【実施例】
【0042】
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらのみに限定されるものではない。なお、以下において、部および%は、特にことわりのない限り、それぞれ重量部および重量%を示す。
【0043】
1.MDIの好適な配合量の検討(実施例1〜5、比較例1〜3)
<原料>
ポリウレタン発泡体の製造に用いた原料は次のとおりである。
(1)ポリイソシアネート:カルボジイミド変性MDI(日本ポリウレタン工業社製、商品名「ミリオネートMTL」)
(2)ポリオール:末端にエチレンオキシドを付加させたポリプロピレングリコール(三井化学ウレタン社製、商品名「アクトコールEP−3033」、分子量6,600、末端EO(エチレンオキシド)単位の含量=16%、官能基数4)
(3)鎖延長剤:ジエチレングリコール
(4)発泡剤:水
(5)泡化触媒:エアープロダクツジャパン社製、商品名「DABCO33LV」
(6)樹脂化触媒:旭電化工業社製、「アデカスタブ465E」
(7)製泡剤:シリコーン整泡剤(東レ・ダウコーニング社製、商品名「SH193」)
【0044】
<製造方法>
上記原料のうち、アクトコールEP−3033、ジエチレングリコール、水、DABCO33LV、アデカスタブ465E及びSH193をそれぞれ表1に示す配合量(単位:g)で配合し、40℃に温度調整した状態で、6,000rpmで5秒間攪拌し、得られた液状組成物をR液とした。
次に、上記で得られ、40℃に温度調整したR液に40℃に温度調整したミリオネートMTLからなるP液を表1に示す配合量(単位:g)で素早く添加し、6,000rpmで5秒間攪拌した後、40℃に温度調整した密閉金型(縦10cm,横10cm、高さ1cm)内に55g注入し、該金型を密閉して10分間放置することで発泡ポリウレタンブロックを作製した。続いて、該ウレタンブロックを脱型し、厚み1.5mmにスライスしたポリウレタン発泡シートを供試体として以下に示す物性の測定を行い、該シートの特性を評価した。各特性の測定結果を表1に示す。
【0045】
<各特性の測定方法>
(1)比重の測定
JIS K 7222に記載の方法により測定した。
(2)A型硬度の測定
硬度計(高分子計器社製、商品名「アスカーゴム硬度計A型」)により測定した。
A型硬度が80°A以上の場合、研磨パッドとして優れた硬度を示すものと評価した。
(3)平均気泡径の測定
走査型電子顕微鏡(KEYENCE社製、3Dリアルサーフェスビュー顕微鏡、商品名「VE−8800」)を使用し、ポリウレタン発泡シートの断面を倍率200倍で観察した写真を画像処理装置で解析することにより、写真中に存在する全ての気泡径を計測し、その平均値を平均気泡径とした。
平均気泡径が100μm以下の場合、研磨パッドに適すると評価した。
(4)180°屈曲性の測定
ポリウレタン発泡シートを二つ折りにし、折り曲げた両端をほぼ面が合うまで人差し指と親指で押さえ込み、折り曲げ部分に割れが生じるか目視観察した。試料のサイズは、厚み1.5mm×長さ60mm×幅10mmとした。
割れが生じない場合、研磨パッドとして好適な弾性を示すものとして評価を「○」とし、割れが生じた場合、研磨パッドとして好適な弾性を示さないものとして評価を「×」とした。
【0046】
【表1】
【0047】
表1から、実施例1〜5のすべてについて、A型硬度が80°A以上を示し、カルボジイミド変性MDI(ミリオネートMTL)の配合量が多くなるほど、A型硬度が大きくなる傾向を示した。一方、比較例1と比較例2では、A型硬度が80°A未満となり、研磨パッドとして好適な硬度を示さないことが分かった。上記の結果から、MDI,ポリオール及び鎖延長剤の各成分の合計重量を100重量部としたときに、MDIが45重量部以上含有されている場合、研磨パッドとして優れた硬度を示すといえる。
次に180°屈曲性についてみると、比較例3のみ、唯一割れが観察された。このことから、MDI,ポリオール及び鎖延長剤の各成分の合計重量を100重量部としたときに、MDIが70重量部を超えて含有されている場合、研磨パッドとして好適な弾性を示さないといえる。
