【実施例】
【0033】
《供試材の製造》
基材表面が非晶質炭素膜で被膜された供試材を以下のように製造した。
(1)直流プラズマCVD成膜装置
図1に示す直流プラズマCVDを行う成膜装置1を用いて、基材15に非晶質炭素膜を成膜した。成膜装置1は、円筒形の炉室をもつステンレス鋼製のチャンバー10と、このチャンバー10内に配置された載置台11と、チャンバー10の上方内に連通するガス導入管12と、チャンバー10の下方内に連通する排気管13とを備えてなる。
ガス導入管12には、マスフローコントローラ(MFC:図略)が設けてある。このMFCの上流側には、種々の原料ガスが個別に封入された複数のガスボンベ(図略)が接続されている。MFCにより、チャンバー10内へ導入するガスの種類、配合、流量等を制御できる。これにより、非晶質炭素膜の組成等が調整可能となる。
【0034】
排気管13には、排気されるガス流量を調整する排気調整バルブ(図略)が設けてある。その下流側にはチャンバー10内を真空排気する真空ポンプ(油回転ポンプ、メカニカルブースターポンプ、油拡散ポンプ等:図略)が接続されている。
チャンバー10の内壁が陽極板14を兼ねる。この陽極板14と陰極側となる載置台11との間に、プラズマ直流電源16が直流電圧を印加する。なお、プラズマ直流電源16の正極および陽極板14は接地されている。
【0035】
(2)成膜
基材15の表面への成膜は、具体的には次のようにして行った。
先ず、チャンバー10内の載置台11上に基材15を載置した。この後、チャンバー10を密封し、排気管13から排気して、チャンバー10内の到達真空度を6.7×10−3Paにした(排気工程)。排気後のチャンバー10内へ、ガス導入管12から、水素ガスを15sccm(standard cc/min:以下単に「sccm」という。)の流量で導入し、チャンバー10内の圧力を約133Paとした。この後、陽極板14と載置台11との間に200Vの直流電圧を印加し、グロー放電を開始させた。こうして基材15の温度が500℃になるまでイオン衝撃による昇温を行った(予熱工程)。なお、基材15の表面温度は、チャンバー10の側面から炉外へ突出する透光窓(図略)を介して赤外線放射温度計(図略)により測定した(表面温度の測定は以下同様の方法で行った)。
【0036】
さらにガス導入管12からチャンバー10内へ、窒素ガス500sccmおよび水素ガス40sccmを導入した。このチャンバー10内の圧力を約800Paにして、温度530℃にした基材15へ、電圧400V(電流1.5A)を印加した。このプラズマ窒化処理を基材15の表面に2時間施した(窒化工程)。基材15の表面の断面を顕微鏡観察したところ、窒化深さ:約30μmの窒化層が形成されていた。
【0037】
プラズマ窒化処理後、チャンバー10に、ガス導入管12から水素ガスおよびアルゴンガス(キャリアガス)を30sccmずつ導入した。このチャンバー10内の圧力を約533Paにして、温度500℃にした基材15へ電圧300V(電流1.6A)を印加した。こうして基材15の表面にスパッタリングを1時間施した。こうして基材15の表面には微細な凹凸が形成された(粗面化工程)。
【0038】
上記のプラズマ窒化処理後、後述する原料ガス(反応ガス)、水素ガスおよびアルゴンガスをガス導入管12からチャンバー10へ導入した。この際、チャンバー10内の圧力を200〜800Pa、基材15の温度を450〜550℃、基材15へ印可する電圧350〜600V(電流1.1〜2.5A)とした。この状態を1〜2時間継続して、基材15の表面に非晶質炭素膜を成膜した(成膜工程)。
【0039】
ところで、原料ガスには、TMS:テトラメチルシラン(Si(CH
3)
4)、CH
4:メタン、C
2H
2:アセチレン、C
6H
