【実施例】
【0032】
1.新規S100A9受容体候補のスクリーニング
培養ケラチノサイトから回収したタンパク質混合物とGST融合S100A9又はS100A8/A9タンパク質とを混合した後、このサンプルについてキャピラリーLC/MS/MSによるタンパク質の網羅的解析法を行った。
【0033】
LC/MS/MS解析
内径100μm、長さ120mmの未充填のキャピラリーカラム(New Objetive社製)のテーパー状の出口側の端部に、充填剤を保持するために、シリカ製のフリットを作製した。得られたキャピラリーカラムに、平均粒径が5μmのオクタデシル化シリカ型充填剤Aqua C18(Phenomenex社製)を、高さが100mmとなるように充填し、分析用逆相キャピラリーカラムを得た。
【0034】
内径250μm、長さ150mmの未充填のキャピラリーカラム(Agilent社製)の出口側の端部に、充填剤を保持するために、シリカ製のフリットを作製した。得られたキャピラリーカラムの出口側に、平均粒径が5μmのカチオン交換樹脂型充填剤Partisphere SCX resins(Whatman社製)と、平均粒径が5μmのアニオン交換樹脂型充填剤PolyWAX LP(PolyLC社製)を質量比2:1で混合したもの、入口側に、平均粒径が5μmのオクタデシル化シリカ型充填剤Aqua C18(Phenomenex社製)を、それぞれ高さが25mmとなるように充填し、トラップ用逆相キャピラリーカラム及びSCX−WAX混合キャピラリーカラムからなる二相型キャピラリーカラムを得た。
【0035】
なお、分析用逆相キャピラリーカラム及び二相型キャピラリーカラムを作製する際には、高圧窒素ガス及び加圧型充填容器を用いて、スラリー充填法により充填剤を充填した。
【0036】
続いて、6ステップのMudPIT型分析(二次元HPLC/ESI MS/MS)により、上記タンパク質混合物を分析した。
【0037】
まず、ペプチドを約4μg含む上清を、加圧法により、二相型キャピラリーカラムにロードした後、試料溶液の10倍以上の体積の移動相A(水、アセトニトリル及びギ酸の体積比95:5:0.1の混合液;pH〜2.6)を用いて、洗浄、脱塩した。この二相型キャピラリーカラム10を、貫通孔型ユニオン(Upchurch Scientific社製)(不図示)を介して、分析用逆相キャピラリーカラム20と接続した。次に、内径が100μmのキャピラリーを配管として用いたNanospace SI−2型HPLC装置(資生堂社製)に接続した。このとき、トラップ用逆相キャピラリーカラム11は、SCX−WAX混合キャピラリーカラム12及び分析用逆相キャピラリーカラム20の上流側に配置した。
【0038】
移動相としては、移動相A、移動相B(水、アセトニトリル及びギ酸の体積比20:80:0.1の混合液)、移動相C(500mMの酢酸アンモニウムを含む移動相A;pH〜6.8)を用い、ペプチドの溶出法は、矩形状に加える移動相Cの体積%をステップ毎に漸増させた、計6ステップのグラジエント溶出法とした。
【0039】
ステップ1のグラジエントプロファイルは、5分間移動相Aを流し、次の5分間で移動相Bの比率を0体積%から15体積%まで増加させ、次の60分間で移動相Bの比率を45体積%まで増加させ、次の10分間で移動相Bの比率を75体積%まで増加させた後、この比率で5分間流すものである。
【0040】
ステップ2〜6のグラジエントプロファイルは、1分間移動相Aを流し、次の4分間移動相Cの比率をX[体積%]として流し、次の5分間で移動相Cの比率を0体積%から15体積%まで増加させ、次の60分間で移動相Cの比率を45体積%まで増加させ、次の10分間で移動相Cの比率を75体積%まで増加させた後、この比率で5分間流すものである。このとき、ポンプの送液の流速を250μL/分とし、抵抗型キャピラリーによるスプリットにより、カラムの流速を300〜400nL/分に調整した。
【0041】
また、ESI MS/MSを測定する際には、イオントラップ型質量分析計LCQ−Deca(Thermo Fisher Scientific社製)を用いた。このとき、分析用逆相キャピラリーカラムから溶出されたペプチドは、スプリットすることなく、質量分析計に直接導入した。
【0042】