また、平均気泡径についてみると、上記いずれの実施例および比較例についても100μm以下を示し、研磨パッドとして適していることが分かった。
【0048】
2.好適なポリオールの検討(実施例6〜9、19〜25、比較例4〜9)
下記および表2、表3に示す14種類のポリオール(それぞれ、分子量、EO含量、官能基数が異なる)を用いて、各原料を表2および表3に示す配合量(単位:g)で配合したこと以外は、「1.ポリイソシアネートの好適な配合量の検討(実施例1〜5、比較例1〜3)」と同一の製造方法によりポリウレタン発泡シートを作製し、該シートの特性を評価した。各特性の測定結果を表2および表3に示す。なお、表2および表3において、ポリオールの表記は実際の商品名(文字+数字)のうち文字部分を簡略化ないし省略して表記した。
【0049】
<末端にエチレンオキシドを付加させたポリプロピレングリコール>
(1)商品名「アクトコールEP3033」、三井化学ウレタン社製
(2)商品名「PREMINOL7003」、旭硝子社製
(3)商品名「PREMINOL7001」、旭硝子社製
(4)商品名「アデカポリエーテルAM302」、旭電化社製
(5)商品名「PREMINOL5005」、旭硝子社製
(6)商品名「サンニックスFA−702」、三洋化成工業社製
【0050】
<ポリプロピレングリコール(末端にエチレンオキシドを付加させていないもの)>
(7)商品名「アデカポリエーテルG3000」、旭電化社製
(8)商品名「アクトコールDiol2000」、三井化学ウレタン社製
(9)商品名「アクトコールDiol1000」、三井化学ウレタン社製
(10)商品名「アデカポリエーテルP−700」、旭電化社製
【0051】
<ポリプロピレングリコール/ポリエチレングリコールのランダム共重合体>
(11)商品名「アクトコールED−36」、三井化学ウレタン社製
【0052】
<ポリエステルポリオール>
(12)商品名「クラレポリオールP2010」、クラレ社製
<エーテル系ポリカーボネートポリオール>
(13)商品名「PES−EXP815」、日本ポリウレタン工業社製
<共重合ポリテトラメチレンエーテルグリコール>
(14)商品名「PTXG−1800」、旭化成社製
【0053】
【表2】
【0054】
【表3】
【0055】
表2および表3から、実施例6〜9、19〜25および比較例4〜9の全てについて、A型硬度が80°A以上となった。一方、180°屈曲性については、実施例6〜9、19〜25では割れが観察されなかったが、比較例4〜9では割れが観察された。
比較例4および6〜8はポリオールとして末端にエチレンオキシドを付加させていないポリプロピレングリコールのみを用いたものであり、比較例5は平均官能基数が2の、末端にエチレンオキシドを付加させたポリプロピレングリコールを用いたものであり、比較例9は平均官能基数が2の、ポリプロピレングリコール/ポリエチレングリコールのランダム共重合体を用いたものであり、このようなポリプロピレングリコールを当該ポリオールの主成分とする場合は、本試験例の製造法として採用したワンショット法を適用すると、研磨パッドとして好適な弾性を示さないことが分かった。
また、実施例23および24の結果から、ポリオールとして末端にエチレンオキシドを付加させたポリプロピレングリコールを主成分とし、比較例4〜9で用いたポリプロピレングリコールを少量配合した場合には、ワンショット法を適用してもA型硬度および180°屈曲性に悪影響を及ぼさないことが分かった。
上記の結果から、本試験例において研磨パッドとして好適な弾性を発揮させるには、ポリエステルポリオール、ポリカーボネートポリオール、ポリテトラメチレンエーテルグリコール、または数平均分子量が2500以上で、平均官能基数が3以上の、末端にエチレンオキシドを付加させたポリプロピレングリコールをポリオールの主成分とすることが好ましいといえる。
【0056】