6:ベンゼンを用いた。TMSがSi供給源となる。このTMSを供給する際には、成膜初期はTMSの供給量(導入ガス全体に対する濃度)を低く抑え、その後、TMSの供給量を漸増させていった。具体的には、基材15の界面近傍の臨界部を形成する際に導入したTMS量は、臨界部に続く表面部を形成する際に安定的に導入したTMS量の10〜20体積%とした。その後、TMS量を連続的または段階的に漸増させて、所望する厚さの臨界部が形成され得る時間後に、TMS量を安定にして表面部を形成した。
【0040】
こうして表1〜4に示す各種の試験に供する供試材を得た。なお、比較のために、ここでいう成膜を基材表面に行わない供試材も用意した。
【0041】
(3)基材
上記の成膜を行う基材として、次の3種類を用意した。基材a:ステンレス(JIS SUS304C)からなるディスク(φ30x厚さ3:mm)、基材b:ステンレス製(JIS SUS440C)からなるボール(φ6:mm)、基材c:高速度鋼(JIS SKH51)からなる板片(13x13x5:mm)である。表1〜4の試験No.に付した添字は基材の種類を意味する。
【0042】
なお、成膜前の基材表面には特に断らない限り、前述したイオン窒化処理による窒化層が形成されている。この窒化層が、基材と非晶質炭素膜との界面に介在する中間層となる。一部の基材(表4に示す試験No.8ab〜C8abに用いた基材の一方)の成膜前の表面には、その窒化層に替えて、硬質のCrN層または硬質のCrメッキ層を形成した。
【0043】
CrN層は、アンバランスマグネトロンスパッタ方式で成膜した。そのCrNは、一般的なNaCl型構造をしている。またCrメッキ層は、サージェント浴をもちいて硬質クロムめっき法により形成した。
【0044】
《膜組成》
各供試材の非晶質炭素膜中のC濃度、Si濃度おおびH濃度は次のように求めた。先ず、電子プローブ微小部分析法(EPMA)を用いた測定により、膜中に存在するCとSiの量比(原子比)を求める。次に、あらかじめ燃焼法で求めた膜中のH量と弾性反跳粒子検出法(ERDA)法で求めた電子線強度との関係から膜中に存在するHの原子割合(原子%)を求める。これらの結果に基づき、膜全体を100原子%として、膜中のC、SiおよびHの原子%を特定した。ちなみに、ERDAは、2MeVのヘリウムイオンビームを膜表面に照射して、膜からはじき出される水素イオンを半導体検出器により検出し、膜中の水素濃度を測定する方法である。
【0045】
なお表1〜4に示した膜組成は、非晶質炭素膜の表面側で組成が比較的安定している領域の組成である。つまり本発明に係るDLC−Si膜でいうなら、臨界部ではなく表面部の中央付近に相当する安定領域の膜組成である。測定領域の具体的な特定方法は前述した通りである。参考例として、試験No.2aに用いた供試材に関するEPMAによる組成分析結果を
図4に示した。
図4中の横軸は膜厚方向の距離(厚さ)を示し、縦軸はX線強度比を示す。
【0046】
《試験》
(1)耐酸化性(表1:試験No.1a〜C2a)
上記の基材aに非晶質炭素膜を設けた供試材の耐酸化性を調べた。具体的には、表1に示した各供試材を電気炉に入れ、350〜550℃x1時間の大気中に曝して酸化させた。この加熱前後の各供試材の重量(質量)変化を調べた。この結果を表1に示した。
【0047】
(2)高温硬さ(表2:試験No.1c〜C1c)
上記の基材cに非晶質炭素膜を設けた供試材の高温硬さを調べた。具体的には表2に示した各供試材について、400℃および500℃の真空中における表面硬さを、ビッカース硬さ計を用いて荷重25gで測定した。この結果を表2に示した。ちなみに、これら各供試材の非晶質炭素膜の厚さは約12μmであった。
【0048】
(3)摩擦摺動特性(表3および表4:試験No.2ab〜10abおよびC3ab〜C8ab)
図2に示すボール・オン・ディスクタイプの試験装置(CSM INSTRUMENTS社製 高温摩擦試験機)2を用いて、各供試材の摩擦摺動特性を調べた。ボール・オン・ディスク試験装置2は、基材aからなるディスク20を回転させる回転装置(図略)と、基材bからなるボール21(相手材)のディスク20上への押付け荷重を付与する荷重装置(図略)を備える。この装置を用いて、ボール21の荷重1N、摺動速度0.2m/s、摺動距離600mの条件下で摩擦摩耗試験を行った。この際、ディスク20を300〜480℃に加熱した。
