(58)【調査した分野】(Int.Cl.,DB名)
サーボモータの目標位置指令に応じ、該サーボモータの回転によって被加工物が載置された移動体を移動させると共に、前記目標位置指令によって前記サーボモータの回転方向が反転する際に前記被加工物に生じる象限突起を軽減するように補正する工作機械において、
前記移動体の位置を検出する位置検出部と、
前記回転方向が反転した後に、前記サーボモータの回転速度を前記回転方向が反転する前の前記回転速度に同期するように漸減補正する回転速度漸減補正値を算出する回転速度漸減補正値算出部と、を備え、
前記回転速度漸減補正値算出部は、前記目標位置指令と前記位置検出部からフィードバックされる前記移動体の位置との位置偏差を積分した位置偏差積分値と、所定の位置ループゲインとの乗算結果に応じて前記回転速度漸減補正値を算出し、
前記位置偏差が略零になるように前記サーボモータの回転速度を制御する回転速度制御部を備え、
前記回転速度制御部は、前記位置偏差に応じて算出される前記サーボモータの回転速度指令と前記回転速度漸減補正値との加算値に基づいて、前記回転速度を制御することを特徴とする工作機械。
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、工作機械では、サーボモータの回転方向が反転するときに、サーボモータの動きに対して移動体の動きが遅れると、被加工物に円弧切削加工を行う場合には、0度、90度、180度、270度で象限が変わる際に、突起や食い込み等の象限突起が生じることがある。したがって、上記の工作機械では、各種の補正値を用い、象限突起を軽減することが行われている。
【0006】
しかしながら、従来は、作業者が何度も工作機械を運転して試行錯誤を繰り返し、被加工物の加工状態を観察した上で、各種の補正値を選定していた。このため、補正値を選定することは、作業者に負担を課すことになり、容易な作業ではなかった。
【0007】
さらに、作業者が試行錯誤を繰り返して補正値を選定しているため、選定された補正値の良否は、作業者の技量によって変動することが考えられる。したがって、作業者が異なると、選定される補正値も変動し、これに伴って、象限突起の大きさ等も変動する可能性がある。よって、象限突起の大きさ等が予測できず、被加工物の加工精度が低下してしまうおそれもある。
【0008】
この発明は、このような状況に鑑み提案されたものであって、象限突起を軽減する補正値を容易に算出することができ、被加工物の加工精度を向上させることができる工作機械を提供することを目的とする。
【課題を解決するための手段】
【0009】
請求項1の発明に係る工作機械は、サーボモータの目標位置指令に応じ、該サーボモータの回転によって被加工物が載置された移動体を移動させると共に、前記目標位置指令によって前記サーボモータの回転方向が反転する際に前記被加工物に生じる象限突起を軽減するように補正する工作機械において、前記移動体の位置を検出する位置検出部と、前記回転方向が反転した後に、前記サーボモータの回転速度を前記回転方向が反転する前の前記回転速度に同期するように漸減補正する回転速度漸減補正値を算出する回転速度漸減補正値算出部と、を備え、前記回転速度漸減補正値算出部は、前記目標位置指令と前記位置検出部からフィードバックされる前記移動体の位置との位置偏差
を積分した位置偏差積分値と、所定の位置ループゲインとの乗算結果に応じて前記回転速度漸減補正値を算出
し、前記位置偏差が略零になるように前記サーボモータの回転速度を制御する回転速度制御部を備え、前記回転速度制御部は、前記位置偏差に応じて算出される前記サーボモータの回転速度指令と前記回転速度漸減補正値との加算値に基づいて、前記回転速度を制御することを特徴とする。
請求項1の発明に係る工作機械によれば、回転速度漸減補正値算出部によって、目標位置指令と位置検出部からフィードバックされる移動体の位置との位置偏差に基づいて、回転速度漸減補正値を算出する。回転速度漸減補正値は、サーボモータの回転方向が反転した後に、該サーボモータの回転速度を、サーボモータの回転方向が反転する前の回転速度に同期するように漸減補正する。
