【国等の委託研究の成果に係る記載事項】(出願人による申告)平成21年度、独立行政法人新エネルギー・産業技術総合開発機構、エネルギーイノベーションプログラム/革新的ガラス溶融プロセス技術開発、産業技術力強化法第19条の適用を受ける特許出願
【文献】
田中学等,ハイブリッドプラズマを用いたガラス原料のインフライト溶融,化学工学会秋季大会研究発表講演要旨集,2011年 9月26日,43rd,G302
(58)【調査した分野】(Int.Cl.,DB名)
前記上側電極は、水平に対して前記アーク放電する先端が下向きに15度以上かつ45度以下の角度で設置され、前記下側電極は、水平に対して前記アーク放電する先端が上向きに0度以上かつ10度以下の角度で設置されることを特徴とする請求項1又は請求項2に記載のガラス製造装置。
前記上側電極及び前記下側電極は、それぞれ前記アーク放電する先端が、それぞれ前記ガラス処理空間内における所定の直径の同心円上に位置するように放射状に配置され、前記上側電極のアーク放電する先端が位置する同心円の直径が、前記下側電極のアーク放電する先端が位置する同心円の直径よりも小さいことを特徴とする請求項1乃至請求項3の何れか一項に記載のガラス製造装置。
前記上側電極及び前記下側電極はそれぞれ6本のアーク電極を有し、上面視で、それぞれ60度の角度を空けて放射状に配置され、互いに隣接する前記上側電極と前記下側電極とは、上面視で30度の角度を空けて配置され、
前記多相交流は12相交流であり、上面視で30度の角度を空けて配置された12本の前記アーク電極において、一のアーク電極に印加される交流の位相と、上面視で前記一のアーク電極と2番目乃至4番目に隣接する何れか1つのアーク電極に印加される交流の位相との差が180度となるように前記12相交流を前記アーク電極に印加する
ことを特徴とする請求項1乃至請求項4の何れか一項に記載のガラス製造装置。
平面視における、前記アークプラズマの回転方向と、前記燃焼炎の回転方向と、前記旋回流の回転方向とは、同じ向きであることを特徴とする請求項1乃至請求項5の何れか一項に記載のガラス製造装置。
粉状のガラス原料をインフライトで加熱溶融してガラス化することでガラスを製造する請求項1乃至請求項6の何れか一項に記載のガラス製造装置を用いたガラス製造方法であって、
前記ガラス原料を前記燃焼炎中に供給する工程と、
前記燃焼炎によって前記ガラス原料を加熱する工程と、
前記アークプラズマによって前記燃焼炎により加熱された前記ガラス原料を加熱する工程と、
を含むことを特徴とするガラス製造方法。
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、このような技術を用いてもガラス化状態が均一で、かつガラス化率の高いガラスが得られていないのが現状である。この原因として、インフライトでの酸素バーナーなどによる燃焼炎を用いたガラス化処理では、加熱温度が低く、ガラス化の状態は均一であっても、高いガラス化率を得ることができなかった。また、インフライトでのプラズマを用いたガラス化処理では、ガラス化状態が均一なガラスを得ることができなかった。
【0008】
更にまた、燃焼炎とアークプラズマとを用いたハイブリッド型のガラス化処理でも、製造されるガラス化状態の均一性とガラス化率の高さが十分ではなかった。これは、燃焼炎によって加熱されたガラス原料が、アークプラズマの持つ高い粘性によってアークプラズマの高温領域への進入を阻害しているためであると考えられている。すなわち、ガラス原料をアークプラズマ中へ投入するためには、ガラス原料にある程度の速度が必要であるが、投入速度が速いとアークプラズマが不安定となり、逆に投入速度を低くするとガラス原料がアークプラズマに弾き返されてしまうという問題があった。
【0009】
このように、従来技術では、燃焼炎とアークプラズマとを用いたハイブリッド型のガラス製造装置においては、アークプラズマ中におけるガラス原料への効率的な熱移動を実現するための技術が実現されていないのが現状である。
【0010】
そこで本発明は、ガラス化状態が均一でガラス化率の高いガラスを製造する、燃焼炎とアークプラズマとを用いたハイブリッド型のガラス製造装置及びガラス製造方法を提供することを課題とする。
【課題を解決するための手段】
【0011】
本発明は、前記課題を解決するために創案されたものであり、請求項1に記載のガラス製造装置は、粉状のガラス原料をインフライトで加熱溶融してガラス化することでガラスを製造するガラス製造装置であって、前記ガラス原料をガラス化処理する空間である断熱材で囲まれたガラス化処理空間を有する炉と、前記ガラス化処理空間の上面に設けられ、下方に向けて燃焼炎を発生する燃焼管と、複数の柱状のアーク電極に対して互いに位相の異なる多相交流を印加して前記ガラス化処理空間内にアークプラズマを発生するアークプラズマ発生手段と、前記アーク電極のアーク放電する先端にシールドガスを供給するシールドガス供給手段と、前記燃焼炎中に、前記アークプラズマの発生領域よりも上方から前記ガラス原料を供給するガラス原料供給手段と、少なくとも前記アークプラズマの発生領域よりも上方から前記アークプラズマの発生領域の下方にかけて、前記ガラス化処理空間の内壁に沿って回転しながら下降する旋回流を発生させる旋回流発生手段と、を備え、前記複数のアーク電極は、上下2段に設置され、それぞれ複数のアーク電極からなる上段に配置された上側電極と下段に配置された下側電極とからなり、前記上側電極は前記アーク放電する先端が下向きに設置され、前記下側電極は前記アーク放電する先端が水平乃至水平に対して上向きに設置され、前記アーク電極に印加される多相交流は、上面視において、前記アーク電極のアーク放電する先端に取り囲まれた領域である放電領域の中心を挟んで互いに対向する前記アーク電極に印加される交流の位相差が180度とならないように位相が定められ、前記燃焼管は、前記燃焼炎が前記放電領域の中心を貫通するように設定され、前記ガラス原料供給手段は、前記アークプラズマ発生手段によって発生するアークプラズマの高温領域の広がりの変化に同期して、当該高温領域が広がったときに前記ガラス原料が前記アークプラズマの発生領域に到達するように、予め定められたタイミングで前記ガラス原料を前記燃焼炎中に供給するように構成した。
【0012】
かかる構成によれば、ガラス製造装置は、ガラス処理空間内に、アークプラズマ発生手段の、アーク放電する先端が下向きに配置された上側電極によって、下向きに流れるプラズマジェットを発生し、アーク放電する先端が水平乃至水平に対して上向きに配置された下側電極によってプラズマジェットの流速を緩和する。ここで、ガラス製造装置は、多相交流が印加された複数のアーク電極よって回転磁界を生じ、この回転磁界から受けるローレンツ力によって、アークプラズマを中心方向に収縮させる誘導ピンチ効果を生じる。
【0013】