【0049】
この摩擦摩耗試験により、摺動性の指標となる摩擦係数、耐摩耗性の指標となるディスク摩耗深さおよび焼き付き状況、相手攻撃性の指標となるボール摩耗痕径を測定または観察した。
【0050】
ディスク摩耗深およびボール摩耗痕径は、それぞれ
図3(a)および
図3(b)にそれぞれ示すように定義した。ちなみに、ディスク20とボール21の摺動距離およびディスク20の回転速度が一定でも、両者の接する位置(回転半径r)によって、ディスク20とボール21の接触回数が変化し、結果的にディスク摩耗深さは変化し得る。そこでディスク摩耗深さは、1回転当りの摩耗深さ(μm/回)で評価した。
【0051】
摩擦摩耗試験により得られた結果を表3および表4に示した。各供試材の非晶質炭素膜の厚さは約10μmであった。表3に示した各試験はディスク20およびボール21に同じ表面処理(成膜)を施した場合であり、表4に示した各試験はその表面処理をディスク20とボール21とで変化させた場合である。ちなみに、成膜した供試材の非晶質炭素膜の厚さは約10μmであった。
【0052】
(4)スクラッチ試験(表5:試験No.2aおよびNo.Sa)
スクラッチ試験機(CSM INSTRUMENTS社製 AEセンサー付き自動スクラッチ試験機 REVETEST RST)を用いて、DLC−Si膜の密着性を調べた。DLC−Si膜の成膜直後の供試材と、DLCその成膜後に冷熱サイクルを与えた供試材についてそれぞれ、密着力を測定した。その結果を表5に示した。冷熱サイクルは、「成膜後の供試材を大気雰囲気の加熱炉内に入れて500℃で5分間保持した後、3℃冷却水に2分間浸漬し、その後500℃の前記炉内に戻す」という操作を50回繰り返しておこなった。表5の試験No.Saで用いた供試材は、TMS量を漸増させず導入当初から一定量をチャンバー10に供給して製造したものである。この点を除けば、表1に示した試験No.2aで用いた供試材と成膜方法は共通する。
【0053】
《評価》
(1)耐酸化性
表1に示す結果から解るように、DLC−Si膜で表面が被覆された供試材(No.1a、No.2a)では、高温加熱されてもその前後で重量変化がほとんどなかった。つまり350〜550℃という高温の大気中にあっても、非常に安定した耐酸化性を示すことが明らかとなった。
一方、Siを含有しないDLC膜で被覆された供試材(No.C1a)では、高温加熱すると供試材の重量が大きく変化した。特に、500℃で加熱すると酸化が激しくDLC膜が消失した。
【0054】
少ないながらもSiを含有するDLC−Si膜で被覆された供試材(No.C2a)では、Siを含有しない場合よりも加熱前後の重量変化はかなり小さい。もっとも、Siを十分に含有したDLC−Si膜で被覆されている供試材と比較すると、加熱前後の重量変化が大きく、耐熱温度は550℃には至らなかった。
この試験から、耐酸化性ひいては耐熱性の確保には、Siを含有したDLC−Si膜であることが必要であることがわかった。特に500℃以上の高温域でも耐え得るには、Siを少なくとも6原子%以上含有していることが必要であった。
【0055】
(2)高温硬さ
表2に示す結果から解るように、DLC−Si膜で表面が被覆された供試材(No.1c、No.2c)は、500℃という高温加熱下でも、非常に大きな硬さを保持していた。一方、Siを含有しないDLC膜で被覆された供試材(No.C1c)は、高温加熱すると、400℃で硬さが急減し、500℃では測定すらできない状況であった。
【0056】
これらの試験から高温硬さを確保するには、やはり非晶質炭素膜がDLC−Si膜であることが必要であることがわかった。特に500℃以上の高温域でも十分な硬さを維持するためには、Siを少なくとも14原子%以上含有していると好ましいことがわかった。
ちなみに、基材c自体の硬さは、加熱前にHv1100、500℃でHv650となる。本発明に係るDLC−Si膜を設けると、基材自体よりも硬質になることがわかる。特に表面部のSi濃度が22%程度になると、500℃でも基材の常温硬さに相当する硬さをほぼ維持することもわかった。
