【実施例】
【0083】
実験の部
大気圧光イオン化を装備したPE Sciex API 150EX装置および島津LC−8A/SLC−10A LCシステムでLC/MS分析データを入手した。UV(254nm)およびELSDトレースを積分することにより、純度を決定した。MS装置は、APPIイオン源を装備したPeskier(API)製のもので、正イオン・モードで運転した。UVトレースの保持時間(RT)を、分単位で表す。溶媒Aは、水中の0.05%TFAから成るものであり、溶媒Bは、アセトニトリル中の0.035%TFAおよび5%水から成るものであった。いくつか異なる方法を用いた:
方法25:API 150EXおよび島津LC10AD/SLC−10A LCシステム。カラム:dC−18 4.6×30mm、3μm(Atlantis、Waters)。カラム温度:40℃。勾配:イオン対形成を用いた逆相。流速:3.3mL/分。注入体積:15μL。勾配:A中の2%Bから100%Bに2.4分かけてから、A中の2%Bを0.4分間。合計通液時間:2.8分。
方法14:API 150EXおよび島津LC8/SLC−10A LCシステム。カラム:C−18 4.6×30mm、3.5μm(Symmetry、Waters)。カラム温度:室温。勾配:イオン対形成を用いた逆相。流速:2mL/分。注入体積:10μL。勾配:A中の10%Bから100%Bに4分かけてから、A中の10%Bを1分間。合計通液時間:5分。
【0084】
X線結晶構造の決定を以下のように実施した。クライオストリーム窒素ガス冷却システムを用いて、化合物の結晶を120Kに冷却した。CCD面積高感度検出器付きのSiemens SMARTプラットフォーム回折計でデータを収集した。直接法により構造を解析し、全てのデータのF
2に対する全行列最小二乗法により精密化した。構造中の水素原子は、電子密度差マップ中で見出すことができた。水素以外の原子を異方的に精密化した。全ての水素原子は、O−H=0.84Å、C−H=0.99〜1.00Å、N−H=0.92〜0.93Åのライディング・モデル(riding model)を用いた算出位置にあった。全ての水素原子について、熱パラメーターを固定した[U(H)=結合している原子については1.2U]。Flack x−パラメーターは0.0(1)〜0.05(1)の範囲であり、絶対構造が正しいことが示唆される。データ収集、データ整理および吸収に用いたプログラムは、SMART、SAINTおよびSADABSであった[「SMART and SAINT, Area Detector Control and Integration Software」、Version 5.054、Bruker Analytical X-Ray Instruments Inc.、Madison、USA (1998)(非特許文献8)、Sheldrick、「SADABS, Program for Empirical Correction of Area Detector Data」、Version 2.03、University of Goettingen、ドイツ(2001)(非特許文献9)を参照のこと]。構造解析および分子グラフィックスには、プログラムSHELXTL[Sheldrick、「SHELXTL, Structure Determination Programs」、Version 6.12、Bruker Analytical X-Ray Instruments Inc.、Madison、USA、(2001)(非特許文献10)を参照のこと]を使用した。
【0085】
本発明の化合物の合成(化合物10および11)
Taberら、J. Am. Chem. Soc.、124(42)、12416頁、(2002)(非特許文献11)に記載されている要領で調製した、合成が文献中に記載されている化合物1から開始して、本明細書に記載する要領で8つのステップで化合物8を調製できる。この材料を、本明細書に記載のようにキラルSFCにより分離すると、化合物9およびent−9を得ることができる。Boc−保護基の開裂後、還元的アミノ化を用いて、窒素原子上にn−プロピル基を導入することができる。その結果得られる遮蔽されたカテコールアミンを48%HBrで処理することにより、またはBBr
3と反応させることにより、標準条件下で脱保護すると、化合物10およびent−10を得ることができる。塩基の存在下での10とCH
2ClBrまたは関連試薬とのさらなる反応を適用して本発明の化合物(化合物11)を得ることができる。
【0086】
【化5】
【0087】
化合物10およびent−10の合成。
7−ヨード−1,2,6−トリメトキシナフタレン(化合物2)。
【0088】
【化6】
【0089】
