【実施例】
【0027】
〔光増強素子の作製例1〕
図1に示す構成に従って、次のようにして、各々保護層の厚さの異なる8種類の本発明に係る光増強素子(10)を作製した。
基板(20)として数cm角の大きさのスライドガラスを用い、このスライドガラスの表面上に、銀を略10nmの厚みに蒸着させて金属微粒子形成用銀膜を形成し、その後約100℃のホットプレート上で数分間加熱処理することにより粒状性を変化させて増強電磁場形成層(30)としての多数の銀微粒子(31)による銀微粒子単層膜を形成した。得られた銀微粒子単層膜における銀微粒子の粒径は、50〜150nmの範囲内にあり、厚さは平均で約20nmであり、銀微粒子の密度はおおよそ5×10
9 個/cm
2 である。
次いで、RFスパッタ装置「RFS−200型」(Ulvac社製)を用いて、酸化ケイ素(SiO
2 )をターゲットとして下記条件でスパッタを行うことにより、隣接する銀微粒子間において露出される基板の表面部分を含む増強電磁場形成層の表面上に、柱状組織構造を有する保護層(40)を形成した。保護層の厚さは、時間を適宜に変更することにより調整した。
【0028】
<スパッタ条件>
・ターゲットから増強電磁場形成層の表面までの離間距離:45mm
・雰囲気:Ar;3.0Pa(放電時)
・放電出力:100W
・RF周波数:13.6MHz
・柱状組織の成長速度:8.5nm/min
【0029】
〔光増強素子の作製例2〕
上記の光増強素子の作製例1において、保護層をRFスパッタ法に代えてスピンコート法により形成したことの他は、上記光増強素子の作製例1と同様にして、各々保護層の厚さが異なる6種類の比較用の光増強素子を作製した。
【0030】
〔実施例1〕
本発明に係る光増強素子および比較用の光増強素子の各々について、光増強素子における保護層の表面上に、ローダミン6G(Rh6G:発光量子収率およそ1)色素の希薄エタノール溶液を3000回転でスピンコートすることにより、色素分子を保護層の表面上に担持させた。ここに、光増強素子の表面に担持される色素分子の密度とスピンコートに用いた溶液の色素濃度との関係は、ローダミン6Gの濃度が1μMである場合に、色素分子の担持量は3×10
11個/cm
2 である。
そして、励起光照射により試料(色素分子)から発せられる蛍光(蛍光強度)を
図2に示す構成の測定システムにより測定した。結果を
図3に示す。
図3において、縦軸は増強度〔単位:倍〕を示す。また、本発明に係る光増強素子の結果を実線(塗りつぶした四角形状のプロット)で示し、比較用の光増強素子の結果を二点鎖線(白抜きの四角形状のプロット)で示す。増強度(倍)とは、増強効果が無いスライドガラスの表面に同作法で試料をセットした場合の計測値に対して、何倍の強さの計測値を得たかを示すものである。
図2において、符号50は、蛍光の測定における励起用光源として用いた、出力1mW未満の緑色ダイオードレーザー(波長532nm)であり、フィルタ51を介して非集光(エネルギー密度約30mW/cm
2 )もしくは反集光(デフォーカスされた、エネルギー密度約10mW/cm
2 以下)励起光として光増強素子10に照射する。励起用光源50よりの励起光は、光増強素子10に対して45°の入射角度で入射させ、光増強素子10に担持された色素分子による90°の角度方向に散乱される蛍光を、集光レンズ52によって、電子冷却型ダイオードアレイ検出器55の受光ヘッド54にフィルタ53を介して集光した。
【0031】
〔実施例2〕
実施例1において、試料としてフクシン(発光量子収率およそ0.01未満)を用い、光増強素子における保護層の表面上に3×10
12個/cm
2 の密度で担持させ、実施例1と同様の方法により蛍光(蛍光強度)を測定した。結果を
図4に示す。
図4において、縦軸は増強度〔単位:倍〕を示す。また、本発明に係る光増強素子の結果を実線(塗りつぶした四角形状のプロット)で示し、比較用の光増強素子の結果を二点鎖線(白抜きの四角形状のプロット)で示す。
【0032】
以上の結果、本発明に係る光増強素子によれば、色素自体の発光性に拘らず、保護層の膜厚が200nm以上程度となるまでほぼ一定の蛍光増強率が維持されており、従って、保護層の厚さが大きくなっても、光増強効果の低下を抑制することができることが確認された。
また出力1mW未満のHe−Neレーザー(波長632.8nm)を励起光源として用いた他は、