なお、質量電荷比(m/z)が400〜1400のフルスキャンMSスペクトル測定1回及びデータ依存型MS/MSスペクトル測定3回を、各ステップを通じて繰り返した。このとき、標準化解裂エネルギーは35%とした。また、マイクロスキャンは、MSスペクトル測定及びMS/MS測定ともに3とした。さらに、動的排除設定は、リピートカウント1、リピート期間0.50分、排除リストサイズ25、排除期間10.00分とした。
【0043】
得られたMS/MSスペクトルは、Bioworksソフトウェア(Thermo Fisher Scientific社製)上で動くSEQUESTアルゴリズムにより、非冗長ヒトデータベース(ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz、2007/2/8版)に対して、検索した。
【0044】
その結果、
図2に列記ような受容体候補タンパク質が同定された。これらのタンパク質の中から、バシジン(エンプリン)をS100A9の新規受容体として以下の実験を行った。
【0045】
2.siRNAによるエンプリンの発現抑制
エンプリンの発現抑制のために、RNAiMaxを用いて、エンプリンsiRNA(Santa Cruz: sc-35298)を、終濃度40 nM又は80 nMとなるように増殖期の培養ケラチノサイトにトランスフェクションした(
図3中の「BSG」)。コントロールとして、何も添加していないもの(
図3中の「NT」(non-treated control))およびヒト遺伝子のいずれの部分とも相同性を有していないcontrol siRNA-A (Santa Cruz Biotechnology, Inc., sc-3707)(
図3中の「LF」)を使用した。尚、トランスフェクションは、培養培地を増殖因子を含まない基礎培地に交換してから行った。トランスフェクションから24時間後にS100A9で増殖ケラチノサイトを刺激し、さらに24時間経過後にRNAを採取した。その結果、
図3に示すとおり、エンプリンsiRNAをトランスフェクションした場合、24、48、72時間後には、上記コントロールを用いた場合のエンプリンの発現量と比較して1〜3%まで発現が抑制された。
【0046】
3.エンプリンの発現抑制によるサイトカイン及びMMPの発現変化
IL−8(CXCL−8)、TNFα、IL1−F9、CXCL−1は、S100A8/A9の添加により、ケラチノサイトでの発現が亢進されることが明らかとなっている(前掲J Cell Biochem. (2008) 104:453-464)(非特許文献8)。S100A9の添加によってもIL−8(CXCL−8)、TNFα、IL1−F9及びCXCL−1の発現が亢進されるか、また、エンプリンの発現抑制がこれらのサイトカインの発現にどのような影響を与えるかについてリアルタイム定量PCRにより検討した。同様の方法により、S100A9刺激がMMP−1及びMMP−10の発現に及ぼす影響についても検討した。
【0047】
リアルタイム定量PCR
EpiLife(商標)-KG2(Cascade Biologies社)中で培養した増殖期のNHEKを、2 mMの塩化カルシウム、S100A8またはS100A9(各10μg/ml)を含有又は非含有の同培地に置換し、3時間にわたり曝露させ、MagNA(商標) Pure mRNA抽出キットおよびMagNA Pure(商標)機器(Roche Diagnostics社、日本国、東京都)を用いてmRNAを抽出した。得られたmRNAは、SuperScript(商標) II(Invitrogen Corporation社、米国、カリフォルニア州、カールズバッド)を用いて逆転写させた。リアルタイム定量PCRは、製造業者の取扱説明書にしたがってLightCycler FastStart DNA master SYBR green Iキット(Roche Diagnostics社)を用いてLightCycler高速サーマルサイクラーシステム上で実施した。典型的な反応条件は、10分間の活性化ステップ、それに続く95℃で15秒の変性、60℃で10秒のアニーリング、72℃で10秒の伸長からなるサイクル40回であった。使用したプライマーは、下記の表1に示す。各プライマーの最終濃度は20μlの総反応容量中で0.2〜0.25μMとした。グリセルアルデヒド−3−リン酸脱水素酵素(GAPDH)遺伝子を対照遺伝子として使用した。増幅させたフラグメントの特異性は融解曲線分析によって確認した。各遺伝子の発現レベルは、LightCycler分析用ソフトウエアを用いて定量分析した(非特許文献11:Morrison TB et al., Biotechniques (1998)24:954-958, 960, 962)。目的のmRNA量は、A8/control siRNA-A (santa Cruz: sc-37007)(A8/LF)のmRNAの量に対する比率として表した。