また、ガラス製造装置は、シールドガス供給手段によって、アーク電極の先端部にシールドガスを供給し、先端部をシールドガス雰囲気に置くことで先端部の酸化を防止すると共に、発生したアークプラズマの外側をシールドガスで囲むことで、アークプラズマの外側を冷却するため、アークプラズマを中心方向に収縮させる熱ピンチ効果を生じる。
【0014】
また、ガラス製造装置は、燃焼管によって、アークプラズマの中心部を貫通する燃焼炎を発生する。ここで、ガラス製造装置は、アークプラズマ発生手段によって、上面視で、アーク電極の先端に取り囲まれた領域である放電領域の中心を挟んで対向するアーク電極に印加する交流の位相差が180度、すなわち最大位相差とならないように多相交流を各アーク電極に印加する。このため、燃焼炎がこの放電領域の中心部を貫通するにも関わらず、中心部を通るアーク放電が低減されるため、アークプラズマは安定して形成される。
【0015】
また、ガラス製造装置は、旋回流発生手段によって、ガラス処理空間の内壁に沿って回転しながら下降する旋回流を発生することにより、アークプラズマが発生する領域とその外周であるガラス処理空間の内壁近傍との間に圧力差を生じ、その結果アークプラズマを中心に向かって収縮させる旋回流効果を生じる。
【0016】
また、ガラス製造装置は、ガラス原料供給手段によって、燃焼炎中に粉状のガラス原料を供給する。このとき、ガラス原料は燃焼炎によって均一に昇温されながらアークプラズマに進入する。そして、ガラス原料は、アークプラズマのプラズマジェットに乗って下降する。このようにして、ガラス製造装置は、燃焼炎によって均一に昇温したガラス原料を、アークプラズマ中で更に高温に加熱溶融してガラス化させる。
【0017】
ここで、アークプラズマは、誘導ピンチ効果と熱ピンチ効果と旋回流効果とによる収縮力を受けるとともに、燃焼炎により不安定となることがないため、プラズマジェットに乗って下降するガラス原料は、発散することなくアークプラズマによって加熱される。
【0018】
更に、ガラス製造装置は、ガラス原料供給手段によって、アークプラズマの高温領域の広がりの変化に同期して、高温領域が広がったときにガラス原料がアークプラズマに到達するように間欠的にガラス原料を供給する。
これらのことによって、ガラス製造装置は、燃焼炎によって均一に加熱昇温したガラス原料を、発散せず、安定し、流速が適度に緩和されたプラズマジェットを形成するアークプラズマによって、効果的にガラス原料を加熱溶融する。
【0019】
請求項2に記載のガラス製造装置は、請求項1に記載のガラス製造装置において、前記燃焼管は、酸素バーナーとした。
【0020】
かかる構成によれば、ガラス製造装置は、酸素バーナーによって、通常バーナーより高温の燃焼炎を発生し、ガラス原料をこの燃焼炎によって、より高温に昇温してアークプラズマに進入させ、アークプラズマによって加熱溶融してガラス化させる。
【0021】
請求項3に記載のガラス製造装置は、請求項1又は請求項2に記載のガラス製造装置において、前記上側電極は、水平に対して前記アーク放電する先端が下向きに15度以上かつ45度以下の角度で設置され、前記下側電極は、水平に対して前記アーク放電する先端が上向きに0度以上かつ10度以下の角度で設置されるように構成した。
【0022】
かかる構成によれば、ガラス製造装置は、アークプラズマ発生手段によって、上側電極と下側電極とを用いて、流速が好適に緩和されたプラズマジェットを形成するアークプラズマによって、ガラス原料を加熱する。
【0023】
請求項4に記載のガラス製造装置は、請求項1乃至請求項3の何れか一項に記載のガラス製造装置において、前記上側電極及び前記下側電極は、それぞれ前記アーク放電する先端が、それぞれ前記ガラス処理空間内における所定の直径の同心円上に位置するように放射状に配置され、前記上側電極のアーク放電する先端が位置する同心円の直径が、前記下側電極のアーク放電する先端が位置する同心円の直径よりも小さいように構成した。
【0024】
かかる構成によれば、ガラス製造装置は、アークプラズマ発生手段によって、先端が位置する円の直径が小さくなるように配置された上側電極を用いて、燃焼炎で昇温されたガラス原料を急激に加熱すると共に、速い流速のプラズマジェットを生じることで、ガラス原料を発散させることがない。また、ガラス製造装置は、アークプラズマ発生装置によって、先端が位置する円の直径が相対的に大きくなるように配置された下側電極を用いて、上側電極によって生じたプラズマジェットの流速を緩和し、ガラス原料のアークプラズマ内における滞留時間を長くする。これによって、ガラス製造装置は、ガラス原料をアークプラズマによって長時間加熱する。
【0025】
請求項5に記載のガラス製造装置は、請求項1乃至請求項4の何れか一項に記載のガラス製造装置において、前記上側電極及び前記下側電極はそれぞれ6本のアーク電極を有し、上面視で、それぞれ60度の角度を空けて放射状に配置され、互いに隣接する前記上側電極と前記下側電極とは、上面視で30度の角度を空けて配置され、前記多相交流は12相交流であり、上面視で30度の角度を空けて配置された12本の前記アーク電極において、一のアーク電極に印加される交流の位相と、上面視で前記一のアーク電極と2番目乃至4番目に隣接する何れか1つのアーク電極に印加される交流の位相との差が180度となるように前記12相交流を前記アーク電極に印加するように構成した。
【0026】
かかる構成によれば、ガラス製造装置は、アークプラズマ発生手段によって、燃焼炎が貫通する放電領域の中心部を通るアーク放電を低減しながらアークプラズマを発生する。これによって、ガラス製造装置は、ガラス原料を、安定して形成されるアークプラズマによって加熱する。
【0027】
請求項6に記載のガラス製造装置は、請求項1乃至請求項5の何れか一項に記載のガラス製造装置において、平面視における、前記アークプラズマの回転方向と、前記燃焼炎の回転方向と、前記旋回流の回転方向とは、同じ向きであるように構成した。
【0028】
かかる構成によれば、ガラス製造装置は、各部の回転流の回転方向を揃えるため、気流を乱してアークプラズマを発散させることがない。これによって、ガラス製造装置は、プラズマジェットに乗って下降するガラス原料を、発散させずに加熱する。
【0029】
請求項7に記載のガラス製造方法は、粉状のガラス原料をインフライトで加熱溶融してガラス化することでガラスを製造する請求項1乃至請求項6の何れか一項に記載のガラス製造装置を用いたガラス製造方法であって、ガラス原料を燃焼炎中に供給する工程と、ガラス原料を燃焼炎によって加熱する工程と、燃焼炎によって加熱されたガラス原料をアークプラズマによって加熱する工程と、を含むこととした。
【0030】
かかる手順によれば、ガラス原料を供給する工程において、ガラス製造装置は、ガラス原料供給手段によって、ガラス原料を燃焼炎中に供給する。次に、ガラス原料を燃焼炎で加熱する工程において、ガラス製造装置は、燃焼管によって発生する燃焼炎によって、ガラス原料を均一に加熱昇温する。そして、ガラス原料をアークプラズマによって加熱する工程において、ガラス製造装置は、燃焼炎によって均一に加熱昇温されたガラス原料を、アークプラズマによって高温に加熱溶融してガラス化させる。