図2と同じ配置でローダミン6G色素のラマン散乱強度を保護膜の厚さの関数として測定した。その結果、保護層の膜厚が200nmを超えても、色素分子が直接銀微粒子表面に吸着した条件(通常では、SERS信号が最大になる条件)で得られた信号と変わらない大きさの増強ラマン信号(増強度は約105倍)が得られた。一方、比較用の光増強素子においては、保護膜の厚さが数nm以下でラマン散乱強度は激減し、保護膜の厚さが10nm以上の条件ではラマン信号は完全に消滅した。
このような長距離増強が生じる理由の一としては、次のように推察される。すなわち、蒸着により形成された保護層は、銀微粒子の表面上と隣接する銀微粒子間に露出される基板の表面部分とでは成膜状況が異なるので、銀微粒子の表面上に堆積した柱状組織と基板の表面部分に堆積した柱状組織の間には粒界が生じ、当該粒界は光増強素子の表面にまで達しているものと思われる。従って、保護層の厚さを大きくした場合であっても、銀微粒子に生ずる電場(局在表面プラズモン)が保護層の表面に伝達されやすくなるためであると推察される。
【0033】
〔参考例1〕
上記光増強素子の作製例1と同様にして、保護層の厚さが25nmである試験用光増強素子を作製した。
この試験用光増強素子を、生理食塩水(0.9wt%/v)の2倍濃度にあたる食塩水(2wt%/v、モル濃度で約0.3Mに相当する高濃度)に15分間の間浸漬させる。その後、純水で十分にリンス、乾燥させ、試料をそれぞれの試験用光増強素子に担持させて透過吸光スペクトルを測定した。結果を
図5−Aに示す。
図5−Aにおいて、破線で示す曲線は、食塩水に浸漬する前の試験用光増強素子に係るものである。また、実線で示す曲線は食塩水に浸漬させた後の試験用光増強素子に係るものである。
【0034】
〔参考例2〕
上記光増強素子の作製例1と同様にして、保護層の厚さが85nmである試験用光増強素子を複数個作製した。
これらの試験用光増強素子について、食塩水に対する浸漬時間を適宜変更したことの他は上記参考例1と同様の方法により、試料の透過吸光スペクトルを測定した。結果を
図5−Bに示す。
図5−Bにおいて、破線で示す曲線は、食塩水に浸漬する前の試験用光増強素子に係るものである。また、実線で示す曲線は食塩水に浸漬させた後の試験用光増強素子に係るものであって、数値は浸漬時間を示す。
【0035】
〔参考例3〕
上記光増強素子の作製例1と同様にして、保護層の厚さが130nmである試験用光増強素子を複数個作製した。
これらの試験用光増強素子について、食塩水に対する浸漬時間を適宜変更したことの他は上記参考例1と同様の方法により、試料の透過吸光スペクトルを測定した。結果を
図5−Cに示す。
図5−Cにおいて、破線で示す曲線は、食塩水に浸漬する前の試験用光増強素子に係るものである。また、実線で示す曲線は食塩水に浸漬させた後の試験用光増強素子に係るものであって、数値は浸漬時間を示す。
【0036】
以上の結果より、増強電磁場形成層としての銀微粒子単層膜の、例えば生理食塩水に含有される高濃度ハロゲン化物イオンによる腐食を確実に防止するためには、保護層の厚さをおよそ85nm以上とする必要があることが確認された。また、保護層を指や紙でこすっても当該保護層が剥がれない程度の機械的強度は、例えば保護層の厚さをおよそ30nm以上とすることにより得られることが確認された。
一方、保護層の厚さが85nm未満である場合(参考例1)には、透過吸光スペクトルは、肉眼で明確に識別できる色調の変化(ブルーシフト)を示した。これは、銀微粒子のサイズが腐食により減少することによって試料の色調が黄色に変化するためであると考えられる。
なお、保護層の厚さが15nm以下の光増強素子について同様の試験を行ったところ、食塩水に浸漬させた後の透過吸光スペクトルは取得不能であった。これは、保護層による保護作用が極めて不十分であるため、リンス時に全ての銀微粒子(増強電磁場形成層)が基板から剥がれ落ちてしまったためであると考えられる。
【0037】
以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変更を加えることができる。
例えば、本発明に係る光増強素子は、高反射層および誘電体層を更に具えた多層構造を有する構成とされていてもよい。このような構造のものにおいては、基板の表面上に高反射層および誘電体層がこの順で形成され、誘電体層の表面上に増強電磁場形成層が形成される。