このため、回転速度漸減補正値算出部により、目標位置指令と位置検出部からフィードバックされる移動体の位置との位置偏差に基づいて、回転速度漸減補正値を算出すれば、作業者を介在させずに、回転速度漸減補正値算出部が、回転速度漸減補正値を算出することができる。
よって、回転速度漸減補正値を算出するために、作業者が何度も工作機械を運転して試行錯誤を繰り返す必要がないため、作業者に負担がかからず、回転速度漸減補正値算出部によって、回転速度漸減補正値を容易に算出することができる。
また、回転速度漸減補正値によって、サーボモータの回転速度を、該サーボモータの回転方向が反転する前の回転速度に同期させれば、前記回転方向が反転した場合であっても、サーボモータの目標位置指令を受けて、前記回転速度が前記回転方向が反転する前の回転速度に到達するまでの時間遅れを抑制することができる。
したがって、被加工物には、前記時間遅れに起因した象限突起が生成されることが抑えられる。これに伴って、被加工物の加工精度を向上させることができる。
【0010】
請求項
1の発明によれば、回転速度制御部は、前記回転速度指令と前記回転速度漸減補正値との加算値に基づいて、サーボモータの回転速度を制御する。
このため、サーボモータの回転方向が反転し、該サーボモータの回転速度が、前記回転方向が反転する前の回転速度に比べて減速することによって、一時的に位置偏差が大きくなる場合であっても、該位置偏差に応じて算出される前記回転速度指令に、回転速度漸減補正値を加算した値により、回転速度制御部が、回転速度を増速する制御を行えば、位置偏差が大きくなることが抑えられる。
【0011】
請求項
2の発明は、請求項1において、前記回転速度漸減補正値算出部は、
前記回転速度漸減補正値を、時間の経過に伴って、前記回転速度漸減補正値を漸減させる時定数によって該回転速度漸減補正値の最大値から漸減するようにして、前記位置偏差積分値の立ち上がり時間に応じ、前記時定数を算出することを特徴とする。
請求項
2の発明によれば、回転速度漸減補正値算出部が、位置偏差積分値の立ち上がり時間に応じ、回転速度漸減補正値を漸減させる時定数を算出する。
このため、回転速度漸減補正値算出部により、位置偏差積分値の立ち上がり時間の変化に応じ、前記時定数をそれぞれ異なる値に定めることができる。
したがって、回転速度漸減補正値算出部は、位置偏差が変化する場合であっても、前記位置偏差に応じて変化する位置偏差積分値の立ち上がり時間に見合った時定数を算出することができる。
【0012】
請求項
3の発明は、請求項1において、前記移動体と螺合する螺旋溝を有すると共に前記サーボモータの回転軸と組み合わされて回転することにより前記移動体を直線移動させるボールネジ機構を備え、前記回転速度漸減補正値算出部は、
前記回転速度漸減補正値を、時間の経過に伴って、前記回転速度漸減補正値を漸減させる時定数によって該回転速度漸減補正値の最大値から漸減するようにして、前記ボールネジ機構毎にそれぞれ異なる値に設定されて前記回転速度漸減補正値を調整する補正調整値と、前記位置偏差と、に応じ、前記回転速度漸減補正値の最大値を算出することを特徴とする。
請求項
3の発明によれば、前記回転速度漸減補正値を調整する補正調整値は、ボールネジ機構毎に、それぞれ異なる値に設定されているため、該補正調整値を、ボールネジ機構に合わせて変化させることができる。
したがって、ボールネジ機構に合わせて変化させた補正調整値や位置偏差に基づいて、回転速度漸減補正値算出部が、回転速度漸減補正値の最大値を算出することにより、サーボモータの回転速度を該サーボモータの回転方向が反転する前の回転速度に到達させるまでの時間を短縮させるために、ボールネジ機構や位置偏差毎に、回転速度漸減補正値の最大値を、最適な値に調整することができる。
【発明の効果】
【0013】
本発明の工作機械によれば、回転速度漸減補正値算出部によって、目標位置指令と位置検出部からフィードバックされる移動体の位置との位置偏差に基づいて、回転速度漸減補正値を算出する。回転速度漸減補正値は、サーボモータの回転方向が反転した後に、該サーボモータの回転速度を、サーボモータの回転方向が反転する前の回転速度に同期するように漸減補正する。