【0031】
このとき、アークプラズマは、各ピンチ効果によって発散せず、また、中心部を貫通する燃焼炎によって不安定になることなく、更に適度な流速のプラズマジェットが生じるように形成される。そして、ガラス製造装置は、ガラス原料供給手段によって、アークプラズマの高温領域の広がりの変化に同期して、この高温領域が広がったときにガラス原料がアークプラズマに到達するように、ガラス原料を燃焼炎中に供給して効率的にガラス化させる。
【発明の効果】
【0032】
請求項1に記載の発明によれば、燃焼炎によって均一に昇温されたガラス原料が、発散せず、安定し、流速が緩和され、高温領域が広がったアークプラズマによって効率的に加熱されるため、ガラス化状態が均一でガラス化率の高いガラスを製造することができる。
請求項2に記載の発明は、高温の燃焼炎を発生する酸素バーナーを用いるため、よりガラス化状態が均一で、ガラス化率の高いガラスを製造することができる。
請求項3に記載の発明によれば、流速が好適に緩和されたプラズマジェットによってガラス原料を加熱するため、更にガラス化状態が均一で、ガラス化率の高いガラスを製造することができる。
請求項4に記載の発明によれば、ガラス原料が、アークプラズマにより、急激に加熱されると共に、長い時間に渡り加熱されるため、ガラス化率の高いガラスを製造することができる。
請求項5に記載の発明によれば、燃焼炎が貫通するアークプラズマが発生領域の中心部通るアーク放電を低減するため、安定してアークプラズマを発生することができる。その結果、ガラス化状態が均一なガラスを製造することができる。
請求項6に記載の発明によれば、アークプラズマを発散させることがなく、従って、プラズマジェットに乗って下降するガラス原料を発散させずに高温に加熱することができるため、更にガラス化状態が均一で、高いガラス化率でガラスを製造することができる。
請求項7に記載の発明によれば、請求項1乃至請求項6に記載の発明の効果を享受してガラスを製造することができる。
【発明を実施するための形態】
【0034】
本発明の実施形態について、適宜図面を参照して詳細に説明する。
[ガラス製造装置の構成]
まず、
図1〜
図3を参照して、本発明の実施形態に係るガラス製造装置の構成について説明する。
図1に示した本発明の実施形態に係るガラス製造装置1は、アークプラズマ2と燃焼炎3とにより、インフライト(気中)で粉状のガラス原料4を加熱溶融してガラス化することによりガラスを製造する装置である。
【0035】
ガラス製造装置1は、炉10と、アークプラズマ発生手段20と、燃焼管30と、旋回流発生手段40と、ガラス原料供給手段50とを備えて構成される。
【0036】
炉10は、円筒形状であり、断熱材11と、冷却ジャケット12と、回収ポット13とを備えて構成されている。また、炉10の側面下部には、ガラス化処理空間11aと連通する排気口10aが設けられている。排気口10aは、不図示の排気ガス処理装置に接続され、適切にガラス化処理により発生した排ガスの処理が行われる。
【0037】
断熱材11は、炉10の本体を構成するものであり、中央に内壁11bで囲まれた、円柱状のガラス化処理空間11aが形成されている。なお、ガラス化処理空間11aは、ガラス原料4をインフライトでガラス化するための空間である。また、断熱材11は、各所に貫通孔が設けられ、上側アーク電極21と下側アーク電極22と、燃焼管30と、ガス供給管42とが配設されている。炉10の内部は、アークプラズマ2と燃焼炎3とによって高温に加熱されるため、断熱材11としては、例えば、耐火煉瓦を用いることができる。
【0038】
冷却ジャケット12は、断熱材11の外周(側面及び上面)を覆い、熱を外部に放射しないための冷却装置である。本実施形態における冷却ジャケット12は、下部に設けられた冷却水供給口12aから冷却水を供給することにより、ジャケット全体を冷却した後、上部に設けられた冷却水排出口12bから冷却水を排出するように構成された金属製の水冷式の冷却装置である。
【0039】
また、冷却ジャケット12の各所には、断熱材11の各所に設けられた前記した貫通孔と連通する貫通孔が設けられ、上側アーク電極21と下側アーク電極22と、燃焼管30と、ガス供給管42とが配設されている。
【0040】
回収ポット13は、炉10の下部に設けられ、ガラス原料4がガラス化処理空間11aでガラス化されて、落下してくるガラス粒子を回収する容器である。高温のガラス粒子を回収するため、回収ポット13としては、例えば、鉄製やステンレス製の容器を用いることができる。
【0041】
アークプラズマ発生手段20は、上側アーク電極21と、下側アーク電極22と、多相交流電源23と、シールドガス供給手段24とから構成される。
アークプラズマ発生手段20は、上側アーク電極21及び下側アーク電極22(以降、適宜にアーク電極21,22という)に多相交流電源23から、それぞれ異なる位相の交流を印加して先端部21a及び先端部22a間にアーク放電させ、アーク電極21,222の先端部21a,22aの先端に取り囲まれた領域内にアークプラズマ2を発生させるものである。
【0042】
本実施形態におけるアークプラズマ発生手段20は、柱状の6本の上側アーク電極21と、同じく柱状の6本の下側アーク電極22とを有し、
図2に示すように、上面視で、それぞれ60度の角度を空けて、ガラス化処理空間11aの中心の周りに、放射状に配置されている。また、上側アーク電極21と下側アーク電極22とは、上面視で、互いに30度ずつ間を空けて配置されている。従って、合計で12本のアーク電極21,22は、上面視で、30度の角度を空けて等間隔に配置されている。そして、上側アーク電極21の先端部21a及び下側アーク電極22の先端部22aの先端は、上面視で、それぞれガラス化処理空間11aの同心円上に位置するように配置されている。以下、この同心円を適宜に、それぞれ上側電極先端円21b、下側電極先端円22bと呼ぶこととする。なお、
図2に示した例では、上側アーク電極についての同心円である上側電極先端円21bの直径は、下側アーク電極22についての同心円である下側電極先端円22bの直径より小さくなっている。
なお、上側電極先端円21bの直径と、下側電極先端円22bの直径とは同じに設定してもよい。
【0043】
また、
図1に示したように、アーク電極21,22は、炉10の側面に設けられた断熱材11及び冷却ジャケット12の貫通孔に配設されている。
ここで、上側アーク電極21は斜め下向きに配置され、下側アーク電極22は水平乃至水平に対してやや斜め上向きに配置されている。
【0044】
上側アーク電極21の配置角度は、水平に対して下向きに15度以上かつ45度以下に設定することが好ましく、30度程度とすることがより好ましい。これによって、下方に向かうプラズマジェットを発生することができる。
