特許第5738269号(P5738269)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ モファット,ブライアン,リーの特許一覧

特許5738269ベンチュリピンホイールおよび海錨波エネルギー変換システム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5738269
(24)【登録日】2015年5月1日
(45)【発行日】2015年6月24日
(54)【発明の名称】ベンチュリピンホイールおよび海錨波エネルギー変換システム
(51)【国際特許分類】
   F03B 13/22 20060101AFI20150604BHJP
【FI】
   F03B13/22
【請求項の数】21
【全頁数】30
(21)【出願番号】特願2012-501981(P2012-501981)
(86)(22)【出願日】2009年3月27日
(65)【公表番号】特表2012-522163(P2012-522163A)
(43)【公表日】2012年9月20日
(86)【国際出願番号】US2009038581
(87)【国際公開番号】WO2010110799
(87)【国際公開日】20100930
【審査請求日】2012年3月27日
(73)【特許権者】
【識別番号】511231894
【氏名又は名称】モファット,ブライアン,リー
(74)【代理人】
【識別番号】110000659
【氏名又は名称】特許業務法人広江アソシエイツ特許事務所
(72)【発明者】
【氏名】モファット,ブライアン,リー
【審査官】 柏原 郁昭
(56)【参考文献】
【文献】 特開昭53−134133(JP,A)
【文献】 特開昭61−261677(JP,A)
【文献】 米国特許第04447740(US,A)
【文献】 特開昭58−104371(JP,A)
【文献】 特開昭57−070959(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F03B 13/22
(57)【特許請求の範囲】
【請求項1】
波エネルギーを電気または化学エネルギーに変換する装置であって、
水域の水面に浮くように構成されたブイと、
ベンチュリ管であって、前記ベンチュリ管は水が流れるベンチュリ流路を備え、
前記ベンチュリ流路は上方の口、下方の口及び前記上方の口と下方の口の間の狭窄したベンチュリ効果領域を含み、
前記ベンチュリ管は装置が水域中に配置するとき前記ベンチュリ管が前記ブイの下方に、水域の波浪作用限界水深の付近又はその下部の水域の水面下で距離を置いて位置し、
前記ベンチュリ管は、前記ブイが水域中で波の運動によって上方に移動するとき、前記ベンチュリ流路内部の水は前記上方の口から遠ざかり、狭窄領域を通って前記下方の口へと流れ、
前記ブイが水域中で波の運動によって下方に移動するとき、前記ベンチュリ流路内部の水は、前記下方の口から遠ざかり、狭窄領域を通って前記上方の口へと流れるように前記ブイに連結され、
前記狭窄領域は前記上方の口又は下方の口のいずれか1つの断面領域の1/4以下である断面領域を備え、これにより前記上方の口又は下方の口のいずれか1つから流入する水の水速の4倍もの速度を得るように前記狭窄領域を通って水が流れ、
前記ベンチュリ流路内のタービンと、
前記上方の口から上方に向かって延びる第1の延長部と、前記下方の口から下方に向かって延びる第2の延長部のうちのいずれか少なくとも1つを含む装置。
【請求項2】
前記ベンチュリ管が前記ブイに剛体的に結合され、それぞれの間隔を固定の距離で保つことを特徴とする請求項1に記載の装置。
【請求項3】
前記ベンチュリ管は砂時計状の内部ベンチュリ表面と前記ベンチュリ表面を包囲するケーシングとを含み、前記ケーシングは前記第1及び第2の延長部で切れ目のない円筒を定めることを特徴とする請求項に記載の装置。
【請求項4】
前記ベンチュリ管と前記ブイとの間の連結は少なくとも1つのケーブルを含むことを特徴とする請求項1に記載の装置。
【請求項5】
可撓性のアセンブリは、前記ベンチュリ管の縦軸が前記ブイの縦軸と同軸とならないように前記ベンチュリ管を前記ブイに連結することを特徴とする請求項1に記載の装置。
【請求項6】
前記ベンチュリ流路に流入する水の圧力を増加させる、又は前記ベンチュリ流路にある水の圧力を減少させるように、前記少なくとも1つの延長部は、前記少なくとも1つの延長部内の水の加速から生ずるエネルギーを導くように構成されていることを特徴とする請求項1に記載の装置。
【請求項7】
前記装置は前記第1延長部と前記第2延長部を含むことを特徴とする請求項1に記載の装置。
【請求項8】
前記装置はさらに前記第1延長部に隣接する上端と、前記第2延長部に隣接する下端とを備えるケーシングを含むことを特徴とする請求項7に記載の装置。
【請求項9】
管類は前記第1延長部、前記第2延長部、及び前記ベンチュリ流路のためのケーシングを含むことを特徴とする請求項7に記載の装置。
【請求項10】
前記少なくとも1つの延長部の縦軸は前記ベンチュリ流路の縦軸と一致することを特徴とする請求項に記載の装置。
【請求項11】
前記少なくとも1つの延長部は円筒状であることを特徴とする請求項1に記載の装置。
【請求項12】
前記少なくとも1つの延長部は管を備えることを特徴とする請求項1に記載の装置。
【請求項13】
前記タービンが操作可能に連結された発電機をさらに備えることを特徴とする請求項1に記載の装置。
【請求項14】
前記発電機が前記ベンチュリ管に配置されることを特徴とする請求項13に記載の装置。
【請求項15】
前記発電機が前記ブイに配置されることを特徴とする請求項13に記載の装置。
【請求項16】
前記タービンと前記発電機との間のコネクタは可撓シャフトを含むことを特徴とする請求項13に記載の装置。
【請求項17】
前記タービンと前記発電機の間のコネクタは剛性シャフトを含むことを特徴とする請求項13に記載の装置。
【請求項18】
前記タービンは狭窄領域に位置することを特徴とする請求項1に記載の装置。
【請求項19】
前記狭窄領域は前記ベンチュリ管の円筒部分であることを特徴とする請求項1に記載の装置。
【請求項20】
前記タービンは垂直軸タービンであることを特徴とする請求項1に記載の装置。
【請求項21】
前記ベンチュリ管は前記ブイの下部において中央に配置されることを特徴とする請求項1に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
当該出願は、「Venturi,Chambered Venturi and Sea−Anchor Wave Energy Conversion Systems」と題する2008年2月22日に当発明者によって出願された仮特許出願の本出願である。
【背景技術】
【0002】
1.発明の分野
本発明は、一般に、海洋およびその他の水域に存在する豊富な自然エネルギーを電気分解によって水から水素の発生などの電気または化学エネルギーに変換する波エネルギー変換装置に関する。
【0003】
2.先行技術の説明
移動する水または高圧水から有用なエネルギーを取り出すために水力タービンが、何千年もの間、使用されている。様々な環境下で水からエネルギーを取り出すために過去において多くの異なるタイプの水力タービンが発明されて使用されており、たとえば、フランシスタービン、ペルトンタービン、カプランタービンなど、最適な効率を有する様々な特性によって特徴付けられている。
【0004】
水力タービンの設計は成熟した領域である。大部分の最新のタービンは、水の運動エネルギーまたは位置エネルギーを回転運動に変換して90%を超える効率を有する発電に利用しうる。ほとんどすべての河川やダムにおいて利用可能な運動エネルギーまたは位置エネルギーが最適に得られる既存の水力タービン設計を見つけることは比較的容易である。
【0005】
しかしながら、海洋や海辺の海面を移動する波からエネルギーを取り出そうとする試みは比較的新しい。いくつかの設計が文献で提案されており、先行特許に記載されている。多くは、ある方法で海底に固定されうる比較的浅い海域での利用に限定される。海底に直接接続せずに海洋の最深部で動作しうるものはきわめて少ない。
【0006】
長年にわたり、海洋波の運動エネルギーおよび位置エネルギーを電気または他の利用可能な形のエネルギーに変換するように設計された多くの装置が、構築され、特許を取得され、提案されている。このような研究開発努力に従事することには多くのもっともな理由がある。海洋波は、取得が地球の環境および生態を悪化させることのない再生可能エネルギー源を意味する。また、海洋波は、比較的小型の装置から大量のエネルギーを取得する可能性を提供するきわめて集約的なエネルギー源を意味する。
【0007】