【0057】
(3)高温摩擦摺動特性
先ず表3に示す結果から解るように、適量のSiを含むDLC−Si膜で表面被覆された供試材同士を摺接させた場合(No.2ab〜7ab)、摩擦係数は300〜480℃の高温域であまり変化せず、いずれも0.4以下で安定していた。
【0058】
一方、Siを含有しないDLC膜で被覆された供試材を用いた場合(No.C4ab)、400℃で摩擦係数が0.7まで上昇し、それよりも高温では測定試験すら継続できなかった。またDLC−Si膜であっても、膜中のSi濃度が過小または過大になると(No.C5ab〜C7ab)、高温になるほど摩擦係数が上昇し、400℃以上の摩擦係数はいずれも0.4を超えた。
【0059】
ボール摩耗痕径およびディスク摩耗深さに関しても、同様の傾向がいえる。つまりSi濃度が適切なDLC−Si膜で被覆された供試材を用いた場合、いずれもボール摩耗痕径およびディスク摩耗深さが、比較的小さい値で安定していた。一方、それ以外の場合、ボール摩耗痕径およびディスク摩耗深さがいずれも大きくなり、特に温度が400℃から480℃に上昇すると急増する傾向を示した。
【0060】
さらにディスク摩耗深さを観ると解るように、Si濃度の適切なDLC−Si膜で被覆された供試材では、高温摺動させたときでも、相手材(ボール21)の凝着を生じず、相手攻撃性が低いことが確認された。またこのときのディスク摩耗深さは、摺動距離が増加してもほぼ一定で、摩耗の進展は見られなかった。このようにSi濃度の適切なDLC−Si膜で被覆された供試材は、それ自身の摩耗も小さいことが解った。
【0061】
次に表4に示す結果から解るように、異なる表面性状の供試材を摺接させた場合でも(No.8ab〜10ab)、少なくとも一方の供試材がSi濃度の適切なDLC−Si膜で被覆されていると、高温域でも安定した摩擦摺動特性を示した。また理由は定かではないが、DLC−Si膜の下地層(DLC−Si膜と基材との中間層)に、硬質なCrメッキ層などを用いると(No.10ab)、より優れた摩擦摺動特性が発現された。
【0062】
(4)臨界部(傾斜部)の影響
上述した優れた耐酸化性、高温硬さおよび高温摩擦摺動特性の発現に、DLC−Si膜の表面部が寄与していることは明らかであるが、そのDLC−Si膜を基材との界面近傍で支持する臨界部も、DLC−Si膜の耐熱性の向上に非常に大きく寄与している。
【0063】
具体的には、
図4に示すように、本発明に係るDLC−Si膜は、基材と接する境界付近からSi濃度が徐々に増加している。このSi濃度の漸増または濃度傾斜が、DLC−Si膜の基材への密着性を、高温域においても確実に保持する機能を果たしている。そしてSi濃度の大きな表面部とSi濃度が比較的低い臨界部とが相乗的に作用して、本発明に係るDLC−Si膜は従来になく現実的で優れた耐熱性を発現したと考えられる。
【0064】
このことは表5に示すスクラッチ試験結果から明らかである。すなわち、成膜初期にTMSガス量を抑制せずに成膜した供試材の場合(試験No.Sa)、DLC−Si膜の成膜直後の密着力自体が低く、厳しい冷熱サイクルの経過後の密着力は初期の密着力の半分以下となった。従って、従来の方法で成膜したDLC−Si膜は、常温域で使用し得るとしても、高温耐久性に乏しいことが明らかとなった。これに対して表面部よりも臨界部のSi濃度が低くなるようにした供試材の場合(試験No.2a)、DLC−Si膜の成膜直後の密着力自体が高く、厳しい冷熱サイクルの経過後でも、その密着力はあまり低下しなかった。よって、本発明に係るDLC−Si膜は、成膜直後から高い密着力を有し、高温環境下で使用される場合でもその高い密着力を安定的に維持して、常温域は勿論高温域で使用される場合でも、優れた耐久性を発現することが明らかとなった。
【0065】
【表1】
【0066】
【表2】
【0067】
【表3】
【0068】
【表4】
【0069】
【表5】