【0045】
また、下側アーク電極22の配置角度は、水平乃至水平に対してやや上向きとすることが好ましい。具体的には、水平に対して上向きに0度以上かつ10度以下とすることが好ましく、5度程度とすることがより好ましい。これによって、上側アーク電極21によって発生するプラズマジェットの下方に向かう流速を緩和し、ガラス原料4のアークプラズマ2内での滞留時間を長くすることができる。このため、ガラス原料4をアークプラズマ2によって長時間加熱し、ガラス化状態のムラの少ない均一で、ガラス化率の高いガラス化処理を行うことができる。
【0046】
また、アーク電極21,22は、それぞれがモータ駆動(不図示)によって、軸方向に自在に移動可能に構成されており、上側アーク電極21の先端部21aの先端が接する円である上側電極先端円21bの直径及び下側アーク電極22の先端部22aの先端が接する円である下側電極先端円22bの直径を、それぞれ調整することができる。
【0047】
そこで、本実施形態では、上側電極先端円21bの直径は、下側電極先端円22bの直径よりも小さくなるように、アーク電極21,22が配置されている。これによって、上側電極先端円21bの直径が小さく調整された上側アーク電極21は、先端部21aが互いに近接しており、燃焼炎3によって加熱昇温されたガラス原料4を急激に加熱溶融することができると共に、速い流速のプラズマジェットにガラス原料4を乗せるため、ガラス原料4が発散することを抑制しつつ加熱することができる。
【0048】
また、下側電極先端円22bの直径が相対的に大きく調整された下側アーク電極22は、先端部22aが互いにやや離れており、上側アーク電極21によって形成されたプラズマジェットの流速を緩和し、ガラス原料4の高温のアークプラズマ2内での滞留時間を長くすることができる。これによって、ガラス化率を向上することができる。
【0049】
なお、上側電極先端円21b及び下側電極先端円22bの直径は、安定したアーク放電が可能な範囲で設定することができ、例えば、直径100[mm]程度まで離すことができる。また、上側アーク電極21の先端部21aの先端と下側アーク電極22の先端部22aの先端との高さ方向の距離は、20[mm]程度まで広げることができる。これによって、ガラス化処理のために、十分な体積を有するアークプラズマ2を形成することができる。
【0050】
また、前記したように、上側電極先端円21bの直径を、下側電極先端円22bの直径よりも小さくなるように、アーク電極21,22を配置する場合は、例えば、下側電極先端円22bの直径を100[mm]とした場合、上側電極先端円21bの直径を70〜90[mm]程度とすることが好ましい。
【0051】
また、上側アーク電極21の先端部21a及び下側アーク電極22の先端部22aは、何れも燃焼管30の下方に設けられ、燃焼管30によって発生され、下方に延伸する燃焼炎3が、放電領域である上側電極先端円21b及び下側電極先端円22bの中を貫通するように配置されている。これによって、アークプラズマ2による加熱領域と燃焼炎3による加熱領域とが重なる領域が形成され、燃焼管30の中心部から落下するガラス原料を効率的に高温に加熱することができる。
【0052】
なお、アーク電極21,22の先端部21a,22aは、アーク放電により高温となるため、融点の高いタングステンやタングステンの合金並びにハフニウムなどを用いることが好ましい。
【0053】
また、アーク電極21,22は、多重管構造を有しており、内側の層を通してシールドガス供給手段24によってシールドガスが供給され、先端部21a,22aが当該シールドガスの雰囲気となるように構成されている。これによって、アーク放電に伴って高温になる先端部21a,22aの酸化を防止すること、及び冷却することができる。
【0054】
更に、アーク電極21,22の多重管構造の外側の2層には冷却水を流すように構成されており、アーク電極21,22の過熱を防止するようになっている。
【0055】
多相交流電源23は、アーク電極21,22に、電極ごとに所定の位相差を設けた多相交流を印加して、アーク電極間にアーク放電させるための電力を供給するものである。本実施形態では、多相交流電源23は、多相交流として12相交流を供給する。
なお、各アーク電極21,22に対して多相交流を印加するパターンについては後記する。
【0056】
多相交流の相数としては、12相に限定されるものではないが、3相以上とすることが好ましい。これによって、体積の大きなプラズマアーク2を発生することができる。
また、相数を3の倍数とすることで、多相交流を商用の3相交流を用いて比較的容易に生成することができて好ましい。このような多相交流電源としては、例えば、商用の3相交流から、30度ずつ位相をずらせた12相交流に変換する公知の電源装置(特許第3094217号公報参照)を用いることができる。
【0057】
シールドガス供給手段24は、管状のアーク電極21,22の管内を通して、先端部21a,22aにシールドガスを供給するものである。シールドガスとしては、例えば、アルゴンガスなどの希ガスや、アルゴンガスに、例えば10mol%程度の水素ガスを加えた混合ガスを用いることができる。
シールドガス供給手段24は、適宜な流量でシールドガスを供給するために、圧力レギュレータを備えるようにすることが好ましい。
【0058】
ここで、シールドガスは、アーク電極21,22の先端部21a,22aの酸化を防止することを目的として用いられるものであるが、シールドガスはアークプラズマ2の電気伝導度と熱伝導度とに大きな影響を与えるものである。すなわち、シールドガスの供給量を制御することにより、電気伝導度を調整してアークプラズマ2に流れる環状電流の大きさを制御することができ、また、熱伝導度を調整してアークプラズマ2からガラス原料4への熱移動量を制御することができる。
【0059】
更に、シールドガスによってアークプラズマ2の外側を冷却することにより、熱ピンチ効果が生じて、アークプラズマ2の発散を防ぐと共に、ガラス原料4をアークプラズマ2と共にガラス化処理空間11aの中央部に閉じ込めることができる。
なお、熱ピンチ効果とは、プラズマが冷却を受けたときに、熱エネルギーの損失が大きくなるのを防ぐため、表面積を小さくしようと収縮する効果をいうものである。
【0060】
燃焼管30は、炉10の上面の中央に設けられた断熱材11及び冷却ジャケット12の貫通孔に配設され、下方に延伸する燃焼炎3を発生させるとともに、粉状のガラス原料4を、キャリアガスを用いて燃焼炎3の中心部に投入するガラス原料供給管の機能を有するものである。
【0061】
本実施形態においては、燃焼管30として酸素バーナーを用いている。この燃焼管30は、6重管構造を有しており、燃焼管30には、6重管構造の各層と連通するガラス原料供給口30a、燃料ガス供給口30b、一次酸素供給口30c、二次酸素供給口30d、冷却水供給口30e及び冷却水排出口30fが設けられている。この6重管は、内側から順に、ガラス原料投入、燃料ガス供給、一次酸素供給、二次酸素供給、冷却水供給及び冷却水排出のために用いられる。