このため、回転速度漸減補正値算出部により、目標位置指令と位置検出部からフィードバックされる移動体の位置との位置偏差に基づいて、回転速度漸減補正値を算出すれば、作業者を介在させずに、回転速度漸減補正値算出部が、回転速度漸減補正値を算出することができる。
よって、回転速度漸減補正値を算出するために、作業者が何度も工作機械を運転して試行錯誤を繰り返す必要がないため、作業者に負担がかからず、回転速度漸減補正値算出部によって、回転速度漸減補正値を容易に算出することができる。
また、回転速度漸減補正値によって、サーボモータの回転速度を、該サーボモータの回転方向が反転する前の回転速度に同期させれば、前記回転方向が反転した場合であっても、サーボモータの目標位置指令を受けて、前記回転速度が前記回転方向が反転する前の回転速度に到達するまでの時間遅れを抑制することができる。
したがって、被加工物には、前記時間遅れに起因した象限突起が生成されることが抑えられる。これに伴って、被加工物の加工精度を向上させることができる。
【発明を実施するための形態】
【0015】
<実施形態1>
本発明の実施形態1を、
図1ないし
図5を参照しつつ説明する。
図1は、実施形態1のマシニングセンタ1において象限突起を軽減する制御を行う制御ブロック線図である。図示の制御ブロック線図は、位置指令部10と、補正データ算出部20と、位置制御部30と、速度制御部40と、電流制御部50と、サーボモータ60と、テーブル送り機構70と、リニアスケール80とを備えている。なお、マシニングセンタ1は、本発明の工作機械の一例である。
【0016】
マシニングセンタ1では、研削砥石車(図示せず。)を回転させることにより、ワークに対し、円弧状の研削加工を行う。これにより、ワークには、鏡面の研削加工が行われる。一般に、サーボモータ60を所定の速度で回転させている時に、該サーボモータ60の回転方向を反転させると、一時的に、テーブル71の移動速度が所定の速度を下回る。これにより、ワークが固定されたテーブル71が目標位置に到達せず、研削砥石車の研削点が、所定の円弧状の軌跡に追従できず、該円弧状の軌跡を外れる。この場合には、所定の円弧状の軌跡の半径と、該所定の円弧状の軌跡を外れた軌跡の半径とが異なることになる。これに起因して、ワークの鏡面に、象限突起が発生する。なお、ワークは、本発明の被加工物の一例である。
【0017】
位置指令部10は、目標位置指令S1を生成する。目標位置指令S1は、テーブル送り機構70を上述した所定の円弧状の軌跡に追従させるために、該テーブル送り機構70に対し、X方向(
図1参照。)における位置を指令する。
【0018】
補正データ算出部20は、回転速度補正データS2を算出する。ここでは、一例として、補正データ算出部20が、可搬型のパーソナルコンピュータによって構成されている。回転速度補正データS2は、象限突起の発生を軽減するために用いられる。位置制御部30は、速度指令S3を生成する。速度指令S3は、サーボモータ60の回転速度を制御するために用いられる。図中の減算点15においては、目標位置指令S1からリニアスケール80によって検出された前記X方向における位置検出値S7が減算される。これにより、目標位置指令S1と前記位置検出値S7との位置偏差eが算出される。さらに、位置偏差eに所定の位置ループゲインKpが乗算されて、速度指令S3が算出される。その後、位置制御部30によって、速度指令S3は、図示するように、速度制御部40に送信される。
【0019】
速度制御部40は、電流指令S4を生成する。電流指令S4は、位置偏差eを零に近づけるために、サーボモータ60へ供給する電流を制御するために用いられる。速度制御部40では、以下に説明する処理により、電流指令S4を生成する。
図1に示すように、微分処理部85により、後述のリニアスケール80によって検出された前記位置検出値S7の時間微分値S8が算出される。時間微分値S8は、速度制御部40に入力される。
【0020】
