【実施例】
【0021】
以下、本発明の好適な実施例を詳細に説明する。
【0022】
<第1実施例>
本発明の第1実施例は、イットリウムアセテートテトラハイドレート(Yttrium acetatetetrahydrate)(Alfa Aesar Chemical Co.,99.9%)を基本出発物質として用いるが、精製なしでそのまま用いる。
溶媒としては、メタノール(Methyl alcohol)(Aldrich Chemical Co.,99%)を用いた。0.1Mのイットリウムアセテートテトラハイドレート3.4gをメタノール90mLに添加して混合物を形成させ、前記混合物を約55℃の温度で約1時間マグネチックバーを用いてゆっくり攪拌させる。
【0023】
その後、前記混合物にキレート剤としてのジエタノールアミン(Diethanolamine)10mLをシリンジ(syringe)を用いてゆっくり投入し、常温で2時間攪拌させて合成物を形成させる。
【0024】
合成された合成物は、最終的に0.22μmのポリテトラフルオロエチレン(PTFE)シリンジフィルターによってフィルタリングさせて最終的なゾルを収得する。
【0025】
<第2実施例>
本発明の第2実施例は、イットリウムアセテートテトラハイドレート(Alfa Aesar Chemical Co.,99.9%)を基本出発物質として用いたが、精製しないでそのまま用いる。
【0026】
溶媒としては、メタノール(Methyl alcohol)(Aldrich Chemical Co.,99%)を用いる。0.4Mのイットリウムアセテートテトラハイドレート13.6gをメタノール90mLに添加して混合物を形成させ、前記混合物を約55℃の温度で約1時間マグネチックバーを用いてゆっくり攪拌させる。
その後、前記混合物にキレート剤としてのジエタノールアミン10mLをシリンジを用いてゆっくり投入し、常温で2時間攪拌させて合成物を形成させる。
【0027】
合成された合成物は、最終的に0.22μmのポリテトラフルオロエチレン(PTFE)シリンジフィルターによってフィルタリングさせて最終的なゾルを収得する。
【0028】
<第3実施例>
本発明の第3実施例は、イットリウムアセテートテトラハイドレート(Alfa Aesar Chemical Co.,99.9%)を基本出発物質として用いるが、精製なしでそのまま用いる。
【0029】
溶媒としては、メタノール(Methyl alcohol)(Aldrich Chemical Co.,99%)を用いた。0.6Mのイットリウムアセテートテトラハイドレート20.4gをメタノール90mLに添加して混合物を形成させ、前記混合物を約55℃の温度で約1時間マグネチックバーを用いてゆっくり攪拌させる。
その後、前記混合物にキレート剤としてのジエタノールアミン10mLをシリンジを用いてゆっくり投入し、常温で2時間攪拌させて合成物を形成させる。
【0030】
合成された合成物は、最終的に0.22μmのポリテトラフルオロエチレン(PTFE)シリンジフィルターによってフィルタリングさせて最終的なゾルを収得する。
【0031】
前記第1、第2および第3実施例は、添加されるイットリウムアセテートテトラハイドレートの添加量(モル数)を異ならせた以外は同様の過程を経て最終的にゾルを形成させる。
次に、前記それぞれの実施例で製造されたゾルを基板の上面に蒸着し、しかる後に、基板の物性などを測定した。以下、これについて詳細に説明する。
前記イットリアゾルの蒸着のための基板としては、厚さ0.05mm、長さ230cmのハステロイC−276金属テープを用いる。
本発明の蒸着装置は、
図2のようなリール・トゥ・リール(Reel-to-reel)方式を用いた蒸着装置を使用する。
【0032】
この装置は、基本的に、溶液を収容する槽(bath)200と、金属基板100を蒸着温度まで昇温するための石英炉(Quartz furnace)300と、線材のテンション(Tension)を調節するためのテンション器400と、線材の連続的なコーティングのためのモーターとから構成される。
溶液を収容する槽200は、溶液に影響されないテフロン(登録商標)材質のビーカーとする。
【0033】
コートされた溶液の熱処理のための石英炉300は、熱に少なく影響されるようにするために石英を用いて、30mmの直径および300mmの長さを有するように、かつ加熱温度を900℃まで調節することができるように製作される。
また、酸素雰囲気を作るために空気ガスに連結される管をさらに設置することができる。
【0034】
線材の連続的なコーティングのためにモーター(図示せず)を設置した。このモーターはrpmの調節が可能である。熱処理された線材の膨張現象に対するテンションを調節するためにテンション器400を設置する。