なお、燃料ガスとしては、プロパンガス、水素ガスなどを用いることができる。
【0062】
ここで、燃焼炎3のガラス化に対する貢献について簡単に説明する。
燃焼炎3を用いたインフライトでのガラス化処理では、粉状のガラス原料4の粒子は、燃焼炎3の出口から燃焼炎3の中心までの位置において供給される。このとき、アークプラズマ2による加熱に比較すると、ガラス化に必要な温度に対しては必ずしも十分ではないものの、ガラス原料4の粒子が縦長の燃焼炎3内を落下する長い時間において加熱できるため、投入されるガラス原料4のすべての粒子を均一に昇温させることが可能である。
【0063】
なお、本実施形態のように、燃焼管30として酸素バーナーを用いることにより、通常のバーナーよりも高温の燃焼炎3を発生することができる。このため、ガラス原料4を、通常バーナーより高温に昇温することができ、ガラス化率向上のために好ましい。
【0064】
アークプラズマ2と組み合わせたハイブリッド型の加熱システムでは、燃焼炎3によって均一に昇温されたガラス原料4が、高温のアークプラズマ2によって加熱溶融され、ムラなくガラス化されることとなる。
【0065】
ここで、燃焼管30によって発生する燃焼炎3は、延伸方向を中心軸として回転しているが、この回転方向と、アークプラズマ2の回転方向と、旋回流発生手段40で発生する旋回流の回転方向とを、一致させることが好ましい。
なお、燃焼炎3の回転方向は、燃焼管30のノズルの形状等により定まる燃料ガス若しくは酸素ガス、又は燃料ガス及び酸素ガスの噴出方向に応じて定められる。
【0066】
旋回流発生手段40は、炉10の内壁である断熱材11の内壁11bに沿って回転しながら、ガラス化処理空間11aの上部から下方に向けて下降するらせん状の気流である旋回流を発生させるものである。旋回流発生手段40は、ガス供給源41と、ガス供給管42とを備えて構成される。
【0067】
この旋回流によって、ガラス化処理空間11aの内壁11b側と中心部との間に圧力差を生じさせることができる。このとき、内壁11b側の圧力が高くなるため、この旋回流の内側に発生するアークプラズマ2を中心部に閉じ込めるように収縮させ、発散しないようにすることができる。この旋回流効果により収縮したアークプラズマ2によって、ガラス原料4を効率的に高温に加熱することができる。
【0068】
ガス供給源41は、旋回流を発生させるためのガスを供給するものであり、このようなガスとしては、例えば、窒素ガスや空気を用いることができる。また、ガス供給源41は、適宜な流量でガスを供給するために、圧力レギュレータを備えるようにすることが好ましい。
【0069】
ガス供給管42は、炉10の側面に設けられた断熱材11と冷却ジャケット12とを貫通する貫通孔に配設される。
本実施形態では、
図3に示すように、4本のガス供給管42のガス噴出口が、上面視で、円形のガラス化処理空間11aの内壁11bの円周上に等間隔になるように配置されている。また、ガス供給管42は、各ガス供給管42の噴出口から内壁11bの接線方向に噴出する気流が、ガラス化処理空間11aの内壁11bに沿って、互いに同じ回転方向となるように配置されている。なお、この回転方向は、アークプラズマ2及び燃焼炎3の回転方向と同じにすることが好ましい。これによって、それぞれ互いに乱されることなく安定した回転流を形成することができ、アークプラズマ2及び燃焼炎3を発散させることがない。このため、アークプラズマ2の回転流であるプラズマジェットに乗って下降するガラス原料4は、発散することなく効率的に加熱される。
【0070】
また、ガス供給管42は、
図1に示すように、正面視で、水平から下向きに角度を有するように配置されている。この配置角度は、15度以上かつ45度以下とすることが好ましく、30度程度とすることがより好ましい。これによって、ガス供給管42から噴出するガスは、らせん状に旋回する下降気流を形成する。
【0071】
また、本実施形態では、ガス供給管42の噴出口は、ガラス化処理空間11aの上部に設けられているが、少なくとも、アークプラズマ2が発生する領域の上端よりも上部に設けることが好ましい。また、少なくとも、アークプラズマ2が発生する領域の下端よりも下部まで旋回流が形成されることが好ましい。これによって、アークプラズマ2の発生領域を囲む旋回流を発生させることができる。
【0072】
なお、本実施形態では、ガス供給管42は4本としたが、これに限定されず、例えば、1〜数本としてもよい。また噴出口の形状は円形に限定されず、多角形、楕円形、長方形などとしてもよい。
【0073】
ガラス原料供給手段50は、粉状のガラス原料4を、キャリアガスを用いて燃焼管30のガラス原料供給口30aに供給するものである。本実施形態におけるガラス原料供給手段50は、
図1に示すように、キャリアガス供給源51と、ガラス原料供給器52と、原料供給量制御手段53とから構成される。
【0074】
キャリアガス供給源51は、粉状のガラス原料4を搬送するためのキャリアガスをガラス原料供給器52に供給するものであり、圧力ボンベやポンプを用いることができる。キャリアガスとしては、空気、窒素ガス、希ガスなどを用いることができる。なお、キャリアガス供給手段51は、圧力レギュレータを備えて供給するキャリアガスの圧力を調整するように構成してもよい。
【0075】
ガラス原料供給器52は、粉状のガラス原料4を蓄積し、蓄積されたガラス原料を、キャリアガス供給源51から供給されるキャリアガスによって、粉体流として原料供給量制御手段53を介して燃焼管30のガラス原料供給口30aに供給するものである。
【0076】
原料供給量制御手段53は、圧力レギュレータやバルブなどから構成され、ガラス原料供給器52から流出するキャリアガス、すなわち粉体流の流出流量を制御することにより、ガラス原料供給口30aに投入されるガラス原料4の量を制御するものである。
【0077】
ここで、ガラス原料4を供給する際に、アークプラズマ2へのガラス原料4の進入速度が5[m/秒]以上、10[m/秒]以下となるように、キャリアガス供給源51及び原料供給制御手段53によってキャリアガスの圧力及び流量を設定することが好ましい。
5[m/秒]以上とすることで、高い粘性を有するアークプラズマ2の高温領域内への進入を容易にし、10[m/秒]以下とすることで、ガラス原料4の進入によりアークプラズマ2を不安定にすることを抑制することができる。
【0078】
なお、ガラス原料4としては、特に限定されるものではないが、例えば、珪砂、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸マグネシウム、生石灰、酸化アルミニウム、硫酸ナトリウム、硼砂、長石などの微粉原料、およびガラスカレットなどを含む混合ガラス原料を粒子状に成形して用いられる。粒子状に成形して混合ガラス原料を調製する方法としては、スプレードライ法、ペレット加工などの方法を用いることができる。