速度制御部40は、上記の速度指令S3と前記時間微分値S8との偏差e1(図示せず。)を算出する。速度制御部40には、図示するように、回転速度補正データS2も入力されている。速度制御部40は、偏差e1に回転速度補正データS2を加算して、電流指令S4を生成する。速度制御部40によって、電流指令S4は、電流制御部50に送信される。なお、偏差e1は、本発明の回転速度指令の一例である。
【0021】
電流制御部50は、駆動電流Iを生成する。駆動電流Iは、サーボモータ60に供給されて、該サーボモータ60を駆動するために用いられる。駆動電流Iの電流値は、サーボモータ60の回転方向が反転することにより、一時的に所定の速度よりも低下した該サーボモータ60の回転速度を、所定の速度に同期させることができるものに設定可能である。
【0022】
テーブル送り機構70は、テーブル71と、カップリング72と、ボールネジ73とを備えている。テーブル71の上面には、ワークが着脱自在に固定される。なお、テーブル71は、本発明の移動体の一例である。
【0023】
テーブル71は、カップリング72を介し、ボールネジ73と螺合されている。カップリング72には、ボールネジ73と螺合するナット(図示せず。)が設けられている。ここでは、ボールネジ73の雄ねじ部73Aが、ナットの雌ねじ部と螺合している。雄ねじ部73Aは、ボールネジ73の表面に、螺旋状に刻設されている。なお、雄ねじ部73Aは、本発明の螺旋溝の一例である。
【0024】
ボールネジ73の一端には、サーボモータ60の回転軸(図示せず。)が接続されている。上記の駆動電流Iにより、サーボモータ60の回転軸が駆動される。これにより、サーボモータ60の回転軸が、所定の速度で回転する。
【0025】
その後、前記回転軸の回転動力は、該回転軸に接続されたボールネジ73及びナット(カップリング72)を通じ、テーブル71に対し、該テーブル71を直線運動させる力として作用する。これにより、テーブル71は、ボールネジ73の回転軸方向(図中のX方向)へ移動する。なお、テーブル送り機構70は、本発明のボールネジ機構の一例である。
【0026】
リニアスケール80は、光源と、メインスケールと、インデックススケールと、受光器とを備えている。メインスケールには、所定のピッチで格子が刻まれており、該メインスケールは、テーブル71と共に移動する。インデックススケールは、メインスケールと対向して配置されている。インデックススケールには、メインスケールの移動方向を判別するために、90度の位相差を持たせた2つの格子が形成されている。受光器は、インデックススケールの背後に配置されている。
【0027】
リニアスケール80では、テーブル71がX方向(
図1参照。)に移動すると、光源から放たれた光が、メインスケール及びインデックススケールの格子を通過して受光器に至る。このとき、受光器には、正弦波状の光が入射する。その後、リニアスケール80では、正弦波状の光をパルス信号に変換し、X方向におけるテーブル71の移動量に応じたパルスを取得する。
【0028】
さらに、リニアスケール80は、取得パルスを積分することにより、X方向におけるテーブル71の現在位置を検出する。その後、リニアスケール80は、現在位置に相当する位置検出値S7を、上記の微分処理部85及び減算点15に送信(フィードバック)する。なお、リニアスケール80は、本発明の位置検出部の一例である。
【0029】
次に、上記の補正データ算出部20において、回転速度補正データS2を算出する方法を説明する。回転速度補正データS2を算出する際には、作業者がボタンを操作してマシニングセンタ1を調整モードに切り替える。補正データ算出部20は、マシニングセンタ1が調整モードに切り替えられていると判断し(S10)、サーボモータ60を所定の速度で回転させている時に、該サーボモータ60の回転方向を反転させた場合には、
図2に示すように、位置偏差取得処理(S11)を実行する。位置偏差取得処理(S11)では、位置偏差e(
図1参照。)を取得する。
図3には、サーボモータ60の回転方向を反転させた場合に生じる位置偏差eの波形を示した。図中の符号t1は、サーボモータ60の回転方向を反転させた時点を示す。