【0048】
【表1】
【0049】
図4に示すとおり、S100A9を添加した試料(A9/LF)は、全てのサイトカインの発現を誘導した。一方、エンプリンsiRNAを添加した試料(A9/siRNA)は、全てのサイトカイン発現量が有意に低下した。これは、エンプリンsiRNAによってエンプリンの発現が抑制された場合、S100A9でサイトカインの発現を刺激してもサイトカインの発現が抑制されることを明確に示している。
【0050】
MMPについても、S100A9を添加した場合、発現が亢進されるのに対し、エンプリンがノックダウンされている場合、S100A9を添加しても発現が有意に抑制されることが明らかとなった(
図5)。
【0051】
4.エンプリンとS100タンパク質との結合試験
1)エンプリン細胞外ドメインの作製
[方法]
細胞: ヒト胎児腎細胞株 (HEK293) は ATCC 社より購入したものを使用し、 培養ヒト正常線維芽細胞 OUMS-24は、難波正義博士により単離されたものを使用した。 HEK293 と OUMS-24 は、 Gibco 社の DMEM/F12 培地 (最終濃度が 10% となるように牛胎児血清を添加) を用いて培養した。
【0052】
2)エンプリン細胞外ドメイン発現コンストラクト:
CMV イントロンプロモーター (CMVi) を導入した PDNR 1r ベクター (プロモーターレスドナーベクター;Clontech 社) を構築し、CMVi の下流にヒトエンプリン細胞外ドメイン (C末にmyc-HA-Flag-6Hisタグが付加されている) をコードするcDNAを挿入した(pCMVi-exEmmp: エンプリン細胞外ドメイン発現ドナーベクター)。挿入cDNAの塩基配列は DNA シークエンサーにより正しいことを確認済みである。
【0053】
3)エンプリン細胞外ドメインの細胞外への分泌:
pCMVi-exEmmp を、FuGENE-HD (Roche社) トランスフェクション試薬を用いて HEK293 に導入し、48時間後に培養上清を回収した。培養上清に Sigma 社の抗 HA tag 抗体共有結合担体を添加し、4℃で3時間振盪混和した。その後、5000 rpm、1分間の遠心分離を行い、沈降してきた担体結合タンパク質を酸性バッファーにより溶出した。溶出サンプルを12% の SDS-PAGE を用いて電気泳動した後、PVDF 膜にエレクトロブロットして、CST 社の抗 HA tag 抗体を用いてウエスタンブロットを行い、エンプリン細胞外ドメインが分泌されていることを確認した。
【0054】
4)エンプリン細胞外ドメイン発現アデノウィルス (Ad-exEmmp):
pCMVi-exEmmp のアデノウィルスベクターへの変換は、アデノウィルス作製キット(Adeno-X-expression system: Clontech 社)を使用して行った。
【0055】
5)エンプリン細胞外ドメインの大量精製:
Ad-exEmmp (20 MOI)を培養ヒト正常線維芽細胞 OUMS-24 (10 cm dish x 20)に感染させた。感染させる時期は、OUMS-24 が高密度状態になった時とした。これは、高密度培養により接触阻止が惹起された細胞では細胞分裂が起こらず、細胞内に存在するアデノウィルス由来エピソーム含量の低下が抑制され、その結果、アデノウィルスによる標的遺伝子発現が極めて長期間(2-3週間)持続するからである。しかも、OUMS-24 は無血清培養が可能であることより、長期に渡って培養上清中に分泌された組み換えタンパク質を、血清を含まない状態で回収することができる。感染操作後、24時間培養して無血清培地 DMEM/F12 (フェノールレッド不含) に置換する。3日の間隔で液換えを行い、その度に培養上清を回収して4℃で保存する (タンパク質の安定性に応じて保存条件を変える)。この操作を30日間行った。約2Lの回収培養上清について、80%飽和硫安条件で得られた沈殿を50mlの純水に溶かし、その後、純水に対して透析することで硫安を除いた。 透析後、目的の組み換えタンパク質は、抗 HA tag 抗体共有結合担体充填カラム(sigma 社)を用いて回収した。
【0056】
6)エンプリン結合タンパク質の同定:
エンプリンがS100タンパク質の新規レセプターであることを確認するべく、免疫沈降及びウェスタンブロットによりエンプリン結合タンパク質の同定を行った。本実験において、エンプリンはC末にmyc-HA-Flag-6Hisタグが付加されているものを使用した。また、S100タンパク質としてS100A8及びS100A9タンパク質を使用した。これらのタンパク質がコードされているプラスミド(C末にHAタグが付加されている)をそれぞれHEK293細胞にトランスフェクションし、その培養上清からそれぞれのタンパク質を単離して使用した。
【0057】
エンプリンとS100A8及びS100A9タンパク質の結合解析のために、それぞれのタンパク質が含まれる培養上清を混合して反応させた後、HA抗体及びMyc抗体を用いて免疫沈降を行った。ウェスタンブロットの結果を
図6に示す。エンプリンとS100A8とを混合した試料については、32kDa付近にエンプリンのバンドのみが確認された(「Emprin + S100A8」)。一方、エンプリンとS100A9タンパク質とを混合した試料では(「Emprin + S100A9」)、47.5kDa付近にそれらの結合を示すバンドが確認された。以上の結果から、エンプリンはS100A9タンパク質の新規レセプター候補であることが明らかとなった。
【0058】
5.可溶性エンプリンのMMP発現に及ぼす影響
従来、MMPの発現亢進は、エンプリンの細胞外ドメインがMMPにより分解され、放出された可溶性のエンプリンが細胞表面に存在する受容体としてのエンプリンに結合し、MMPの産生を促すというエンプリンの自己分泌(オートクリン)に起因すると考えられていた。従って、可溶性エンプリンが実際にMMPの発現を亢進させるか否かについて検討した。
【0059】
可溶性エンプリンとして上記方法により精製したエンプリン細胞外ドメインを用い、これをケラチノサイトに添加したところ、0.025、0.25、2.5μMのいずれの濃度でもMMP−1誘導効果はほとんど見られなかった。また、S100A9単独ではMMP−1の発現が顕著に亢進されたのに対し、可溶性エンプリンとS100A9とを一緒にケラチノサイトに添加した場合、S100A9によるMMP1発現亢進効果は有意に抑制された。結果を
図7に示す。可溶性エンプリンとS100A9とが共存した場合にMMPの発現が抑制されたのは、MMP産生を誘導するS100A9が、可溶性エンプリンに捕捉され、両者が結合体したことによるものと考えられる。これらの結果から、従来提唱されていたエンプリンの自己分泌によるメカニズムより、S100A9刺激がエンプリンを通じてMMPの発現を亢進させるというメカニズムの方が合理的と思われる。結果は示さないが、可溶性エンプリンはMMP−10、TNFα、IL−8の発現も有意に抑制した。
【0060】
6.表皮におけるエンプリンの局在
1)免疫染色
エンプリンがヒト表皮に存在するか、また、S100タンパク質と同一局在を示すかについて、免疫染色により確認した。結果を
図8A〜Cに示す。エンプリンは、正常表皮、皮膚モデル、アトピー性皮膚炎(AD)の皮膚のいずれでも顆粒層で多く発現している。また、S100タンパク質もエンプリン付近で発現していた。
【0061】
更に、アトピー性皮膚炎の皮膚では、エンプリンが高発現しており、S100A8及びS100A9タンパク質の発現も亢進されていることが明らかとなった。また、S100A8/A9複合体を特異的に結合する27E10抗体を用いた免疫染色の結果は、乾癬(Pso)の皮膚と比較した場合、アトピー性皮膚疾患の皮膚の顆粒層でS100A8/A9複合体が高発現していることを示している(
図8D及び
図8E)。
【0062】
免疫染色の結果によると、正常表皮では、S100A8、A9、エンプリンはほとんど発現していない。しかし、メラノーマ組織におけるS100A9の発現について免疫染色により確認したところ、いずれのサンプルでも表皮側にS100A9の強発現が認められた(
図8F、左側、中央、右側の写真)。また、正常部位ではS100A9の発現はほとんど認められないのに対し、悪性メラノーマ(Clark's level III)では、メラノーマ細胞の浸潤に対応するように基底層直上の表皮にS100A9が発現していることが確認された(
図8G)。一方、同じ腫瘍塊でも、母斑組織では表皮側にS100A9の発現は認められなかった。
【0063】
S100A9抗体とエンプリン(CD147)抗体を用いて免疫染色した部位について、エンプリン抗体に代えてメラノーマ特異的抗体(HMB45)を用いて染色したところ、メラノーマ特異的抗体により染色される部位がエンプリン抗体のものと重複していた(