このような装置を開発して使用することには多くの潜在的な利益がある。化石燃料の燃焼を再生エネルギー源に置き換えることは大気に入るCOのレベルを抑制することになり、さらにこのことは、様々な硫黄化合物、窒素化合物、粒子状物質など、空気中の他の汚染物質のレベルを抑制することになる。化石燃料は最終的に使い果たされるであろうが、再生可能エネルギー源は決して使い果たされることがないであろう。
【0008】
海洋の海面を横断する波は、太陽から地球に与えられる全エネルギーの大部分の保存場所を意味する。太陽は陸地と海を加熱し、この熱エネルギーの多くは大気に入る。地球表面の大気の加熱の差は、地球の自転とともに、ときには比較的高速で地球表面における大気の移動を引き起こす。
【0009】
大気が地球の湖および海洋の表面を移動すると、その運動エネルギーの一部をこれら湖および海洋の表面の水に与え、それによって、上記水域の表面に波を引き起こす。これらの波の振幅は、波が伝播する方向に平行に風が吹く限り増加する。波の伝播に平行な方向に吹く風の連続距離は、その波のエネルギー量を増加させ、波の「広がり(fetch)」と呼ばれる。
【0010】
典型的な海洋風波は、高さが3/10m(0.3m)〜5.0mである。緯度が高くなると、10.0mの波も稀ではない。
【0011】
先行技術は、海錨なしで動作しうるある種の波エネルギー装置を含む。これは、シャフトまたはケーブルによってブイから吊るされる一方向または双方向プロペラを含む。ブイが通過する波に応答して上下に移動すると、プロペラは水面下の比較的静かな水中を上下に移動される。比較的静かな水中のプロペラのこの動きは、プロペラを回転させる。プロペラが双方向であればプロペラは一定方向に回転するが、プロペラが一方向であればその回転方向は反転する。このような装置は、大きな電力を発生しない。
【0012】
吊るされたタービンによって水を前後に駆動する力はたとえ大きくても、水の移動速度は比較的遅い。高さが5mの波によって8秒間駆動されるとき、吊るされたタービンの水に対する最高速度は、毎秒2m(2m/s)となる。この速度では、タービンによって水の流れから取り出されうる電力量はその速度の3乗に比例するので、すなわち、
電力=kAv
であるので、簡単なタービンによって流水から多量のエネルギーを取り出すことは困難であろう。
【0013】
ここで、「k」は具体的なタービンの設計および実施の効率に依存する定数であり、「A」は電力が取り出される水の流れの断面積であり、「v」は水の速度である。
【0014】
海洋波は比較的遅い速度(その最大速度は一般に毎秒わずか1mまたは2mである)で上下するので、プロペラを流れるだけの水から多量のエネルギーを取り出すことは困難である。
【0015】
しかしながら、プロペラを流れるだけの水の速度が増加されうれば、取り出されうる電力は指数関数的に増加されうる。たとえば、プロペラを流れる水の速度が毎秒2mの最大値から8mに増加(すなわち、水の速度が4倍に増加)されうれば、流れる水から取り出されうる電力の量は、4×4×4=64倍、すなわち、4の3乗に増加することになる。タービンによって発生される電力は、タービンを流れる水の速度を4倍にすることによって64倍に増加されうる。
【0016】
水面波の属性に関する以下の注釈は、「深水波」として分類される水面波に関連する。深水波は、その深さが波の波長の1/2に等しいかこれを超える水域の表面を移動する。さらに、以下の議論は、主として「スウェル」として分類される深水波に関連する。スウェルは、約40〜400mの範囲で変わる波長を有する水波である。
【0017】
深水波の「波長」は、波形が繰り返す、すなわち、波高点から波高点までの距離である。波高点が対応する波の谷よりも高くなる高さが波高である。
【0018】
深水波の伝播に寄与する水分子および他の粒子は、楕円軌道と区別される円形軌道を有する。軌道半径は、深さが増加するにつれて指数関数的に減少する。半径は、深さが波の波長の1/2に近づくにつれて無視できるほどに小さくなる。この特別な深さは、「波浪作用限界水深」と呼ばれる。深水波は、波浪作用限界水深の下方にある水を少しも動かさない。この深さよりも下方の水およびそこに浮かぶ物体は、たとえ波が頭上海面を移動しても、実質的に静止している。
【0019】
特定の波または一連の波に対する波浪作用限界水深を規定する深さは、その波または一連の波の波長に依存する。比較的長い波長を有する波は、比較的短い波長を有する波よりも大きい深さの水分子の運動に影響を与える。
【0020】
深水波の運動は、次式によって表わされる。
(x,y,t)=rekysin(□t−kx)+x
(x,y,t)=rekycos(□t−kx)
【0021】
なお、このモデルでは、あらゆる水粒子は円を描くように移動する。円は、中心が水の静止位置にあり、rekyの半径を有し、ここで、rは表面波の振幅であり、−yは表面下の深さである。これらの円の半径は、深さが増加するにつれて指数関数的に減少する。それゆえ、荒れた海においても表面下方の水は非常に静かであろう。
【0022】
流水によって発生される電力は、水の速度の3乗に比例して変化する。以下の引用はこのことを説明している。
【0023】
水中タービンに入る流れの瞬時電力密度は次式で与えられる。
【0024】
ここで、Aは装置によって阻止される流れの断面積、すなわち、タービンローターが通過する面積(m単位の)であり、□はkg/m単位の水密度(淡水では1.0kg/mであり、海水では1.025kg/m)であり、Uはm/秒単位の流速である。潮流の場合、Uは、前述のように予測可能な形で時間とともに変化し、さらに後述のように水面下の深さと流路の位置とに依存する。
【0025】
電力密度は流速の3乗に比例して変化する。したがって、電力密度は以下のグラフに示すように流速とともに急速に増加する。
【0026】
「EPRI:REV3:潮流エネルギー資源および潮流内潮汐エネルギー変換(TISEC)装置による発電の推定方法」
プロジェクト:EPRI北米潮流内潮汐電力実現可能性実証プロジェクト
フェーズ:1−プロジェクト定義検討
報告書:EPRI−TP−001 NA Rev3
著者:George HagermanおよびBrian Polagye
共著者:Roger BedardおよびMirko Previsic
日付:2006年9月29日
8ページ(PDFファイルの11ページ目)参照
http://www.epri.com/oceanenergy/attachments/streamenergy/reports/TP-001 REV 3 BP 091306.pdf
【0027】
深水波は、水およびそこに浮かぶ物体を円形軌道を描いて移動させる。しかしながら、これらの軌道の半径は、水深が「波浪作用限界水深」に達してこれを超えるとゼロまで減少する。換言すると、深水波は、波浪作用限界水深を超える深さにある水の位置または動きに著しい影響を与えない。
【0028】
つまり、深水波が水域の表面を移動するとき、これらの波は水域の表面における水と少なくとも波浪作用限界水深ほどの深さにある水との間で相対運動を生成する。海面の水は表面波の通過に応答して比較的大きい円軌道を描いて移動しているが、波浪作用限界水深の下方の水は全く動いていない。
【0029】
本発明の2つの主要な実施形態、すなわち、ベンチュリ・ピンホイール・タービンおよび海錨タービンは、海面における水と、水域の表面を横切る深水波の通過によって誘発される深いところの水との間のこの差動運動を利用する。これは、他の公知の海洋を利用したエネルギーシステムに優る利点を有する。
【0030】
公知の潮汐流タービンは、大型、複雑で、かつ高価である。これらの配備は困難である。さらに、大規模な配備は可能でなく、すなわち、これらの装置が稼動しうる場所の数に制限がある。これらは、これらのエネルギー源が満潮の間や潮の流れが変化しているときしか利用できないのでエネルギーを連続的に発生しない。
【0031】
海岸にある波エネルギー装置は、それらのエネルギーを砕ける波から得る。
【0032】
しかしながら、これらは美観的に望ましくなく、これらは貴重な沿岸の不動産を占有する。これらの装置が稼動しうる場所の数に制限があるので大規模な配備は可能でない。これらは海岸線の生態系に悪影響を与える傾向があり、これらはエネルギーを連続的に発生しない。
【0033】
比較的浅い水域の海岸近くで稼動する波エネルギー装置は、複雑で手がかかり、かつ高価になる傾向がある。また、これらの装置は、通常、海岸から見えるので美観的に望ましくない。また、これらはその地域における船舶航行の妨げとなる可能性がある。これらの装置が稼動しうる場所の数に制限があり、大規模な配備は現実的でない。
【0034】
比較的深い水域の沖合いで稼動し、海底に投錨されあるいは基礎を置く波エネルギー装置は、複雑で、建設費がかさみ、かつ維持費がかかる。また、海に浮かぶ先行技術の波エネルギー装置も、複雑で、建設費がかさみ、かつ維持費がかかる。
【0035】
本明細書に開示する装置は、比較的簡単で、建設費と維持費が安く、かつ大量のエネルギーを生成しうる。
【0036】