3.好適な鎖延長剤の検討(実施例3,10,11,26、比較例10)
表4に示す4種類の鎖延長剤を用いて、各原料を表4に示す配合量(単位:g)で配合したこと以外は、「1.ポリイソシアネートの好適な配合量の検討(実施例1〜5、比較例1〜3)」と同一の製造方法によりポリウレタン発泡シートを作製し、該シートの特性を評価した。各特性の測定結果を表4に示す。
【0057】
【表4】
【0058】
表4から、実施例3,10,11,26および比較例10の全てについて、A型硬度が80°A以上で、180°屈曲性も良好な結果が示された。また、平均気泡径については、鎖延長剤としてジエチレングリコール、エチレングリコールおよび1,3−プロパンジオールを使用した実施例3,10,11,26では100μm未満だったのに対し、鎖延長剤として1,4−ブタンジオールを使用した比較例10では130μmとなった。上記の結果から、鎖延長剤としてジエチレングリコール、エチレングリコールおよび1,3−プロパンジオールを用いると、平均気泡径が微小化され、研磨パッドとしてより適したものになることが分かった。
【0059】
4.比重の調整の検討(実施例4,12〜16、比較例11)
密閉金型への注入量を表5に示す量にしたこと、及び各供試体について以下に示す摩耗試験を追加して行ったこと以外は、「1.ポリイソシアネートの好適な配合量の検討(実施例1〜5、比較例1〜3)」と同一の製造方法によりポリウレタン発泡シートを作製し、 該シートの特性を評価した。各特性の測定結果を表5に示す。
本実施例において、BH型粘度計(東機産業社製 )を用いて40℃におけるR液及びP液の粘度を測定したところ、R液が860mPa・sで、P液が18mPa・sであった。
なお、比較例11については、特開2000−178374号公報の実施例1に準拠したポリウレタン発泡体を試作し、厚み1.5mmにスライスしたものを供試体とした。
<摩耗試験の方法>
テーバー摩耗試験機(安田精器製作所社製)を用い、JIS K 7204に準拠して行った。具体的には、磨耗輪にH18を用い、荷重1500g、回転速度60rpmで1000回転させたときの磨耗量(表5では「テーバー摩耗」(単位:g)と表記)を測定し評価した。
【0060】
【表5】
【0061】
表5から、配合組成物の注入量と供試体の比重は比例関係にあることが分かった。ここで、実施例4,12〜16(本発明品)の比重は0.21〜0.76であるが、かかる範囲でA型硬度はすべて80°A以上を示した。このことから、本発明品は、低比重にもかかわらず研磨パッドとして好適な硬度を有することが分かった。また、実施例4,12〜16と比較例11のテーバー摩耗の結果から、本発明品は従来品(比較例11)と同等の耐摩耗性を有することが確認された。
【0062】
5.他のMDIを併用して製造されたポリウレタン発泡シートの特性(実施例3,17)
下記および表6に示す2種類のポリイソシアネートを用いて、各原料を表6に示す配合量(単位:g)で配合したこと以外は、「1.ポリイソシアネートの好適な配合量の検討(実施例1〜5、比較例1〜3)」と同一の製造方法によりポリウレタン発泡シートを作製し、該シートの特性を評価した。各特性の測定結果を表6に示す。
<MDI>
(1)カルボジイミド変性MDI(日本ポリウレタン工業社製、商品名「ミリオネートMTL」)
(2)ピュアMDI(日本ポリウレタン工業社製、商品名「ミリオネートMT」)
【0063】
【表6】
【0064】
表6より、カルボジイミド変性MDIとピュアMDIを併用した場合(実施例17)でもカルボジイミド変性MDIのみを用いた場合(実施例3)と同等の硬度、弾性及び平均気泡径を示すことが分かった。
【0065】
6.RIM成形機を用いて製造された発泡シートの特性(実施例3,18)
表1の実施例3と同一組成からなる配合組成物について、RIM成形機を使用して発泡ポリウレタンブロックを作製し、該ウレタンブロックを厚み1.5mmにスライスしたポリウレタン発泡シートを供試体として、上記と同様の物性を測定し、該シートの特性を評価した(実施例18)。
