。すなわち、第3メタン濃度計39の検出燃料濃度値が、定格出力の発電を維持するのに必要な燃料濃度より十分低い場合には、発電電力値に基づいて第2燃料制御弁31の開度を上げる方向に制御を行い、検出燃料濃度値が、定格出力を発電するのに必要な燃料濃度に近い所定の値に達した場合には、第3メタン濃度計39の検出燃料濃度値に基づく濃度制御に切り替える。この制御間の切り替えは、切替スイッチ43によって行う。
【0021】
また、制御装置41は、さらに、VAMに対して混合されるCMMの総流量の上限値を規制する手段として、第1および第2の燃料制御弁27,31に対する開度指令の上限値を規制するリミッタ回路45を備えている。リミッタ回路45は、リミット演算回路47においてCMM燃料濃度、VAM燃料濃度、ガスタービン吸気流量の各計測値に基づいて算出された、圧縮機内爆発が起こらない最大の燃料量に従って、第1および第2の燃料制御弁27,31に対する開度指令を制御する。リミッタ回路45を設けることにより、CMM燃料濃度が急激に上昇した場合にもより確実に圧縮機
内爆発を回避することができる。
【0022】
第1メタン濃度計35によるCMM燃料濃度計測の遅延および第1燃料制御弁27の動作の遅延によって、燃料濃度の制御が遅れてしまうことを回避するために、第1混合器21と第2混合器23とは、互いに所定の距離だけ離間して配置することが好ましい。例えば、第1混合器21と第2混合器23との間の流路距離(燃料主供給路13に沿った距離)は、制御装置41による濃度調整の遅延時間の間に第1次混合ガスG6が燃料流路を移動する距離、つまり燃料主供給路13での流量および流路の断面積と燃料濃度制御の遅延時間から算出される流路長さより大きく設定する。第1混合器21と第2混合器23との間の流路距離は、具体的には、例えば、2〜15mの範囲にあることが好ましく、3〜10mの範囲にあることが好ましく、4〜7mの範囲にあることがさらに好ましい。
【0023】
次に、
図1の希薄燃料吸入ガスタービンGTの制御動作を説明する。CMM供給源15からの燃料濃度が高くなった場合には、制御装置41が、第1混合器21で発電状態を維持するのに必要な最低限の燃料濃度に維持しつつ、第2混合器23の上流に位置する第2燃料制御弁31の開度を絞る。逆にCMM供給源15からの燃料濃度が低くなった場合、第1混合器21で発電状態を維持するのに必要な最低限の燃料濃度に維持しつつ、第2混合器23の上流に位置する第2燃料制御弁31の開度を広げる。このとき、CMM燃料濃度が急激に上昇しても、
図2のリミッタ回路
45の作用により、ガスタービンGTに供給される燃料の濃度が所定値以上に上昇することはなく、圧縮機1内の爆発を確実に回避できる。
【0024】
なお、本実施形態の変形例として、
図3に示すように、燃料副供給路17から第2混合器23へのバイパス通路51を設け、このバイパス通路51の中途にバイパス燃料遮断弁53を設けてもよい。バイパス燃料遮断弁53の開閉動作は、第2燃料制御弁31の開閉動作よりも速いので、急激なCMM燃料濃度の上昇が発生した場合に、一層効果的に圧縮機1内の爆発を回避することができる。
【0025】
また、本実施形態の更なる変形例として、
図1における第2燃料制御弁31に代えて、
図4に示すように、第2燃料遮断弁61を設けても良い。第2燃料遮断弁61の動作としては、第1燃料制御弁27にて始動操作を実施完了した後に、開動作を行い、定格発電出力を得る。また、CMM濃度が上昇した場合は第2燃料遮断弁61の閉動作を行う。第2燃料遮断弁61を設けることにより、
図3のバイパス燃料遮断弁53と同じように圧縮機1内の
爆発を効果的に回避でき、しかも制御弁より簡便な制御回路にて実現できる。
【0026】
以上のように、本実施形態に係る希薄燃料
吸入ガスタービンGTによれば、CMM燃料濃度が変動した場合にも、圧縮機1内の爆発および触媒燃焼器2の失火を回避して安定的に運転することが可能となる。
【0027】
以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
【符号の説明】
【0028】
1 圧縮機
2 触媒燃焼器
3 タービン
4 発電機
11 VAM供給源
15 CMM供給源
21 第1混合器
23 第2混合器
27 第1燃料制御弁
31 第2燃料制御弁
41 制御装置
GT 希薄燃料吸入ガスタービン
L 負荷