「ベンチュリ効果は、中に狭窄を有するチューブやパイプを流れる流体の場合のベルヌーイの法則の例である。流速は、連続の式...を満足するために狭窄によって増加しなければならない。」
http://en.wikipedia.org/wiki/Venturi effect
【0037】
連続の式は、流体の「質量流量率」−単位時間にチューブを移動する流体の量−は、質量の蓄積−「質量生成」−があるチューブなどのいかなる断面においても同じでなければならず、かつ定常流の仮定が無視されることを述べている。
簡単に言うと、
(質量速度)=(質量速度)
ここで、
質量速度=密度×面積×速度
この式は以下のように要約される。
ρ=ρ
流体は非圧縮性であると考えられるので、ρは一定であり、式[00050]は次式のように要約される。
=A
【0038】
これは、リークのない非粘性、非圧縮性、定常の一次元流に対する簡単な連続の式である。流れが粘性流であれば、断面のVおよびVの平均値が使用される限り、記述はなお有効である。
式[00052]を再整理することによって、次式が得られる。
=(A/A)V
http://www.centennialofflight.gov/essay/Theories of Flight/Conservation/TH8.htm
【0039】
ベンチュリ管は、その「圧力」エネルギーの一部を方向を持った運動エネルギーに変換することによって水の速度を増加させる。ベンチュリ管を進む水の速度が増加される大きさは、水が流れなればならない流路の断面積が減少される大きさに等しい。たとえば、ベンチュリ管の流路の狭い中間部(すなわち、ベンチュリ管の「スロート」)がベンチュリ管の入口、すなわち、「口」の断面積のわずか1/4の断面積を有する場合、スロートを流れる水の速度は、ベンチュリ管に入る水の速度よりも4倍大きくなる。円形流路の断面積は、その直径の2乗に比例する。したがって、ベンチュリ管のスロートを流れる水の速度をチューブに入る水の速度に比べて4倍に増加させるためには、ベンチュリ管の口の直径の1/2の流路直径を有するスロートを備えるベンチュリチューブを形成すればよい。
【発明の概要】
【発明が解決しようとする課題】
【0040】
波のエネルギーを利用する改良された装置に対して長年にわたるがこれまでに実現されなかった要求が、現在、新しく、有用で、かつ自明でない発明によって満たされる。本発明の好ましい実施形態は、深海に浮かびながら稼動するものである。
【0041】
潮流または海水位の変化からエネルギーを取り出す波エネルギー装置ならびに海岸線や海岸に近い比較的浅い水域で稼動する波エネルギー装置とは異なり、地球表面の大半は深海によって覆われているので深海波エネルギー装置は大規模に配備される可能性がある。これは、化石燃料への世界の依存度を大幅に削減したい代替エネルギー装置にとって重要な優位性である。先行技術の深海波エネルギー装置と異なり、本発明は、きわめて効率が高く、簡単で、維持に手間がさほどかからず、かつ安価である。
【0042】
それゆえ、本発明は、全ファミリーの波エネルギー装置に見られるあらゆる優位性を享受する一方でいかなる制限も受けない。本発明の上記およびその他の重要な目的、優位性、および特徴は、この説明が進むにつれて明らかになるであろう。
【0043】
したがって、本発明は、以下で記述する説明において例示される構造の特徴、各要素の組合せ、および部品の配置を備えており、本発明の範囲は特許請求の範囲に示される。
【0044】
本発明の性質および目的をより十分に理解するために、以下の添付図面に関連して記載される以下の詳細な説明を参照されたい。
【課題を解決するための手段】
【0045】
【図面の簡単な説明】
【0046】
図1】深さが増すにつれて表面水波の水分子特性の円形運動の直径がが急速にかつ指数関数的に減少する自然現象の実例である。
図2A】深さに伴う波動の減少を利用する先行技術の波エネルギー装置を図式的に示す。
図2B】水の上昇柱に応答して回転する先行技術のプロペラを図式的に示す。
図2C】本発明の好ましい実施形態の一部を形成するベンチュリタービンを示す図である。
図3】水の双方向振動垂直流のエネルギーをタービン軸内の一方向回転エネルギーに変換するベンチュリピンホイール波エネルギー装置に使用するのに適したタービン設計を側面図で図式的に示す。
図4】通過波に応答するベンチュリピンホイール波エネルギー装置の動きの側面図である。
図5A】周辺水域での新規なベンチュリ・ピンホイール・タービンの運動を示す側面図である。
図5B】新規なベンチュリ・ピンホイール・タービンでの水の等価相対運動を示す側面図である。
図6A】ベンチュリピンホイール波エネルギー装置の一実施形態の側面図である。
図6B図6Aの実施形態の縦断面図である。
図7A】細長いタービンハウジングを有するベンチュリピンホイール波エネルギー装置の好ましい実施形態の側面図である。
図7B図7Aに示す構造体の縦断面図である。
図7C】ベンチュリ波エネルギー装置の好ましい実施形態の側面図である。
図7D図7Cの実施形態の縦断面図である。
図8A】オプションの「渦」および「逆回転」誘発部材の採用を示す新規なベンチュリピンホイール波エネルギー装置の第3の実施形態の側面図である。
図8B図8Aの実施形態の縦断面図である。
図9】双方向ブレードを有する中心タービンの上流および下流に定置された可動ベーンを含む第4の実施形態の側面図式表現である。
図10】ベンチュリタービンでの水の流れに垂直な軸を中心として回転するタービンを有する新規なベンチュリピンホイール波エネルギー装置の第5の実施形態の側面図式表現である。
図11図10の実施形態であるが、長方形ハウジングを有するように変更された実施形態の斜視図である。
図12図11の実施形態の平面図である。
図13】本発明の移動式実施形態の側面図式表現である。
図14】キャニスタに格納された場合の図13の実施形態の側面図式表現である。
図15】小型ブイに電力を供給するために使用する場合の図13および14の実施形態の側面図式表現である。
図16A】新規なベンチュリタービンの別の実施形態の斜視図である。
図16B図16Aの線16B〜16Bに沿って切断された断面図である。
図17A図16Aおよび16Bの水車に対して第1の方向に流れる水の側面図式表現である。
図17B図16Aおよび16Bの水車に対して第2の方向に流れる水の側面図式表現である。
図18】ベンチュリ波エネルギー装置で使用するのに適した別のタービン設計を示す。
図19】通過波に応答する海錨波エネルギー装置の動きを示す。なお、水中プラットフォームの垂直運動はわずかであり、プラットフォームによるケーブル(フロートを釣合い重りに接続する)の垂直運動は比較的大きい(したがって、プラットフォームに取り付けられたキャプスタンを回転する)。
図20】海錨波エネルギー変換装置の斜視図である。
図21図20に示された海錨波エネルギー装置の海錨ディスクと装着キャプスタンとの拡大図である。
図22】海錨波エネルギー変換装置の好ましい実施形態の斜視図である。
【発明を実施するための形態】
【0047】
図1は、本明細書に開示される特に本発明に関する深海スウェルの特性を示す。深海波の波長10は、波形が繰り返す、すなわち、波高点から波高点までの距離である。波高点が対応する波の谷よりも高くなる高さが波高または振幅であり、12で示される。
【0048】
深水波の伝播に寄与する水分子および他の粒子は、楕円軌道14と区別される円形軌道を有する。このような軌道の半径は、参照番号16で示されるように深さが増加するにつれて指数関数的に減少する。半径は、深さが波の波長の1/2に近づくにつれて無視できるほどに小さくなる。この特別な深さは、波浪作用限界水深18と呼ばれる。深水波は、波浪作用限界水深の下方にある水を少しも動かさない。この深さよりも下方の水およびそこに浮かぶ物体は、たとえ波が海面を移動するときでも、実質的に静止している。波は、当然ながら、水面を実際に移動せず、水の個々の分子はエネルギーのパルスによって一瞬に持ち上げられ、このような個々の分子はエネルギーが通過すると直ちに落下する。その結果は、表面を横切る波の見かけの移動である。本発明の第1の実施形態は、ベンチュリ・ピンホイール・タービンである。
【0049】
ピンホイールとは、風で回転するプロペラを棒に取り付けた子供の玩具のことである。プロペラと周囲空気との相対運動がその回転軸を中心とするプロペラの回転をもたらす。それゆえ、子供は、風が吹いていなければプロペラを動かすことによって、あるいは風が吹いていれば棒を動かさずに握ってプロペラを風に向けることによって回転をもたらすことができる。同様に、ベンチュリ・ホイール・タービンは、静止水域の中を上下に移動されるかあるいは水が静止水域に対して変位される間に静止している水力タービンを内蔵する。
【0050】