【0079】
本実施形態におけるガラス原料4として用いる混合ガラス原料の粒径は、短時間で加熱でき発生ガスの放散が容易であるという点から、粒径が1mm以内のできる限り小径のものを使用することが好ましく、原料の微粉化によるコスト上昇と、粒子間の組成変動の低減の点から、粒径が0.1mm以上のものが好ましい。
【0080】
ここで、アークプラズマ2の温度分布の変化について説明する。
多相交流(本実施形態では12相交流)を用いて発生するアークプラズマ2は、アーク放電が12本のアーク電極21,22を移動していくことにより、アークプラズマ2の内部の温度分布、すなわち高温領域の広がりが時間変化する。アークプラズマ2の温度分布の変化の時定数は、ガラス原料4がアークプラズマ2の内部に滞留する時間と比較可能なオーダーにある。
例えば、50Hzの12相交流電源を用いた場合は、温度分布の変化は20[ms]程度である。また、ガラス原料4が、高さ数十[mm]程度のアークプラズマ2の内部に滞留する時間は数十[ms]である。
【0081】
従って、アークプラズマ2を通過するガラス原料4の粒子の中には、アークプラズマ2の高温に十分に曝される粒子と、アークプラズマ2の比較的低温の部分を通過してしまう粒子とが存在し、ガラス化状態の均一性やガラス化率に影響を及ぼすと考えられる。
【0082】
そこで、本実施形態では、原料供給量制御手段53によって、アークプラズマ発生手段20によって発生するアークプラズマ2の温度分布の変化と同期して、高温の領域が広いタイミングでガラス原料4がアークプラズマ2に到達するように、間欠的にキャリアガスの流量を制御する。
【0083】
原料供給量制御手段53は、アークプラズマ2の温度分布の変化に同期して、不図示のバルブの開閉制御を行うことにより、流量を制御する。なお、アークプラズマ2の温度分布の変化の周期(周波数)は、アークプラズマ発生手段20で用いる多相交流の相数と、交流の周波数と、多相交流の各相とアーク電極21,22との対応を定めた電極配置パターンと、によって定められるものである。例えば、アーク放電が、主として隣接するアーク電極間で生じる場合は高温領域が狭くなり、主として中心を挟んで対向するアーク電極間で生じる場合は高温領域が広くなる。従って、温度分布の変化は、前記した交流の周波数等の構成に応じて、周期的に生じるものである。
【0084】
従って、原料供給量制御手段53は、多相交流電源23から多相交流を、不図示の信号線を介して入力して同期信号として用いることができる。
【0085】
また、温度分布の変化の1周期内において、アークプラズマ2の温度分布で高温領域が最大となるタイミングで、ガラス原料4がアークプラズマ2に到達するようにする流量制御における位相条件は、予め実験的に求めておいて、タイミングを制御するようにする。
【0086】
なお、アークプラズマ2の温度分布は、例えば、アーク電極21,22が、各相が50Hzの12相交流によって駆動した場合は、大きくは50[Hz]で、細かくは50[Hz]×12=600[Hz]で、周期的に変化する。このため、本実施形態では、原料供給量制御手段53は、この大きな変化の周波数である50[Hz]の変化に同期するように、キャリアガスの流量を変化させる。
【0087】
また、原料供給量制御手段53によるキャリアガスの流量制御は、温度変化の1周期内で、矩形パルス的に流量のオンとオフとを切り替えるようにしてもよいし、正弦波的に滑らかに流量を変化させるようにしてもよい。
【0088】
なお、本実施形態では、原料供給量制御手段53は、ガラス原料供給器52と燃焼管30のガラス原料供給口30aとの間に配置したが、これに限定されるものではない。例えば、原料供給量制御手段53を、キャリアガス供給源51とガラス原料供給器52との間に配置してもよいし、ガラス原料供給器52の上流側と下流側とに圧力レギュレータやバルブなどの構成部材を分離して設けてもよい。
【0089】
[電極配置]
次に、
図4及び
図5(適宜
図1及び
図2参照)して、本実施形態に係るアークプラズマ発生手段20において、アーク電極21,22に印加される多相交流の電極配置パターンについて説明する。
【0090】
図4は、12本のアーク電極21,22のそれぞれに印加される交流電圧の位相差を示したものである。
図4において、1周期分の交流電圧波形の12箇所に示した数値は、アーク電極21,22に割当てた電極番号を示す。ここで、12相の交流電圧は、30度(1/12周期)ずつ位相がずれており、電極番号1番から12番まで、順に30度ずつ位相が遅れるように設定されている。従って、1番の電極と7番の電極とに印加される交流電圧は位相が180度ずれており、1番の電極から見ると、7番の電極との間で電圧差が最大となる。すなわち、位相が180度ずれている電極間でアーク放電が最も強く起こることを意味するものである。
【0091】
図5は、12本の各アーク電極21,22を上面視で示し、各アーク電極21,22に電極番号を割当てた様子、すなわち電極配置を示したものである。
図5に示した例では、印加される交流電圧の位相が180度ずれた(すなわち位相差が最大となる)電極同士(例えば、1番と7番、3番と9番、5番と11番など)が、隣接する2本の電極(上側アーク電極21か下側アーク電極22かには関係なく、上面視での位置関係)を隔てて位置するように、すなわち互いに3番目に隣接するアーク電極21,22となるように配置したものである。
【0092】
また、放電の順序は、まず、ある電極が1番目に放電したとすると、次は対向する電極が2番目に放電し、そして1番目の電極の隣の電極が3番目に放電するというような電極配置(この電極配置を、電極配置Dということとする)となっている。
この電極配置Dは、燃焼炎3と多相交流アークが形成するアークプラズマ2と組み合わせても、安定したアーク放電を継続して維持することを可能とするものである。
【0093】
ここで、燃焼炎3と多相交流アーク放電によるアークプラズマ2とを用いたハイブリッド型の加熱システムにおいて、アーク電極21,22の電極配置と、アーク放電によって生成されるアークプラズマ2の安定性について説明する。
本実施形態のようなハイブリッド型の加熱システムにおいては、放電領域である上側電極先端円21b及び下側電極先端円22bの中心に燃焼炎3が吹き付けられ、当該放電領域の中心を挟んで対向する電極間のアーク放電によって生成するアークプラズマ2は不安定となる。
【0094】
上側電極先端円21b及び下側電極先端円22bの中心を挟んで対向する電極間で常に位相差が最大、すなわち最大電圧となるような電極配置で、放電の順序が各アーク電極21,22を時計回りまたは反時計回りで回転するような電極配置(この電極配置を、電極配置Aということとする)とすると、アーク放電は常に上側電極先端円21b及び下側電極先端円22bの中心に向けてアーク放電が走るような構成となり、アークプラズマ2は、常に対向する電極間の中心に存在することになる。