【0035】
上述したように形成された蒸着装置を用いて、Y
2O
3緩衝層を製作するために、線材が槽(bath)200内に浸かった後に熱処理が繰り返し行われる連続的なテープループコーター(Tape loop coater)で浸漬コーティング(Dip coating)方法によって蒸着が行われる。
【0036】
基板100である金属テープは、20μm×20μmのスケールで67nmのRMS粗さを有し、5μm×5μmのスケールで31.8nmのRMS粗さをそれぞれ有する。
基板であるテープを動かす速度は分当たり100mmである。
【0037】
浸漬コーティングのための槽200は、テープが溶液に浸かるように回転自在な滑車と、液体を注入し或いはテープの移動が可能な出入口とを備える。テープは、コーティング後に溶媒が乾燥する間に石英炉内の流体の揺動を減少させるために内部の流体流れが制御される石英炉に入ることになる。石英炉内で順次Y
2O
3のコンバージョンが起こりかつ炭化水素の酸化現象が石英炉で500℃±10で起こるように制御される。
【0038】
63mL/minの乾燥圧縮された空気は、十分に酸化させかつ石英炉内の副産物を除去する役割を果たす。そして、多重コーティングはループコーターで連続的なコーティングによって行われる。
【0039】
図2のような蒸着装置を用いるが、第1実施例、第2実施例および第3実施例で製造されたY
2O
3溶液を槽に充填して基板の上面に蒸着する方式で薄膜を製造する。
前記蒸着は多数回行われるが、最大30層まで蒸着された。
前記蒸着された薄膜に対して物性の測定を行う。次に、これについて詳細に説明する。
【0040】
1.表面粗さの分析
図3は表面処理されないハステロイ(hastelloy)基板の表面変化による4箇所のAFMイメージを示す。表面粗さ(R
ρμσ)は5μm×5μmのスケールで31.8nmの平均を示した。
【0041】
本発明の第1実施例に係る溶液をコートした場合の基板の表面変化によるAFMイメージを
図4に示す。
図4において、(a)は5回の蒸着、(b)は10回の蒸着、(c)は15回の蒸着、(d)は20回の蒸着、(e)は25回の蒸着、(f)は30回の蒸着をそれぞれ行った場合を示すもので、蒸着回数が増加すると表面粗さは減少することが分かる。
【0042】
本発明の第2実施例に係る溶液をコートした場合の基板の表面変化によるAFMイメージを
図5に示す。
図5において、(a)は5回の蒸着、(b)は10回の蒸着、(c)は15回の蒸着、(d)は20回の蒸着、(e)は25回の蒸着、(f)は30回の蒸着をそれぞれ行った場合を示すもので、蒸着回数が増加すると表面粗さは減少することが分かる。
【0043】
本発明の第3実施例に係る溶液をコートした場合の基板の表面変化によるAFMイメージを
図6に示す。
図6において、(a)は5回の蒸着、(b)は10回の蒸着、(c)は15回の蒸着、(d)は20回の蒸着、(e)は25回の蒸着、(f)は30回の蒸着をそれぞれ行った場合を示すもので、蒸着回数が増加すると表面粗さは減少することが分かる。
【0044】
上述したように、本発明の実施例に係るイットリア溶液を基板の上面に蒸着する場合、蒸着回数が増加すると、表面粗さは減少する。よって、蒸着回数を調節して基板に蒸着する場合、所望の表面粗さを有する薄膜を形成することができ、蒸着回数が増えると、基板の表面は平坦化されることが分かる。
【0045】
2.緩衝層の分析
本発明の実施例に係る薄膜が緩衝層になるか否かを確認するためにオージェ(auger)分析を行った。
図7は本発明の第1実施例によって30回蒸着された薄膜のオージェ分析結果を示す図である。
図7より、時間経過に伴って、ハステロイ基板の構成元素であるニッケルが検出されることを確認することができる。これは第1実施例の蒸着回数を増加させなければならないことを意味する。
【0046】
図8は本発明の第2実施例によって30回蒸着された薄膜のオージェ分析結果を示す図である。
図8より、時間経過に伴って、ハステロイ基板の構成元素であるニッケルが全く検出されないことが分かる。これは30回程度蒸着された薄膜でも緩衝層の役割を果たすことができることを意味する。
【0047】
図9は本発明の第3実施例によって30回蒸着された薄膜のオージェ分析結果を示す図である。
図9より、時間経過に伴って、ハステロイ基板の構成元素であるニッケルが全く検出されないことが分かる。これは30回程度蒸着された薄膜でも緩衝層の役割を果たすことができることを意味する。
上述したように、本発明の実施例に係るイットリア溶液を基板の上面に蒸着する場合、蒸着回数を調節すると、緩衝層の役割を果たすことができることが分かる。