本発明の1つの新規な態様は、ブイから海面の真下に吊るされたタービンを通って移動するように誘導されうる水の速度を増幅するためにベンチュリ管または同様の装置を採用することである。本発明の別の新規な態様は、ブイからベンチュリ管または同様の装置を吊るすための中実(剛性)手段または可撓手段のいずれかを採用しうることである。図2Aは、深さに伴う波動の減少を利用することを目的とする先行技術の波エネルギー装置を示す。これは、ハブ22に取り付けられたプロペラブレード20を含む。シャフト24は、ハブ22を、図示されていないタービンおよび発電機を収納するブイ26に相互接続する。タービンは、シャフト24と一緒に回転する。ブイ26は水域の表面28に浮いているので、ブイの上下動によってプロペラブレード20、および、したがってシャフト24、タービン、ならびに発電機が回転して発電を行なう。
【0051】
図2Bは、図2Aに描かれたタイプなど、すなわち、一部の先行技術の波エネルギー変換装置で開示されたタイプの簡単な吊り下げ式プロペラ20を示す。プロペラ20は、直径Dを有し、速度Vを有する水の流れを受ける。水の運動エネルギーの一部は、プロペラシャフト24によって加えられる回転運動エネルギーPに変換される。
【0052】
図2Cは、本発明の好ましい実施形態の一部を形成する新規な波エネルギー変換構造体30を示す。狭窄30a、30bは、ベンチュリ管30の管腔31の直径Dを比較的小さい直径D2に減少させる。この実施形態では、図2Bの先行技術のプロペラシステムは、狭窄が最大であり、かつ狭窄を流れる水の速度が最高であるベンチュリ管30内に配備される。本発明の主要な開示は、波エネルギー装置の効率を実質的に高めるためにベンチュリ効果を利用することであり、狭窄内に設置されるプロペラ/タービンのタイプは本発明にとって重要でない。矢印Vにおける水の速度は、矢印V2における水の速度よりも実質的に低い。先行技術は、ベンチュリ管の狭窄部に定置されるプロペラ/タービンの開示を含んでいない。
【0053】
図3の先行技術のタービン32では、水の双方向の振動垂直流のエネルギーを軸34内の一方向回転エネルギーに変換することができる。このタイプの双方向タービンは、ベンチュリピンホイール波エネルギー装置内での使用に適している。図3は、プロペラのブレードを通る水の流れの方向の変化がこのようなブレードに取り付けられたシャフトの回転方向に変化をもたらさない様子を示す。タービンの回転方向は、水が上から下に流れようと下から上に流れようと同じままである。
【0054】
さらに具体的には、方向矢印36a、36bで示すように、軸34は対抗する矢印38a、38bで示されるようなここを通る水の流れの方向とは関係なく同じ方向に回転する。なお、タービンの最上部におけるブレード35aは下方に流れる水によって生じる最大の回転に対して曲げられ、最下部におけるブレード35bは上方に流れる水によって生じる最大の回転に対して曲げられ、中央のブレード35cはいずれの方向の流れに対しても曲げられ、中間上部および下部のブレード35d、35eは、それぞれ、最上部および最下部のブレードのように急角度で曲げられない。
【0055】
直径Dの簡単なプロペラの代わりに、比較的小さい直径D2のプロペラが同じ直径の入り口を有するベンチュリ管に使用されてもよい。ベンチュリ管の狭窄スロートは、ここを速度Vで流れる水を速度V2まで加速させる。図2Cに示されるベンチュリ管が閉じた水回路の一部である場合、すなわち、パイプ内の水をベンチュリ管に流さざるを得ずその周りに流すことができないように図2Cのベンチュリ管の各端がパイプに取り付けられる場合、V2は次式に等しくなる。

V2=[(□D/4)/(□D2/4)]V=(D/D2)V

しかしながら、図2Cのベンチュリ管はその周りにもその中にも水を必ず流すことができるので、V2は次式に等しくなる。

V2=f(V)[(□D/4)/(□D2/4)]V=f(V)(D/D2)V

ここで、「f(V)」はベンチュリ管の特性関数である。
【0056】
図2Cに示されたベンチュリ管内でプロペラによって発生される電力は、次式に等しい。

電力(P2)=hA2(f(V)V2)=h(□D2/4)[f(V)(D/D2)V]=f(v)h(□D)/(4D2)V
【0057】
図2Bに示された簡単なプロペラによって発生される電力は、以下のように決定される。

電力(P)=kA=k(□D/4)V=k(□D/4)V
【0058】
プロペラを流れる水を加速するためにベンチュリ管を使用することによって得られる電力の増加、すなわち、P2とPの比は、以下のように決定される。

P2/P=電力(P2)=f(V)h(□D)/(4D2)V
電力(P)=k(□D/4)V
【0059】
2台のタービン「k」および「h」の効率がほぼ等しいと仮定すると、これらの因子は相殺して次式のようになる。

P2/P=0.125D/D2
【0060】
たとえば、D=2m、D2=(1/2)m、およびf(V)=0.5であると仮定すると、ベンチュリ管/タービンハイブリッドは、両方が同じ速度で水中を移動する場合に簡単なプロペラの0.125(2/0.5)=32倍の電力を発生する。
【0061】
プロペラ直径の差がD=2m、およびD2=(1/4)mのようにさらに大きい場合、ベンチュリ管ハイブリッド法によって水から取り出される電力は、簡単なプロペラによって取り出される電力の0.125(2/0.25)=512倍である。
【0062】
ベンチュリ管は、コンクリートなどの低コスト材料から作られうる。高価な機械加工部品、すなわち、プロペラ/タービンアセンブリは、図2Aに示されたものなどの先行技術の発明よりもベンチュリ管/ハイブリッド設計の方がはるかに小さい。したがって、ベンチュリピンホイール波エネルギー装置は、波からはるかに大きい電力を取り出すだけでなく、先行技術の装置よりも製造にかかる費用がはるかに少ない。
【0063】
本明細書で使用される「ベンチュリ管」の制限は、ベンチュリ管に近接する水域の表面を移動している波の立上りおよび立下りに結合された運動によってまず流れが誘発された後、水がタービンを流れる速度を増加させる効果を有するあらゆるシェル、管表面などの手段、またはこれらの組合せの使用も含む。
【0064】
河川や水路において効率的に稼動するように適合されたいかなるタイプの水力発電タービンも、新規なベンチュリ管の管腔内で効率的に稼動するよう適合されうる。
【0065】
一方向プロペラ/タービンが採用される場合、このタービンはベンチュリ管を流れる水の方向の変化に対応して振動し、すなわち、方向を変える。長いシャフトまたはケーブルのこのような振動回転は、シャフトまたはケーブル内の内部の捻れおよびばね作用によるエネルギーの大きな損失をもたらす。したがって、一方向プロペラが採用されるとき、プロペラ/タービンにごく近接して、場合によってはベンチュリ管自体内、またはその近くでこのようなプロペラの回転を電気エネルギーに変換することが有利である。
【0066】
双方向プロペラ/タービンが採用される場合、このタービンは水の流れがベンチュリ管の管腔内で方向を変えるときでも同じ方向に回転するであろう。このため、このような回転運動をタービンから上方のブイに伝達することが容易になる。海水の腐食性および保守の低減が望ましいことに起因して、このような双方向タービンによって生成される回転運動エネルギーをブイに伝達することが有益であり、この場合、回転運動エネルギーは海水から保護された発電機によって電力に変換されうる。
【0067】
図4は、本発明の好ましい実施形態が、水域の表面を移動する深海波の円形上下運動特性をベンチュリピンホイールの水中タービン、すなわち、海面のはるか下方にあるベンチュリ管の対応する上下運動に変換する原理を示す。
【0068】
浮力浮遊モジュール(buoyant flotation module)またはブイ26は、水域の表面28を移動する深海波の通過に応答して上記水域の表面28における円形上下軌道14に追随する。ブイ26は、その垂直運動を再現するために、中実(剛性)支柱、ケーブル、または他の何らかの形のアタッチメント25によって真下に吊るされたベンチュリ管30を制限する。ベンチュリ管の重りが適正でないために最初の深さに十分速く戻らない場合、重り(図示せず)は中実(剛性)支柱、ケーブル、または他の何らかの手段によって各ベンチュリ管30の真下に吊るされてもよい。上記オプションの重りによって、ベンチュリ管の下方の復元動作が容易になる。
【0069】
好ましい実施形態では、各ベンチュリ管30の上下運動は、水が水面を移動する波によってさほど影響を受けない深さ、すなわち、波浪作用限界水深18の近傍または下方で生じ、したがって動きが比較的少ない。波浪作用限界水深の近傍または下方の比較的静かな水の中でのベンチュリ管の上下運動は、往復方向の流れを有する水流内の静止位置に吊るされているベンチュリ管と同等である。
【0070】
ベンチュリ管を包囲する静水に対するベンチュリ管の垂直振動の範囲40は、浮遊モジュール26の運動に関与する深海波の高さ12に等しく、ベンチュリ管の最小深さが波浪作用限界水深18に等しくないかこれを超えなければ残留波動の大きさよりも小さい。
【0071】