【0095】
電極配置Aの場合は、燃焼炎3との組み合わせを考えると、常にアークプラズマ2が存在する対向する電極間の中心位置に燃焼炎3の火炎が吹き付けられることになる。燃焼炎3はアークプラズマ2と比較すればかなり低温であるが、この燃焼炎3のガスがアークプラズマ2に吹き付けられることによって、アーク放電が不安定になると考えられる。更に、ガラス化のプロセスでは、アークプラズマ2がそのような不安定な状態であることに加えて、ガラス原料4の粒子が、やはり低温のキャリアガスとともに送られてくるので、アークプラズマ2の不安定さは、更に増大することとなる。
【0096】
そこで、本実施形態は、安定したアーク放電を継続して維持するために、電極配置はアークプラズマ2の生成を、燃焼炎3が吹き付けられる、上側電極先端円21b及び下側電極先端円22bの中心から外すようにしたものである。これによって、安定したアークプラズマ2を継続して維持することができる。
【0097】
このような電極配置は、前記した電極配置Dに限定されず、位相差が最大となる電極の配置を、各アーク電極21,22の先端が形成する円において、対向する位置以外となるようすることで実現できる。但し、位相差が最大となる電極の配置を、隣接する電極とする場合、アークプラズマ2が生成する高温領域が狭くなるため、適度な間隔とすることが好ましい。例えば、本実施形態のように12相交流アークの場合は、隣接する1本〜3本のアーク電極21,22を隔てた電極(すなわち、2番目〜4番目に隣接する電極)に位相差が最大となる交流電圧が印加されるように電極配置することが好ましい。
【0098】
ここで、多相交流を用いて発生するアークプラズマ2の性質について説明する。
12本のアーク電極21,22には、多相交流電源23によって、それぞれ位相の異なる交流電圧が印加されており、アーク電極21,22に流れる電流によって、回転磁界が発生している。回転磁界の回転方向は、アーク電極21,22と、多相交流電源23との結線方法である電極配置によって、変えることができる。電極配置を前記した電極配置Dとした場合は、この回転磁界の回転方向は、上面視で右回転である。
【0099】
また、アークプラズマ2は、導電性を有しているため、この回転磁界によって、アークプラズマ2内に環状の電流(渦電流)が生じる。この環状電流は、電圧が印加されているアーク電極21,22の先端部21a,22aの先端に生じており、中心を挟んで対向するアーク電極21,22の先端部21a,22aの先端では、その回転方向が逆になっている。また、これらの環状電流は回転磁界と共に回転し、アークプラズマ2は、上面視で右回転する大きな渦巻状の運動をする。このため、アークプラズマ2は、回転磁界からローレンツ力を受け、磁気ピンチ効果の一種である誘導ピンチ効果によって中心方向に収縮する。更に、この回転磁界は、ローレンツ力を受けるアークプラズマ2内の電子と荷電粒子に運動エネルギーを加え、ガラス原料4を、より高温に加熱することとなる。
【0100】
また、上側アーク電極21が水平に対して下向きに角度を有して配置されているために、アークプラズマ2自身が下方へと押し出されるプラズマジェットとなっている。従って、アークプラズマ2は、上面視で右回転しながら下降するプラズマジェットを形成することとなる。
【0101】
そして、燃焼炎3によって加熱されたガラス原料4を上方からプラズマジェットとなっているアークプラズマ2の中心部に投入すると、ガラス原料4は、高温のアークプラズマ2によって加熱されながら、プラズマジェットの渦巻に沿って下方へ移動する。このとき、燃焼管30の出口における燃焼炎3のガスの回転方向もアークプラズマ2の回転方向と一致していることが好ましい。
【0102】
これによって、アークプラズマ2及び燃焼炎3は、互いに回転を乱されないため、アークプラズマ2及び燃焼炎3は、共に発散せず安定した状態を維持することができる。そして、アークプラズマ2及び燃焼炎3によって、ガラス原料4は、効率的に加熱される。
【0103】
[ガラス製造装置の動作]
次に、
図6を参照(適宜
図1乃至
図3参照)して、本発明の実施形態に係るガラス製造装置1の動作について説明する。
【0104】
図6に示したように、まず、ガラス製造装置1は、シールドガス供給手段24によって、アーク電極21,22の先端部21a,22aにシールドガスの供給を開始する(ステップS10)。また、ガラス製造装置1は、旋回流発生手段40によって、ガラス化処理空間11aの内壁11bに沿って回転しながら下降する旋回流の発生を開始する(ステップS11)。
【0105】
次に、ガラス製造装置1は、多相交流電源23によって、アーク電極21,22に多相交流電圧を印加して、アーク放電を点弧し、多相交流アーク放電の運転を開始する(ステップS12)。
なお、このとき同時に、各アーク電極21,22及び冷却ジャケット12には、冷却水の供給が開始され、排気口10aに接続された排気ガス処理装置(不図示)の運転も開始される。
【0106】
ガラス製造装置1は、アーク放電を点弧した後、多相交流電源23によって、アーク電極21,22に多相交流の電力を供給し、多相交流アーク放電によって発生するアークプラズマ2が安定するまでの期間、多相交流アーク放電のみの運転を継続する(ステップS13)。なお、安定するまでの期間とは、例えば、1分〜2分程度である。
【0107】
次に、ガラス製造装置1は、燃焼管30に、燃料ガス、一次酸素及び二次酸素を供給して点火し、燃焼炎3を発生させる(ステップS14)。そして、燃焼炎3と、燃焼炎3の点火により乱れたアークプラズマ2とによるハイブリッド加熱の状態が安定するまでの期間、ハイブリッド運転を継続する(ステップS15)。なお、ハイブリッド加熱の状態が安定するまでの期間とは、例えば、30分〜1時間程度である。
【0108】
次に、ガラス製造装置1は、ハイブリッド運転を継続しながら、ガラス原料供給手段50によって、アークプラズマ2の高温領域の変化に同期して、キャリアガス用いて粉状のガラス原料4を燃焼管30のガラス原料供給口30aに搬送し、ガラス原料4をガラス化処理空間11aに投入する。投入されたガラス原料4は、燃焼炎3で均一に加熱昇温された後、更に高温のアークプラズマ2によって加熱溶融され、ガラス化される(ステップS16)。
なお、ガラス化したガラス粒子は、回収ポット13に落下し、回収される。
【0109】
所望のガラス原料4についてガラス化処理が終了すると、ガラス製造装置1は、多相交流電源23からアーク電極21,22への多相交流の供給を停止してアーク放電を消弧するとともに、燃焼炎3を消火する(ステップS17)。
【0110】
そして、ガラス製造装置1は、旋回流発生手段40による旋回流の発生を停止し(ステップS18)、シールドガス供給手段24によるシールドガスの供給を停止する(ステップS19)。