【0030】
図2に示すように、位置偏差取得処理(S11)の後には、補正データ算出部20は、積分処理(S12)を実行する。本実施形態では、回転速度補正データS2を下記の式(1)のように定め、回転速度を補正する時間を5Tとした。回転速度補正データS2は、補正時間が5Tの時点で初期値(下記の最大補正値Vm)の0.7パーセント程度になりほぼ零とみなすことができる。
S2=Vm×exp(−t/T)・・・(1)
ここで、Vmは最大補正値、Tは減衰時定数、tは補正時間
回転速度補正データS2の積分値Eは、定積分によって、下記の式(2)のように算出される。
E=Vm×T×[1−exp(−5)]・・・(2)
【0031】
図2に示すように、積分処理(S12)の後には、補正データ算出部20は、最大補正値取得処理(S13)を実行する。最大補正値取得処理(S13)では、位置偏差取得処理(S11)によって取得したすべての位置偏差eから最大の値emを抽出する。その後、最大補正値取得処理(S13)では、最大値emに、予め定めた調整値を乗算することにより、最大補正値Vmを取得する。調整値は、実測値であり、サーボモータ60の回転方向を反転させて上述した円弧状の研削加工を行う際に、異なる構造を有するテーブル送り機構70毎に実測した結果に基づいて決定した。これにより、例えば、各テーブル送り機構70のボールネジ73(雄ねじ部73A)の形状等が異なる場合であっても、該形状等に応じ、回転速度補正データS2の最大補正値Vmを調整することができる。一例として、調整値は、0.196[(mm/s)/(μm)]が挙げられる。なお、補正データ算出部20は、本発明の回転速度漸減補正値算出部の一例である。また、前記調整値は、本発明の補正調整値の一例である。
【0032】
図2に示すように、最大補正値取得処理(S13)の後には、補正データ算出部20は、回転速度補正データ第1確定処理(S14)を実行する。回転速度補正データ第1確定処理(S14)では、以下の処理を順次行って、回転速度補正データS2を確定する。
【0033】
補正データ算出部20には、例えば、作業者によって、位置ループゲインKpと同一の値が入力される。回転速度補正データ第1確定処理(S14)では、補正データ算出部20に入力される位置偏差eの時間積分値の内の最大積分値に、作業者によって補正データ算出部20に入力された位置ループゲインKpと同一の値を乗算する。その後、回転速度補正データ第1確定処理(S14)では、位置偏差eの時間積分値の内の最大積分値と位置ループゲインKpと同一の値との乗算結果の値を、上記の式(2)中の積分値Eに代入する。
図4には、位置偏差eの時間積分値の波形を示した。なお、位置偏差eの時間積分値は、本発明の位置偏差積分値の一例である。
【0034】
回転速度補正データ第1確定処理(S14)では、上記の式(2)の積分値Eに、前記時間積分値の内の最大積分値と位置ループゲインKpと同一の値との乗算結果の値を代入すると共に、式(2)の最大補正値Vmに、最大補正値取得処理(S13)によって取得した値を代入する。これにより、式(2)を変形し、式(2)中の未知数である減衰時定数Tを算出することができる。
【0035】
以上の処理によって、式(1)中の最大補正値Vm及び減衰時定数Tがそれぞれ算出されるため、式(1)に、該最大補正値Vm及び該減衰時定数Tを代入することにより、回転速度補正データS2を算出することができる。
【0036】
図5には、回転速度補正データS2の波形を示すと共に、象限突起の経時変化を示した。
図5に示すように、回転速度補正データS2の値は、時間の経過に伴って、上記の減衰時定数Tによって最大補正値Vmから漸減する。このため、回転速度補正データS2に基づいて、サーボモータ60の回転軸を回転させる場合には、回転速度補正データS2の値を漸減させることにより、回転軸の回転動力が急激に零になることがない。これにより、テーブル71が急停止することを防ぐと共に、該テーブル71が、ボールネジ73に衝撃を加えることを防ぐことができる。なお、回転速度補正データS2は、本発明の回転速度漸減補正値の一例である。