ブイ26の真下のベンチュリ管30の深さが波浪作用限界水深18として規定された深さに達しないかこれを超えなければ、ベンチュリ管はブイ26によって上下に変位されるとその周囲の水に対してやはり実質的な相対垂直運動を受けることになる。
【0072】
水面の水分子は、半径が、水分子を動かしている深海波の全振幅に等しい円形軌道をたどる。海面の下方にある水分子の波によって誘発される円形軌道は、深さが増すにつれて次第にかつ指数関数的に小さくなる。したがって、ベンチュリ管が吊るされる深さに関係なく、海面下方に吊るされる限り、浮遊モジュール26によって引きずられる円形軌道は上記ベンチュリ管を取り囲む水分子の円形軌道よりも大きくなる。
【0073】
ベンチュリ管の楕円軌道の半径はベンチュリ管を取り囲む水分子の円形軌道の半径を常に超えるので、ベンチュリ管とその周囲の水との間に実質的な相対上下運動がある。周囲の水に対するベンチュリ管の相対上下運動の大きさは、周囲の水が静止している場合、波浪作用限界水深18の下方にベンチュリ管が吊るされるときに最大である。このような深さにおいて、ベンチュリ管の相対上下運動の大きさは、表面波の全高さに等しい。このような大きさは、海面から波浪作用限界水深までの距離の重要部分を表わす深さでは非ゼロであり重要である。これは、海面下方の水分子の円形軌道の半径は深さが増すにつれて直線的ではなく指数関数的に減少するので、事実である。
http://hyperphysics.phy-astr.gsu.edu/hbase/waves/watwav2.htmlを参照されたい。
また、http://users.dickinson.edu/~richesod/waves/applets.htmlにおいて「深海波(deep water waves)」を参照されたい。
【0074】
新規な浮遊モジュール26は、ブイ、船舶などの浮遊物体と同様に、通過する波によって上下動する。上昇する浮遊モジュールは、装着されたベンチュリ管を一緒に引き上げる。浮遊モジュールまたはブイが通過している波の後縁に沿って下降すると、装着されたベンチュリ管はもはや支持されない。それゆえ、ベンチュリ管は、その質量と装着された補助重りの質量とによる重力の影響を受けて沈む。
【0075】
表面波は、海面における水分子の一部の円形運動の周期に関連する。海面において、これらの円形運動の半径は表面波自体の振幅に等しい。しかしながら、深さが増すと、水分子の動きを特徴付ける円形運動の半径は、素早くかつ指数関数的に減少する。
【0076】
ベンチュリ管の垂直運動の振幅は、これらの運動を駆動する浮遊モジュールの振幅と一致する。しかしながら、ベンチュリ管の深さは上方の水の特性を示す円形運動と一致していないか、あるいは大幅に縮小されてこれらの運動と一致している水の真ん中にあるので、ベンチュリ管の運動はこれを取り囲む水分子の運動と一致しない。それゆえ、海面下方の比較的安定している水に関して図5Aに示すように、ベンチュリ管30は上記水から引き出されて落下される。ベンチュリ管30に関して図5Bに描かれるように、上記ベンチュリ管を取り囲む水はベンチュリ管の中を上下動する。水が上下動するためには、ベンチュリ管の管腔を流れなければならない。
【0077】
本発明の好ましい実施形態では、動力タービン/プロペラは、図2Cに関連して先に述べたように、ベンチュリ管の最も狭い部分の中に定置される。これは、タービンローターを回転させるために往復する水の動きを利用するものである。いかなる種類の水力タービンも本発明の範囲内で使用されうる。
【0078】
タービンによって発生される機械的回転エネルギーは、本発明の好ましい実施形態では、ブイ26に伝達され、そこで発電機または交流発電機がこれを有用な電的エネルギーに変換する。
【0079】
図6Aおよび6Bは、本発明の一実施形態を示す。図6Bは、ベンチュリ・ピンホイール・タービン・アセンブリの断面図である。ベンチュリ管30の管腔は、前述のように示される。ベンチュリ管30の外壁はわずかに凸状である。
【0080】
ベンチュリ・ピンホイール・タービンは、水域内で動作する。これは、波の上下動に同調する上下動によってその水域の表面を移動する波に応答する。
【0081】
ベンチュリ管30は、可撓性はあるが伸縮性のないケーブル25によって浮遊モジュール26の真下に吊るされてもよい。しかしながら、図7Cおよび7Dに開示された好ましい実施形態では、中実(剛性)支柱をこの目的で利用している。ケーブルが採用される場合、ブイ26の真下のベンチュリ管の距離は一定に保たれ、張力はベンチュリ管30とその真下にオプションとして取り付けられる任意の補助重りとの重みによってケーブル25内で維持される。
【0082】
ベンチュリ管の効率は、エネルギー変換を要求される最長波長の波に特徴的な波浪作用限界水深の下方または少なくとも可能な限り近くにベンチュリ管を吊るすことによって最大化される。この好ましい深さは、典型的に、20〜100mの範囲になる。図6Aおよび6Bは一定の縮尺で描かれていない。
【0083】
ベンチュリ管30が上方に動くと、水は管腔31を通って上から下に流れる。ベンチュリ管30が下方に動くと、水は管腔31を通って反対方向に流れる。水が管腔を通って流れると、その軸流の速度(すなわち、その速度)は管腔の断面積が減少するにつれて増加する(管腔直径の一定範囲内で)。たとえば、管腔の断面積が半分になると、水の流速がおよそ2倍になる。
【0084】
ベンチュリ管内での使用に最適なタービンのタイプは、フリー・フロー・タービンまたは動力タービンとして知られるタービン群である。便宜上、簡単なプロペラ20を図6Bに示す。混乱を避けるために、ベンチュリ管30がハウジングを指すのに対して、タービン20はベンチュリ管30の管腔31内に形成される狭窄に取り付けられたプロペラ、インペラ、またはその他の水によって回転する装置を指すことを理解されたい。
【0085】
水は必然的に管腔31を流れるので、タービンのブレードが回転しなければならない。ブレードはハブ22に結合され(図2B参照)、上記ハブはタービンの中心シャフト24と結合して回転する。タービンブレードが双方向性であれば、水がベンチュリ管30に上から、または下から入るかどうかに関係なくシャフト24は同じ方向に回転する。ベンチュリ管が水の中を上下に移動すると、回転角速度のみが変化する。回転の角度方向は変わらない。
【0086】
ベンチュリ管30が海面真下の水中を上下動すると、水は最上部と最下部から交互にベンチュリ管に入り、タービン20を回転させる。タービンシャフト24は、コネクタ42aによって、中実シャフト、または可撓性はあるが伸縮性のないケーブル、または機械的回転エネルギーを伝達する他の何らかの手段44に接続され、上記のシャフト、可撓ケーブル、または他のコネクタは、コネクタ42bによってブイ26の中心シャフト24aに接続され、中心シャフトは発電機46または他の何らかのエネルギー変換装置に接続される。
【0087】
したがって、タービン/プロペラ20の回転によって、中心シャフト24、シャフト、ケーブル、またはその他のコネクタ44、ブイシャフト24a、および、したがって発電機46が回転する。
【0088】
このように、ブイ26およびその装着ベンチュリ管30を上昇させる深海波のエネルギーの一部は、機械エネルギーに変換される。ベンチュリ管30の位置エネルギーは、その高さとともに増加する。波が通過した後に残るベンチュリ管の位置エネルギーの一部は、ブイ26およびその装着ベンチュリ管30が下降して、タービン/プロペラ20、中心シャフト24、シャフト、ケーブル、またはその他の手段44、ブイシャフト24a、および発電機46が再び回転すると、新たな機械エネルギーに変換される。ベンチュリ管30の上下動中に生成される機械エネルギーのすべてまたはほとんどは、電気エネルギーへの変換に使用可能である。
【0089】
ベンチュリ管の管腔を画定する角度αは、図6Bに示される。本発明の範囲は、従来の円錐形ベンチュリ管だけでなく任意の傾斜度のベンチュリ管、または「ベンチュリ効果」との整合性を保つ形で水を加速しうるその他の形態またはガイドの使用を含む。様々な波の条件および環境に適合させるために、本発明では、幅が広くかつ比較的平坦である円錐形の管腔、または狭くかつ比較的長い円錐形の管腔を有するベンチュリ管を利用しうる。本発明の範囲は、すべての形状、半径方向の傾斜度、およびサイズのベンチュリ管の使用を含む。
【0090】
ブイ26およびベンチュリ管30が垂直方向に互いに最大距離を隔てられ、上記ベンチュリ管は上昇も下降もしない場合、ベンチュリ管30は休止位置にある。波がブイ26を上昇させると、装着中実支柱44が装着ベンチュリ管30を持ち上げ、それによって発電する。代わりに、ケーブルが採用される場合、ケーブル44の張力が増加してベンチュリ管30が持ち上げられ、それによって発電する。ブイが波の通過後に下降すると、ベンチュリ管30は下降してその休止位置に戻り、ベンチュリ管30が下降するときに発電する。ベンチュリ管/シャフト30またはケーブル44アセンブリ(任意の補助重りを含む)は、これを海水に沈めるのに十分な比重を有する。