具体的には、アクトコールEP−3033、ジエチレングリコール、水、DABCO33LV、アデカスタブ465E及びSH193をそれぞれ表6に示す配合量(単位:g)で配合し、40℃に温度調整した状態で、6,000rpmで5秒間攪拌し、得られた液状組成物をR液とした。
次に、上記で得られ、40℃に温度調整したミリオネートMTLからなるP液を調製した。
そして、上記R液の全量と上記P液の55.4gをRIM成形機により、吐出圧14MPaで衝突混合させた後、40℃に温度調整した縦30cm、横30cm、高さ2cmの密閉金型内に吐出量1,000g(吐出速度 250g/sec)で吐出し、10分間放置することで、発泡ポリウレタンブロックを作製した。
続いて、該ウレタンブロックを脱型し、厚み1.5mmにスライスしたポリウレタン発泡シートを供試体として以下に示す物性の測定を行い、該シートの特性を評価した。各特性の測定結果を表7に示す。
【0066】
【表7】
【0067】
表7、
図1および
図2より、RIM成形機を用いて製造した場合、供試体の平均気泡径が微小化され、研磨パッドとしてより適したものになることが分かった。
【0068】
7.プレポリマー法で製造されたポリウレタン発泡シートの特性1(実施例3,27)
表1の実施例3と同一組成からなる配合組成物について、プレポリマー法を採用して発泡ポリウレタンブロックを作製し、該ウレタンブロックを厚み1.5mmにスライスしたポリウレタン発泡シートを供試体として、上記と同様の物性を測定し、該シートの特性を評価した(実施例27)。
具体的には、アクトコールEP−3033およびミリオネートMTLをそれぞれ表7に示す配合量(単位:g)で窒素充填下、80℃で2時間反応させプレポリマー化し、得られた液状のプレポリマーをX液とした。次に、ジエチレングリコール、水、DABCO33LV、アデカスタブ465E及びSH193をそれぞれ表7に示す配合量(単位:g)で配合し、40℃に温度調整した状態で、6,000rpmで5秒間攪拌し、得られた液状組成物をY液とし、表7に示す配合量(単位:g)でX液に素早く添加し、6,000rpmで5秒間攪拌した後、40℃に温度調整した密閉金型(縦10cm,横10cm、高さ1cm)内に55g注入し、該金型を密閉して10分間放置することで発泡ポリウレタンブロックを作製した。続いて、当該ウレタンブロックをオーブンに入れて、100℃で10時間、保持した後、得られた該ウレタンブロックを脱型し、厚み1.5mmにスライスしたポリウレタン発泡シートを供試体として以下に示す物性の測定を行い、該シートの特性を評価した。各特性の測定結果を表7に示す。
【0069】
表7より、プレポリマー法で製造した場合(実施例27)でもワンショット法で製造した場合(実施例3)と同じ特性が得られることが分かった。
【0070】
8.プレポリマー法で製造されたポリウレタン発泡シートの特性2(
参考例28、比較例4,7,12)
表2の比較例4,7と同一組成からなる配合組成物を用いたこと以外は、「7.プレポリマー法で製造されたポリウレタン発泡シートの特性1(実施例3,27)」と同一の製
造法によりポリウレタン発泡シートを作製し、該シートの特性を評価した(
参考例28、比較例12)。各特性の測定結果を表8に示す。
【0071】
【表8】
【0072】
表8から、比較例12は比較例7と同様に180°屈曲性について良好な結果が得られなかったが、
参考例28は180°屈曲性について良好な結果が得られた。
参考例28と比較例12はポリオールとして共に末端にエチレンオキシドを付加させていないポリプロピレングリコールを用いたものであり、数平均分子量と平均官能基数が異なっている。
これらの結果から、数平均分子量が2500以上で、平均官能基数が3以上の、末端にエチレンオキシドを付加させていないポリプロピレングリコールをポリオールの主成分とする場合は、プレポリマー法を採用することにより、研磨パッドとして好適な硬度と弾性を有するポリウレタン発泡シートを製造することができると考えられる。