【0037】
さらに、本実施形態のように、回転速度補正データS2を用いた場合には、
図5に示すように、該回転速度補正データS2を用いない場合と比較して、サーボモータ60の回転方向を反転させてから間もない時間における象限突起の発生が軽減される。
【0038】
一方、S10において、補正データ算出部20が調整モードに切り替えられていないと判断した場合には、上述したすべての処理(S11〜S14)を実行しない。
【0039】
<実施形態1の効果>
実施形態1のマシニングセンタ1では、補正データ算出部20が実行する各処理(S11〜S14)において、位置偏差eに基づき、回転速度補正データS2を算出する。マシニングセンタ1では、回転速度補正データS2に基づいて、駆動電流Iが生成され、該駆動電流Iは、上述したように、一時的に低下したサーボモータ60の回転速度を、所定の速度に同期させることができるものに設定可能である。
実施形態1のように、位置偏差eに基づき、各処理(S11〜S14)によって、回転速度補正データS2を算出すれば、作業者を介さずに、各処理(S11〜S14)によって、回転速度補正データS2を算出することができる。
よって、回転速度補正データS2を算出するために、作業者が何度もマシニングセンタ1を運転して試行錯誤を繰り返す必要がないため、作業者に負担がかからず、各処理(S11〜S14)によって、回転速度補正データS2を容易に算出することができる。
また、回転速度補正データS2に基づいて、サーボモータ60の回転速度を、該サーボモータ60の回転方向が反転する前の回転速度に同期させれば、前記回転方向が反転した場合であっても、サーボモータ60の目標位置指令S1を受けて、前記回転速度が前記回転方向が反転する前の回転速度に到達するまでの時間遅れを抑制することができる。
したがって、ワークには、前記時間遅れに起因した象限突起が生成されることが抑えられる。これに伴って、ワークの加工精度を向上させることができる。
【0040】
また、速度制御部40は、偏差e1と回転速度補正データS2を加算して、電流指令S4を生成し、その後、電流指令S4に応じた駆動電流Iにより、サーボモータ60の回転速度を制御する。偏差e1は、速度指令S3と位置検出値S7の時間微分値S8との差分値である。
上述したように、サーボモータ60の回転方向が反転し、該サーボモータ60の回転速度が、回転方向が反転する前の回転速度に比べて低下することにより、テーブル71が目標位置に到達せず、目標位置指令S1と位置検出値S7との位置偏差eが、一時的に大きくなる場合がある。
このような場合であっても、位置偏差eに応じて算出される偏差e1に、回転速度補正データS2を加算した値により、速度制御部40が、サーボモータ60の回転速度を上昇させる制御を行えば、サーボモータ60の回転動力をテーブル71に作用させ、該テーブル71を目標位置に近づけることができる。これに伴って、位置偏差eが大きくなることが抑えられる。
【0041】
さらに、回転速度補正データS2の最大補正値Vmの調整値は、テーブル送り機構70毎に実測して互いに異なる値に定めることができるため、該調整値を、テーブル送り機構70に合わせて変化させることができる。
したがって、テーブル送り機構70に合わせて変化させた調整値や位置偏差eに基づき、最大補正値取得処理(S13)において、回転速度補正データS2の最大補正値Vmを算出することにより、サーボモータ60の回転速度を該サーボモータ60の回転方向が反転する前の回転速度に到達させるまでの時間を短縮させるために、テーブル送り機構70や位置偏差eに合わせ、回転速度補正データS2の最大補正値Vmを、最適な値に調整することができる。
【0042】
<実施形態2>
本発明の実施形態2を
図4、
図6及び
図7を参照しつつ説明する。ここでは、実施形態1と同一の構成は同一の符号を付しその説明を省略する。
図6に示すように、実施形態1とは異なり、実施形態2では、補正データ算出部20が、最大補正値取得処理(S13)に代えて、時定数算出処理(S13A)を実行し、回転速度補正データ第1確定処理(S14)に代えて、回転速度補正データ第2確定処理(S14A)を実行する。