【0091】
本発明の好ましい実施形態は、ブイから吊るされてブイにベンチュリ管を接続するための中実(剛性)支柱を含む。しかしながら、20〜100mの深さまで沈められるベンチュリ管にブイを不動に接続することは剛性コネクタの歪みをもたらすおそれがある。したがって、このような支柱は故障や変形なしで荒海で機能しうるよう十分な歪みに耐えることができなければならない。可撓ケーブルを使用して沈められたベンチュリ管にブイを接続すると、場合によっては、簡単で安価な選択肢が提供される可能性がある。
【0092】
ブイ26は、海面においてほぼ円形垂直運動で移動する。ブイに接続されて沈められたベンチュリ管は、ブイと同調して移動しなければならない。しかしながら、ベンチュリ管を水平方向に、すなわち、平均海水面に平行に移動させる力が働くときにベンチュリ管によって誘導される抗力があるために、ベンチュリ管はブイの自由な水平移動成分に適合することができない。したがって、ブイが海面で垂直円形運動で移動する間に、沈められたベンチュリ管の運動は、楕円の長軸が垂直に向けられた楕円形経路をたどる。
【0093】
図6Aおよび6Bに示されたベンチュリ管の実施形態は、わずかに凸状の円筒形外壁を有する。このような丸みは、ベンチュリ管が水中を移動するときに乱流を最小化する働きをする可能性がある。
【0094】
図7Aおよび7Bは、本発明の好ましい実施形態を示す。この実施形態では、ベンチュリ管を流れるように誘導される水から電力を取り出す効率を高める構造的特徴を採用する。ベンチュリ管30の円筒壁は、ベンチュリ管30の狭窄管腔31が上記ベンチュリ管の両端からより遠くに位置するように、図6Aおよび6Bに示されるベンチュリ管の最上部および最下部において延長されている。換言すると、上記狭窄の両端の上記管腔の実質的な長さが狭窄されないように、管腔内の狭窄はベンチュリ管30の両端から離して配置される。
【0095】
こうすることで、その管腔および管腔内のタービンを流れずにベンチュリタービンの外壁の周りを流れる水の量を減らすことによってタービンの効率が改善される。
【0096】
さらに具体的には、ベンチュリ管30は、狭窄から離れて長手方向に延長される。延長部30cは、ベンチュリ管30の上の口から上方に延びる。延長部30dは、ベンチュリ管の下の口から下方に延びる。こうすることで、ベンチュリ管30の管腔31からではなく外側壁を移動することによってベンチュリ管から「漏れる」水の量を減らすことによってベンチュリ管の性能が改善される可能性がある。
【0097】
図7Cはベンチュリ波エネルギー装置の好ましい実施形態の斜視図であり、図7Dはその長手方向断面図である。
【0098】
ベンチュリ管30は、円筒状外側ケーシング29内に収納されて固定される。剛性支柱27は、ブイ26と上記ケーシング29、したがって、上記ベンチュリ管の間で一定距離を維持する。
【0099】
タービン20は、予め選択されたいかなるタイプのタービンであってもよい。タービン20は、発電機46が発電するようにロッド44を回転させる。また、参照番号46は異なるタイプのトランスデューサを示していてもよい。
【0100】
ブイ26およびベンチュリ管30とその関連アセンブリの剛性相互接続によって、すべてのブイ運動が上記のベンチュリ管およびアセンブリに伝えられる。
【0101】
図8Aおよび8Bの実施形態では、ベーン48を加えてベンチュリ管30に入る水に初期の渦運動を与える。図8Bに最もよく示されるように、管腔31を流れる個々の水分子がらせん経路または旋回経路をたどるように、1組のベーン48がベンチュリ管30の各端または入口に定置される。旋回水が管腔31を流れるにつれて水の速度が増加するので、角運動量保存の結果として水の回転速度も増加する。
【0102】
管腔31の各口におけるベーン48は、水が流れている軸方向と関係なく同じ水の回転方向を誘導するように向けられる。換言すると、水が管腔を上から下に流れようと下から上に流れようと、ベーンは水が中心シャフト24の周りを同じ方向に旋回するように誘導する。管腔31を通る水の軸流に放射状流が加わると、ある種のタービンのブレードにより有利な迎え角で水を当てることができ、水の流れが有意な放射状成分を欠いている場合よりもその運動エネルギーのより多くをタービンに与えるようになる。
【0103】
しかしながら、入口ベーンは、タービン20と区別されるようにベンチュリ管30自体に小さい回転を与える。ベンチュリ管30のこの回転は、全体として、装着ブイの対応する回転を引き起こす可能性がある。このような回転は、リンクされたベンチュリピンホイール波エネルギー装置のネットワーク内で問題を引き起こす可能性がある。しかしながら、このような回転は、ベンチュリ管30から、あるいはベンチュリ管30の垂直運動エネルギーの一部を全体としてベンチュリ管30に与えられる回転運動エネルギーに変換する他のこのような装置から放射状に外方向に延びる垂直ウイング50を含めることによって、抑圧または阻止されてもよい。
【0104】
垂直ウイング50によって提供される半径方向の揚力は、ベンチュリ管30に与えられる残りの実質的な半径方向力をほぼ相殺するように調整される。
【0105】
図9は、ベンチュリ管30を流れるように誘導される水から取り出される電力の効率を高める別のオプション構造を示す。
【0106】
ベンチュリ管の口または入口に入るときの水に渦運動を誘導する代わりに、1組の放射状に向けられた双方向ベーン52a、52bがプロペラ型タービン20の真上および真下に定置される。水が管腔31を上から下方向に流れる場合、ベーン52aは前方タービンベーンであり、これらは水がプロペラ/タービン20に遭遇する直前に水の流れにより好都合な迎え角をを誘導する。上から下に流れる水に対して、水がタービン20に向かって流れるときベーン52aは所望の半径方向成分を水の流れに与える向きをとる。
【0107】
しかしながら、水がタービンから流れ出るとき、後方タービンベーン52bは水の固有の流れに受動的に適合して後方タービンの流れパターンが変わるのを回避する中立的な方向をとる。水が管腔31を下から上の方向に流れるとき、ベーンは逆に作用する。
【0108】
また、ベーン52a、52bは、全体として、ベンチュリタービン30に小さい回転を与える。回転は、図8Aおよび8Bの実施形態におけるように、半径方向ウイング50、または他のこのような装置によって補正される。
【0109】
図10は垂直軸タービン20aを示す。垂直軸タービンは、それらの軸に垂直な任意の方向に流れる流体に対応する。したがって、このタイプのタービンは、水の移動の垂直方向とは無関係にベンチュリ管30の管腔31を流れる水からエネルギーを取り出す。管腔31のいずれかの口に入る水は、垂直軸タービン20aにおける同じ回転運動を誘導する。このようなタービンは、シャフトによって交流発電機または発電機46に直接取り付けられうるか、さもなければタービンの回転エネルギーは中実(剛性)シャフトまたは可撓シャフトの任意の組合せによってブイ26に伝達されうる。
【0110】
交流発電機または発電機46が図10に示されるようにベンチュリ管30の側壁内にある場合、上記垂直軸タービン20aの回転に応じて発生される電気エネルギーは1つまたは複数の導電体を介して表面に伝達される。このような導電体は、ブイ26の真下のベンチュリ管30を支持する1本または複数本のケーブル24に沿って延在する。
【0111】
アクセスパネル54は、その名称が表す機能を実施する。
【0112】
図11は、図10に示されたものに類似したベンチュリ管30の斜視図である。しかしながら、図11に示されたベンチュリ管30は、図10に示されたタービン20の半径方向対称性と区別されるように長方形対称性を有する。
【0113】
垂直軸タービンが位置するベンチュリ管の部分の断面が長方形であることが好ましいとき、ベンチュリ管の内部も長方形であってよい。
【0114】
図12は、長方形ベンチュリハウジング31の平面図である。この図面は、タービンの周りと区別されるように、タービンを流れる水の流量を最大にするために長方形流路内に定置された垂直軸タービン20aを有することの重要性を示す。長方形流路、すなわち、管腔は、側壁30a、30b、30e、および30fによって画定される。
【0115】
ベンチュリピンホイール波エネルギー装置の好ましい実施形態の設計は、この装置がブイの電源としての役割を果たす場合に小型のブイまたは装置とともに使用することを受け入れるために様々な方法で変更されうる。図13〜15は、このような移動式バージョンのベンチュリピンホイール波エネルギー装置の好ましい実施形態を示す。
【0116】
この移動式実施形態では、ベンチュリ管30は、逆さのランプの笠または日傘のそれと全く同様の円錐形を有する可撓または剛性ベンチュリシュラウド33のいずれかに置き換えられる。保管または配備を容易にするために、ベンチュリタービンは、上記図14に関連して最もよく理解されるように、配備の前に保管されるキャニスタ55(図14)の本体内に適合するように十分に小さく作られてもよい。