また、排気ガス処理装置(不図示)の運転も停止する。なお、各冷却系の動作は、ガラス製造装置1の温度が十分に低下してから停止することが好ましい。
【0111】
以上説明したように、本発明によるガラス製造装置及びガラス製造方法では、粒子状の小さい単位でガラス原料が溶融されることと、ガラス原料の粒子が燃焼炎により均一に昇温されて溶融し、更に多相交流アークが形成する高温のアークプラズマに曝すことで十分な熱伝達がなされるためにガラス化状態が均一で、かつ高いガラス化率でのガラス化が実現でき、未溶融原料の残存や組成の不均質化、反応生成ガスの残存などが抑制される。
その結果、ガラス原料のガラス化処理が秒のオーダーに短縮でき、設備の大幅な縮小、エネルギー消費量の大幅な低減を図ることができる。
【0112】
また、本発明によるガラス製造装置は、大幅な小型化が可能となるため、建設費の削減やガラス製造装置が寿命を迎えたときの廃棄物の発生低減が可能となる。
また、本発明によれば、均一な品質でガラスが製造されるため、ガラス製造における歩留まりの向上、ガラス製品品質の向上、更に、ガラス製造コストの低減が可能となる。
また、本発明は、ガラス製造装置の大幅な小型化が可能になるために、少量多品種のガラス生産において、組成変更に伴う無駄な原料とエネルギーの消費を大幅に低減することができる。
【実施例】
【0113】
次に、本発明の実施形態の実施例について説明する。
まず、
図7を参照して、本実施例におけるガラス製造装置1の構造について説明する。
炉10は円筒形をしており、内径は600[mm]で、その外側は水冷式の冷却ジャケット12で覆われている。また、炉10の内面は厚さ200[mm]の断熱材11が巻き付けられており、炉10の本体の内径、すなわち円柱状のガラス化処理空間11aの直径は200[mm]である。炉10の蓋(上部)も冷却ジャケット12の一部とする構造となっており、この蓋の下部には中心部に直径100[mm]の円筒状の燃焼管30を差し込む空間を残して燃焼管30の出口まで燃焼管30を囲むように断熱材11が設けられている。燃焼管30の出口部分から下は直径200[mm]の円柱状の空間(ガラス化処理空間11a)が下部まで続き、ガラス化反応を進行させる炉10の本体部分を構成している。
【0114】
燃焼管30の出口部分から下に300[mm]の位置に、12相交流が印加されるアーク電極21,22の内の6本の上側アーク電極21の先端が位置している。また、上側アーク電極21の先端から、更に約20[mm]下に、6本の下側アーク電極22の先端が位置している。上側アーク電極21は水平に対して約30度下向きの角度で炉10に差し込まれており、下側アーク電極22はほぼ水平に炉10に差し込まれている。また、それぞれ6本の上側アーク電極21と下側アーク電極22とは、
図2に示したように、上面視で、それぞれ60度の角度を空けて放射状に配置され、上側アーク電極21と下側アーク電極22とは、上面視で、30度の角度を空けて放射状に配置されている。
【0115】
また、炉10の本体部分の内壁、すなわち断熱材11の内壁に沿って、回転しながら下降する旋回流を発生させるために、燃焼管30の出口部分から下に100[mm]の位置に噴出口が位置するように、4本のガス供給管42が、水平に対して約20度の角度で炉10に差し込まれている。また、この4本のガス供給管42は、
図3に示したように、上面視で、90度の角度を空けて等間隔に配置され、炉10の内壁の接線方向にガスが噴出するように噴出口が設置されている。
【0116】
炉10のガラス化処理空間11aは、下側アーク電極22の先端から更に400[mm]下部へ伸びており、その下には、ガラス化処理空間11aで生成さたガラス粒子を回収(捕集)するための回収ポット13が設けられている。ガラス化処理空間11aで発生した排ガスは炉10の本体部分の下端より100[mm]上方の、炉10の外壁に設けられたノズル(排気口10a)から外部へ吸引される。
【0117】
燃焼炎は燃料ガスとしてプロパンガスを6[NL/分]で供給し、一次酸素を6[NL/分]、二次酸素を24[NL/分]で供給して燃焼させて発生させた。
多相交流として、12相交流を用いて12相交流アークプラズマを発生させた。このとき、何れのアーク電極21,22も略100[A]の電流が流れるように設定し、互いに対向するアーク電極21,22の先端の間隔は100[mm]とした。
なお、本明細書において、流量単位[NL/分]における体積[NL]は、基準状態(1気圧、0℃)における体積(リットル)を示すものとする。
【0118】
12相交流電圧を印加するアーク電極21,22の電極配置は、前記した電極配置Dとした。また、各アーク電極21,22へは電極の酸化による消耗を抑制するために、シールドガスとしてアルゴンガスを、1本につき5[NL/分]、12本の全アーク電極21,22について総計で60[NL/分]を供給した。
【0119】
また、各ガス供給管42へは、旋回流を発生させるために、窒素ガスを、1本につき25[NL/分]、4本のガス供給管42について総計で100[NL/分]で供給した。
【0120】
ガラス原料としては、粒径0.1mm程度に成形された珪砂(SiO
2)72mol%、炭酸ナトリウム(ソーダ灰)13.5mol%、炭酸カルシウム(石灰石)11mol%、アルミナ1.5mol%、炭酸カリウム1.5mol%、および硫酸ナトリウム(芒硝)0.5mol%の割合から成るソーダ石灰ガラス原料を用いた。
原料供給量は30〜80[g/分]とし、キャリアガスとして乾燥空気を20[NL/分]で供給した。
【0121】
また、ガラス原料投入のためのキャリアガスの供給量を、12相交流アークの高温領域の変化に同期するように、ベースの交流と同じ50Hzで変動させ、ガラス原料をガラス化処理空間11aへ間欠的に投入するように制御した。
【0122】
以上の条件で、12相交流アークの点弧から燃焼炎の点火によるハイブリッド運転、そして、粉状のガラス原料の供給によるガラス化処理の経過を、各アーク電極21,22への電力の供給状態の監視・記録結果から求めた供給電力の経時変化の一例を
図8に示す。この結果では、ハイブリッド運転時の12相交流アークの出力は約50[kW]である。この電力の経時変化は12相交流アークのみの電力であるが、燃焼炎の出力は9[kW]であり、ハイブリッド運転時には合計で約60[kW]の出力となる。
【0123】
このような条件による12相交流アークと燃焼炎とを組み合わせたハイブリッド型のガラス化処理は、同じエネルギー供給条件でも加熱手段が12相交流アークのみの場合に比較して高いガラス化率を得ることができる。
【0124】
また、燃焼炎と12相交流アークの出力の割合は、前記した実施例の条件では燃焼炎:12相交流アークが約1:5であるが、この比を変えて、相対的に12相アークの出力を小さくしても高いガラス化率の維持が可能である。