【0043】
時定数算出処理(S13A)では、以下の手順に従って時定数を算出する。時定数算出処理(S13A)では、補正データ算出部20に入力される位置偏差eの時間積分値の内の最大積分値V2A(
図4参照。)を抽出する。その後、最大積分値V2Aの63.2パーセントに相当する積分値V2B(
図4参照。)を推定する。
【0044】
続いて、時定数算出処理(S13A)では、
図4に示すように、積分値V2Bの位置から位置偏差eの時間積分値の波形に触れる接線を引く。さらに、接線が時間軸(
図4の横軸)と交わる点(A点)と、位置偏差eの積分値が積分値V2Bに到達する時間(B点)との差分値T2を算出する。最後に、時定数算出処理(S13A)では、差分値T2を、上述した式(2)中の減衰時定数Tとして決定する。位置偏差eの時間積分値の波形の立ち上がり傾斜に対応する立ち上がり時間に応じ、該時間積分値の波形に触れる接線の傾きが変化する。したがって、時定数算出処理(S13A)では、時間積分値の波形の立ち上がり時間の変化に応じ、
図4中のA点も変化する。このため、時間積分値の波形の立ち上がり時間の変化に応じ、差分値T2も変化する。
【0045】
回転速度補正データ第2確定処理(S14A)では、式(2)の減衰時定数Tに、時定数算出処理(S13A)によって算出した差分値T2を代入すると共に、式(2)の積分値Eに、最大積分値V2Aと位置ループゲインKpと同一の値との乗算結果の値を代入する。これにより、式(2)を変形し、式(2)中の未知数である最大補正値Vmを算出することができる。以上の処理によって、式(1)中の最大補正値Vm及び減衰時定数T(差分値T2)がそれぞれ算出されるため、式(1)に、該最大補正値Vm及び該差分値T2を代入することにより、回転速度補正データS2を算出することができる。
【0046】
図7には、本実施形態における回転速度補正データS2の波形を示すと共に、象限突起の経時変化を示した。
図7に示すように、回転速度補正データS2の値は、時間の経過に伴って、減衰時定数T(差分値T2)によって最大補正値Vmから漸減する。さらに、回転速度補正データS2を用いた場合には、
図7に示すように、該回転速度補正データS2を用いない場合と比較して、サーボモータ60の回転方向を反転させてから間もない時間における象限突起の発生が軽減される。
【0047】
<実施形態2の効果>
実施形態2では、時定数算出処理(S13A)において、
図4に示したように、位置偏差eの時間積分値の波形の立ち上がり時間に応じ、回転速度補正データS2を漸減させる減衰時定数Tを算出する。
このため、時定数算出処理(S13A)においては、前記立ち上がり時間の変化に応じ、減衰時定数Tをそれぞれ異なる値に定めることができる。
したがって、時定数算出処理(S13A)では、位置偏差eが変化する場合であっても、該位置偏差eに応じて変化する前記時間積分値の波形の立ち上がり時間に見合った減衰時定数Tを算出することができる。
【0048】
本発明は、上述した実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲内において構成の一部を適宜変更して実施することができる。本実施形態(実施形態1、2)では、リニアスケール80によって、テーブル71の現在位置を検出したが、リニアスケール80以外の適宜の位置検出装置によって、テーブル71の現在位置を検出してもよい。
【0049】
また、本実施形態では、最大補正値Vm又は減衰時定数Tを算出するために、作業者によって、補正データ算出部20に位置ループゲインKpと同一の値を入力したが、これに限定されない。例えば、補正データ算出部20と位置制御部30との間に通信線を敷設し、位置ループゲインKpを、該通信線を通じて位置制御部30から補正データ算出部20に転送してもよい。
さらに、本実施形態のように、減衰時定数Tが差分値T2と同一の値である必要はなく、例えば、差分値T2に所定の係数を乗じて減衰時定数Tを算出する如く、差分値T2は、減衰時定数Tと特定の関係を有するものであってもよい。