【0117】
ベンチュリシュラウド33は、剛性であってもよく、折り畳み可能な構造を有していてもよい。シュラウドが折り畳み可能に作られる場合、構造物を傘のように折り畳むことができる剛性フレーム部材またはリブ56および可撓性のある素材58が含まれてもよい。シュラウド33は、配備して保管キャニスタ55から分離するまで、折り畳まれた形態のままであってよい。
【0118】
大きい固有の重りや装着補助重りの代わりに、ベンチュリシュラウド33は、その位置をセットし直すことができ、すなわち、シュラウド33を閉じた形態の傘のように折り畳めるようにして、波の通過後にブイの高さが減ると沈むことができる。この実施形態では、シュラウド33は、この後、ブイ26が上昇して水がシュラウド33の中に戻ると、開きつつある傘のように受動的に再び膨らむことができる。
【0119】
実物大のベンチュリピンホイール波エネルギー装置の好ましい実施形態は、その回転エネルギーを、タービンの中心シャフトに装着される機械的シャフトまたはケーブル57を介して表面に伝達する。機械回転エネルギーは、水面上方に備え付けられた発電機によって電気エネルギーに変換される。当該技術を小型の移動式装置に適合させるために、小型防水発電機がタービンの近傍にあって共通軸24aを移動式装置と共有する。
【0120】
得られる電力は、ブイ26の真下に吊り下がるベンチュリ・シュラウド・アセンブリを支持するような一次電線44を介してブイ26に伝達される。移動式バージョンのベンチュリピンホイール装置の好ましい実施形態は、ケーブルアセンブリ44をタービンアセンブリに固定する中心剛性支柱57を含む。中心剛性支柱57は、ベンチュリシュラウドがブイ26によって表面に引き付けられるときにベンチュリシュラウド33およびタービン20bの垂直整列を維持する。ブイによって与えられる上向きの力は中心剛性支柱57の上端に作用し、広げられたベンチュリシュラウド33によって誘導される抗力は中心剛性支柱57の下端に作用する。風向計が風の方向を向くのと同じ理由で、中心剛性支柱およびその装着ベンチュリシュラウドはブイの方向を向くように強制される。この中心剛性支柱がなければ、ベンチュリシュラウドの向きは不安定になり、すなわち、シュラウドが上昇するときのシュラウドを通過する水の影響を受けて、シュラウドは横を向こうとして、折り畳み式シュラウドは部分的に折り畳まれようとする。
【0121】
中実タービンブレード20b(図13および14)は、そのサイズが小さいことから、双方向接合タービンと違って有利である。ベンチュリシュラウド33は水をタービンの中に注ぎ込んで水の速度を高め、その間にブイおよびタービンが上昇する。実物大のベンチュリピンホイール波エネルギー装置の好ましい実施形態は、上昇および下降するときに発電することができる双方向ベンチュリシュラウドを有する。このような適合によって、タービンの移動式実施形態はブイおよびタービンが上昇している間にのみ海水からかなりの量の電力を取り出すことができる。
【0122】
また、当該装置、すなわち、双方向タービンを組み込む双方向ベンチュリ管の好ましい実施形態の「小型化」バージョンを構築することも可能である。このような装置では、局部防水発電機、または水面のブイに回転エネルギーを伝えるシャフトを利用しうる。用途によっては、この中間設計は有利である可能性がある。本発明の範囲には、開示された装置のサイズのすべての変形形態が含まれる。
【0123】
また、折り畳み可能なベンチュリシュラウドを組み込むベンチュリピンホイール装置の移動式バージョンの好ましい実施形態は、その整列を保つために折り畳み可能なベンチュリシュラウド33の基礎となる役割を果たす剛性カラー60を含む。剛性カラー60の管腔はシュラウド33によって形成される管腔の最もくびれた部分であるので、プロペラ/タービン20bは剛性カラー60と同軸に定置される。剛性フレーム部材56は、互いに円周上に離隔して剛性カラー60に枢動可能に固定された第1の端を有する。
【0124】
図14は、折り畳み可能なベンチュリシュラウドを組み込んでキャニスタ55内に保管されるときの図13に示された移動式実施形態の形態を示す。ベンチュリシュラウド33の剛性フレーム部材56は装置の中心剛性支柱57に対して旋回し、ベンチュリシュラウド素材58は引っ込められる傘のように折り畳まれる。このような保管される装置は、オプションのキャニスタ蓋62の取外し後に保管キャニスタ55から滑り落ちてもよい。
【0125】
図15は、小型ブイ26aを有する図13および14の移動式実施形態を示す。この実施形態は、救命ゴムボートに関連する有用性を有する。図13および14のアセンブリがケーブル44によってブイ26aに接続されるとき、移動式ベンチュリシュラウドの上下動によって電力が発生する。救命ゴムボート自体はブイとしての役割を果たす。本発明による比較的小型の移動式実施形態は、約100Wを連続的に発生しうる。当該移動式実施形態は、救難信号、位置入力装置、蒸留水製造装置などに電力を供給する際に有用性を有する。
【0126】
図16Aおよび16Bは、本開示の範囲内にある新規なベンチュリピンホイール波エネルギー装置の多くの可能な実施形態の1つを示す。図16Bは、図16Aの線16B〜16Bに沿って切断されたハウジング68の断面図である。
【0127】
水車64が、2つの実質的に平行な垂直壁66a、66bを含むハウジング68内の軸65を中心として回転するように取り付けられる。ハウジング68は、互いに流体連通する2つの区画を有する。第1の区画は、側壁66a、前壁68a、および後壁68bによって画定される。前壁68aおよび後壁68bは、互いに上から下に向かって収束し、上記第1の区画の最下部でベンチュリ効果を生み出す。第2の区画は、側壁66b、前壁70a、および後壁70bによって画定される。前壁70aおよび後壁70bは、互いに上から下に向かって発散し、上記区画の最上部でベンチュリ効果を生み出す。
【0128】
水車64の軸65は、上記水車の半分が第1の区画内にありかつ半分が第2の区画内にあるように、ハウジング68の中心に定置される。
【0129】
図17Aに示すように、左区画は最上部から入る水を受け入れ、この水は最下部に向かって移動するときに大きい真っ直ぐな矢印で示すように上記区画の断面積を減らすことによって加速する。逆に、最上部から右区画に入る水は、上記の大きい真っ直ぐな矢印の右に小さい真っ直ぐな矢印で示すように上記区画の増加する最上部から最下部への断面積を流れるときに減速する。
【0130】
ハウジング68の左右の区画において水が最上部から入るときの水速の不釣合いは、水車64に不釣合いな推進力を生じ、上記ハウジング68の左区画の水の流れを最大限に受け入れるように、図17Aの方向矢印67によって示す方向にその軸65を中心として水車64を回転させる。
【0131】
逆効果は、図17bに示すように、水が最下部からハウジング68に入るときに観察される。ハウジング68の右区画の水は大きい真っ直ぐな矢印で示すように加速され、左区画の水は小さい真っ直ぐな矢印で示すように減速される。装置の左半分と右半分を横断する水の速度のこの不釣合いは、水が最上部から入るときと同じ方向に水車65の回転をもたらす。
【0132】
図18は、特に図10、11、および12に示す実施形態に関して本発明による有用性を有する、全体として72で表わされる別のタイプの水力タービンを示す。このタイプの水車は、水の流れの方向と関係なく、すなわち、水車の回転軸に垂直な平面内で同じ方向に回転し、これが上下方向すべての水の流れの原因である。さらに具体的に、図示のようなドラム76の前方のブレード74は、上方に流れる水を捕捉して方向矢印78で示す回転方向に軸80を中心としてドラム76を回転させる。図示のようなドラムの後ろのブレード74は、下方に流れる水を捕捉してドラム76を同じ方向78に回転させる。ドラム76は、本発明によって教示されるように、ベンチュリ管の狭窄スロートに定置されることを理解されたい。
【0133】
図20は、ベンチュリ管の代わりに海錨を使用する、全体として90で表わされる本発明の別の実施形態を示す。図20は、海錨の実施形態が水域の表面を移動する深海波の特徴を示す円形上下運動を対応するケーブルの上下運動に変換し、ケーブルの動きは装着キャプスタンを回転させ、これによって、さらには、表面のはるか下方に位置する水中タービンを回転させる原理を示す。キャプスタンが装着されるプラットフォームは誘導抗力によってケーブルの動きに適合しえないので、キャプスタンはその装着ケーブルが上下動するときに回転する。
【0134】
浮力浮遊モジュールまたはブイ26は、水域28の表面を移動する深海波の通過に応答して上記水域の表面で円形上下軌道14をたどる。ブイは、その垂直運動を再現するために、釣合い重り92とブイの真下に吊るされたケーブル44とを制限する。