図8H)。この結果により、エンプリンは浸潤するメラノーマ細胞において発現していることが確認された。
【0064】
2)アトピー皮膚におけるエンプリンとS100A9の相互作用の証明
エンプリンとS100A9タンパク質とが、単に結合しているだけでなく、実際に相互作用していることをPLA (Proximity Ligation Assay) 法により確認した。PLA法によれば、DNAプローブで標識された2種類の抗体を用い、蛍光色素をラベルした相補的DNAをハイブリダイズさせることで、それらのタンパク質が相互作用しているか否かを明らかにすることができる。PLA法は、通常の免疫染色と比較してはるかに高感度である。
【0065】
Olink社のDuolink in situ PLAキットを用い、相互作用試験を行った。アトピー患者から得られた患部皮膚組織を、4% パラホルムアルデヒドで固定後、通常の方法でパラフィンに包埋した。 4μmで細切後、キシレン処理、エタノール処理を経てPBSにて洗浄し、ブロッキング後、一次抗体(以下の表1参照)と4℃で一晩反応させた。PBSで洗浄後、PLAプローブ(以下の表1参照)と、37℃で2時間反応させた。
【0066】
【表2】
【0067】
洗浄後、DNAプローブとハイブリダイゼーションを行い、TBS-Tで洗浄し、リガーゼを加えて37℃で15分インキュベートし、プローブを融合させた。ポリメラーゼを加え、37℃で90分インキュベートし、ライゲートしたDNAプローブの増幅を行った。Detection kit 613 (Olink社) を用いて蛍光色素をラベルし、顕微鏡観察を行った。結果を
図9及び
図10に示す。
【0068】
エンプリンとS100A9抗体とを用いてPLA法を行った場合、有棘層から顆粒層付近に強い陽性反応が認められた(
図9)。これは、エンプリンとS100A9とが相互作用をしていることを示すものである。一方、S100A8についても、顆粒層付近に陽性反応が認められたが、これはS100A9とダイマーを形成した結果によるものと考えられる(結果は示さない)。
【0069】
7.エンプリン細胞外ドメインへのS100A8、S100A9タンパク質の結合を阻害する薬剤のスクリーニング
1)リコンビナントS100A8、S100A9の調製とビオチン化:
ヒトS100A8、S100A9をGST融合タンパク質として大腸菌で産生させ、グルタチオン共有結合担体によるアフィニティークロマトグラフィーで精製した。その後、GSTを切断・除去した。精製したS100A8、S100A9タンパク質のビオチン化については次の方法をとる。各精製タンパク質濃度に対して3倍モル量の Biotin-(AC5)2Sulfo-OSu (Dojindo社) を混合した。室温で 2 時間反応させた後に Nap-5 (GE Healthcare社) により未反応のビオチン化試薬を除いた。
【0070】
2)エンプリン細胞外ドメインへのS100A8、S100A9タンパク質の結合を阻害する薬剤のスクリーニング:
リコンビナントエンプリン細胞外ドメイン(
図1中のsignal peptideの後から、transmembrane domainの前に相当)を96 well プレート (Pierce社) のウェル上に結合させる。ウェルを洗浄後、非特異的吸着を抑えるため、各ウェルは5%BSAその他のブロッキング剤で処理する。次に試験する薬剤(対象としては、溶媒のみ)をウェル内に添加して室温で 1 時間インキュベートする。ウェルを洗浄後、リコンビナントS100A9w(エンプリンの全長配列)を加え室温で1時間インキュベートする。さらにHRP標識した抗 S100A9抗体を同ウェル内に添加して反応させる。再度洗浄し、発色基質 (オルソフェニレンジアミン) を添加して ELISAリーダーで吸光度 (O.D.492 nm)を測定する。この操作により、まずはエンプリンとS100A9(又はS100A8/A9)との結合における検量線を作製する。次にこの結合を阻害する分子のスクリーニングを行う。上記のアッセイ系に薬剤を添加し、吸光度の低下するものを候補薬剤とする。
【0071】
種々の植物抽出物を上記スクリーニング方法にかけたところ、ヨモギエキス、トウキエキス、オドリコソウエキスがコントロールよりも有意にエンプリンとS100A9との結合を阻害することが明らかとなった(
図11)。中でも、ヨモギエキスは強い阻害効果を示した(
図12)。