【0135】
さらに具体的に、ブイ26および釣合い重り92は、ケーブル44によって互いに直接接続される。
【0136】
図21に示すように、平坦なプラットフォーム94は、94aに開口の中心が設けられ、ケーブル44に間接的に取り付けられる。プラットフォーム94の運動は、これらの垂直上下の運動を制限するように制約され、プラットフォームの表面に垂直なその中心軸はケーブルの中心軸と同軸に保たれる。これを実現するために採用される可能性のある1つの方法は、支柱を使用することによるものであり、上記支柱はプラットフォーム94の上面に定置された第1の対の支持具96と上記プラットフォームの下面に定置された第2の対の支持具98とを含む。上支柱96は、スリーブ96aに固定された第1の端と上記プラットフォームの上壁に固定された第2の端を有する。下支柱98は、スリーブ98aに固定された第1の端と上記プラットフォームの下壁に固定された第2の端とを有する。
【0137】
ケーブル44は、スリーブ96a、98aのそれぞれの管腔を通り、さらにプラットフォーム94の中心開口94aを通って延びる。このように、プラットフォーム94はケーブル44の長さを自由に上下移動することができる。ブイ26の浮力によってケーブル44で維持される張力と釣合い重り92の重量とによって、プラットフォーム94はブイ26および釣合い重り92の共通の縦軸と同軸方向から遠くに外れることができない。
【0138】
プラットフォーム94の垂直運動は、上記プラットフォームのそれぞれ上方および下方でケーブル44に固定された1対の止め子100a、100bによってさらに制限される。各止め子の直径は、スリーブ96a、98aのそれぞれの管腔の直径を超える。
【0139】
プラットフォーム94は、実質的に中立的に浮揚しやすい。したがって、その慣性質量は、プラットフォーム94が排除する海水の質量にほぼ等しく、これは現実であるはずである。プラットフォームの質量は、それゆえ、これに実質的な力が作用するときのみ有意な加速を示す。
【0140】
図21はプラットフォーム94の拡大図である。ケーブル44は、先に示唆したように中心開口94aを単純に通過しておらず、代わりに、ケーブル44はその水平軸を中心として回転するように上記中心開口に取り付けられるキャプスタン102に巻き付けられる。キャプスタン102は、ケーブル44がプラットフォーム94に対して移動すると回転するように制限され、すなわち、ケーブル44はキャプスタン102を回転しなくてはプラットフォーム94に対して垂直に移動することができない。発電機46は、キャプスタンの回転によって電気エネルギーが発生するようにキャプスタン102に結合される。代わりに、キャプスタンの回転は、キャプスタンをブイ26の発電機または交流発電機に直接または間接的に接続するケーブルを回転させるために採用される。
【0141】
当該装置は、プラットフォーム94が波浪作用限界水深18に近いかそれよりも大きい深さに保たれるので海洋波からエネルギーを取り出す。波の通過に応じたブイ26の上昇と釣合い重り92の下降とによって誘導されるケーブル44の上方および下方の移動は、プラットフォーム94の等しい垂直振動と調和しない。ケーブル44が上または下に移動すると、ケーブルを引っ張る力はプラットフォームに加えられ、プラットフォームはケーブルとともに上下移動するように強いられる。しかしながら、プラットフォームの質量および対応する慣性は、プラットフォームを動かすためのケーブルの力の能力を制限する。プラットフォームを取り囲む比較的穏やかな水の中でプラットフォームに誘導される結果としての運動は、その運動から生じる実質的抗力によって相殺される。
【0142】
プラットフォームの慣性と、水中のプラットフォームの動きに対抗する実質的抗力との組み合わせによって、装着ケーブルの上下移動に同調して移動する能力が効果的に制限される。
【0143】
プラットフォームはケーブルの動きに整合することができないので、ケーブルが十分に上下動するような残る唯一の方法は、キャプスタンの周りにケーブルを巻き付けてこれを回転させることである。
【0144】
プラットフォームの慣性は、誘導抗力とともに、その位置が目に付くほど変わることを防止する。したがって、ケーブルに加わる力のほとんどはキャプスタン102および発電機46の回転に利用される。
【0145】
発電機がキャプスタンのシャフトと結合して回転するようにプラットフォームに取り付けられる場合、発電機をブイに接続する電気ケーブルは、プラットフォームの周縁部に固定されて、ここから上方のブイに直接接続されうる。しかしながら、小さい浮揚物は、これがキャプスタンと絡み合うことのないよう垂れ下がりを防止して電気ケーブルに固定されるべきである。
【0146】
プラットフォームは、実質的に中立的に浮揚しやすく、波浪作用限界水深またはそれに近い使用可能な深さは、ケーブル44に装着された止め子とのプラットフォームの相互作用の結果として実現されて維持される。プラットフォームがその目的とする最小深さの上方にある場合、釣合い重り92の重量はブイ26を上方に引っ張ることによって相殺されない。それゆえ、釣合い重り92およびケーブル44は、上止め子100aが上のスリーブ98aに当接するまで降下する。この時点で、釣合い重りの引っ張りは、プラットフォームが十分な深さに達するまで弱まることなく続く。プラットフォームが予め選択された最大深さより下にに降下すると、ブイ26は、時としてあるいは常に水没される。水没されている間に下止め子100bが下スリーブ98aに当接すると、ブイの上方への引っ張り、すなわち、釣合い重り92の反作用による下方への比較的小さい引っ張りがプラットフォーム94に加えられる。プラットフォームはこの状態が是正されるまで上昇する。
【0147】
好ましくは、ブイ26の最大浮力は、ベンチュリ装置と釣合い重り92の総重量の2倍を超える。しかしながら、実証的調査では、これとは異なる浮力が好ましいことを示す場合もある。
【0148】
プラットフォーム94は、ケーブル44とともに上下動するように駆動されるが、プラットフォームの慣性と動きに対抗する抗力とに起因してそうすることができないことが多い。プラットフォームの抗力は、プラットフォームの垂直速度の2乗に比例して増加する。プラットフォームの抗力の大きさがケーブルの垂直力に一致すると、プラットフォームの動きが停止する。プラットフォームの上昇または下降速度は、ケーブルに対する実質的な上向きまたは下向きの力がある限りゼロに達することはない。しかしながら、プラットフォームの最終速度は非常に低く、したがって、ケーブルの速度は波サイクルのほとんどの期間にプラットフォームの最終速度を超えることになる。
【0149】
プラットフォームに対するケーブルの動きの実質的な振幅は、図19に示すように、波の振幅12に等しく、プラットフォームの振動の振幅13の方が小さい。ケーブル44がプラットフォーム94に対して動いているとき、ケーブルの力のすべてはケーブルが巻かれてプラットフォームにしっかり取り付けられるキャプスタン102の回転に向けられ、それゆえ、波サイクルのほとんどの期間に、ケーブルの垂直力のほとんどがキャプスタン内の等価トルクに変換され、キャプスタンをその軸を中心として回転させ、かくして発電機46の回転を駆動する。
【0150】
プラットフォームが円筒壁、最上部、および最下部を備えている場合は、プラットフォームの抗力が増加し、それゆえ波エネルギーの変換効率が高くなる。
【0151】
図22は、新規な海錨の好ましい実施形態を示す。円筒壁104は、プラットフォーム94の外周に取り付けられ、すなわち、上記プラットフォームにスリーブが嵌め込まれ、したがって、上記プラットフォームは上記円筒壁の管腔の中間位置に定置され、すなわち、上記プラットフォームの平面上方に延在する円筒壁104の大きさは、上記プラットフォームの平面下方に延在する上記円筒壁の大きさに実質的に等しい。円筒壁104は、プラットフォーム94の抗力係数を実質的に増加させ、かくして、ブイ26および釣合い重り92の動きに応答するその動きの大きさを抑制する。
【0152】
このように、上記の目的、および前述の説明から明らかにされた目的が効果的に達成されることが分かるであろう。上記の構造は本発明の範囲から逸脱することなく一定の変更がなされてもよいので、前述の説明に含まれあるいは添付図面に示されたすべての事柄は、制限としてでなく実例として解釈されるべきものである。
【0153】
また、以下の特許請求の範囲は、本明細書に記載される本発明の包括的な特徴および具体的な特徴のすべてと、言語の問題としてこれらの特徴の間にあると考えられる本発明の範囲のすべての陳述とを網羅するものであることも理解されたい。
図1
図2A
図2B
図2C
図3
図4
図5A
図5B
図6A-6B】
図7A-7B】
図7C
図7D
図8A-8B】
図9
図10
図11
図12
図13
図14
図15
図16A
図16B
図17A
図17B
図18
図19
図20
図21
図22