乾燥THF(200mL)中の化合物1(26.2g、Taberら、J. Am. Chem. Soc.、124(42)、12416頁、(2002)(非特許文献11)に記載されている要領で調製)の撹拌溶液に、アルゴン下、−78℃でs−ブチルリチウム(1.2M、シクロヘキサン中、110mL)をゆっくり加えた。この溶液を−78℃で3時間撹拌した。乾燥THF(50mL)中のヨウ素溶液(30.5g)を10分間にわたり加えた。次に、その結果得られた混合物を−78℃でさらに10分間撹拌した。飽和NH
4Cl(100mL)、水(240mL)およびEt
2O(240mL)を加えることにより反応混合物をクエンチした。有機層を10%亜硫酸ナトリウム水溶液(100mL)で洗浄し、乾燥(Na
2SO
4)させてから真空中で濃縮した。粗材料を蒸留により精製して、未反応の出発物質を除去した。残留物をシリカゲル・クロマトグラフィー(EtOAc/ヘプタン)によりさらに精製すると不純な固形材料が生成し、これをEtOAc/ヘプタンからの沈殿により精製すると、11.46gの化合物2が得られた。
【0090】
(E/Z)−3−(3,7,8−トリメトキシナフタレン−2−イル)−アクリロニトリル(化合物3)。
【0091】
【化7】
【0092】
マイクロ波反応器用バイアルに入った乾燥アセトニトリル(10.7mL)中の化合物2(3.41g)の懸濁液に、アクリロニトリル(1.19mL)、Pd(OAc)
2(73mg)およびトリエチルアミン(1.48mL)を加えた。バイアルを密封し、この混合物をマイクロ波照射下で145℃にて40分間加熱した。この手順をさらに2回実施した(合計10.23gの化合物5を用いた)。未精製の反応混合物を合わせ、触媒を濾過により除去し、真空中で濾液を濃縮した。残留物をEt
2O(300mL)と2M HCl(150mL)との間で分離した。有機層をブライン(100mL)で洗浄し、乾燥(Na
2SO
4)させてから真空中で濃縮した。粗材料(7.34g)をシリカゲル・クロマトグラフィー(EtOAc/ヘプタン)により精製すると、オレフィン異性体の混合物としての5.23gの化合物3が生成した。
【0093】
3−(3,7,8−トリメトキシナフタレン−2−イル)−プロピオニトリル(化合物4)。
【0094】
【化8】
【0095】
化合物3(5.23g)をCHCl
3(15mL)および99%EtOH(100mL)に溶解した。10%Pd/C(0.8g)を加え、Parr振とう器を用いて水素圧3バール下で45分間この溶液を水素化した。触媒を濾過により除去し、濾液は小プラウ(plough)のシリカゲル(溶出剤:99%EtOH)を通過させた。収量:白色の固体物としての4.91gの化合物4。
【0096】
[3−(3,7,8−トリメトキシ−1,4−ジヒドロナフタレン−2−イル)プロピル]カルバミン酸t−ブチルエステル(化合物5)。
【0097】
【化9】
【0098】
化合物4(5.0g)を99%EtOH(150mL)に溶解し、この混合物を窒素雰囲気下で加熱して還流させた。ナトリウム金属(5g)を小さな塊の状態で3時間にわたり加えた。この混合物をさらに2時間還流させてから、室温で2日間撹拌した。次に、この混合物を再び加熱して還流させ、さらなるナトリウム金属(3.68g)を加え、この混合物を一晩還流させた。氷/水浴で冷却した後、固形の塩化アンモニウム(20g)および水(25mL)を加えることにより反応をクエンチした。その結果得られた混合物を濾過し、真空中で濾液を濃縮した。残留物をジエチルエーテル(50mL)と水(50mL)との間で分離した。水層を37%HClで中和させ、ジエチルエーテルで抽出した(2×50mL)。有機抽出物を合わせたものをブライン(50mL)で洗浄し、乾燥(MgSO
4)させてから真空中で濃縮すると、油が得られた。この材料をTHF(50mL)に溶解し、室温にてBoc
2O(2.34g)およびEt
3N(1.78mL)で処理した。6日後、揮発性物質を真空中で除去し、残留物をシリカゲル・クロマトグラフィー(EtOAc/ヘプタン)により精製した。これにより不純な化合物5(1.52g)が得られた。
【0099】
ラセミ6,7−ジメトキシ−2,3,4,4a,5,10−ヘキサヒドロ−ベンゾ[g]キノリンヒドロクロリド(化合物6)。
【0100】
【化10】
【0101】
化合物5(先のステップからの1.52g)をMeOH(20mL)に溶解した。37%HCl(3.5mL)を加え、この混合物を4時間還流させた。共沸的に水を除去するためにトルエンを用い、真空中で揮発性物質を除去した。これにより、不純な化合物6(0.89g)が黄色の油として得られた。
【0102】
ラセミ・トランス−6,7−ジメトキシ−3,4,4a,5,10,10a−ヘキサヒドロ−2H−ベンゾ[g]キノリン−1−カルボン酸t−ブチルエステル(化合物8)。
【0103】
【化11】
【0104】
化合物6(0.89g)をMeOH(10mL)に溶解し、NaCNBH
3(0.19g)を加えた。この反応物を室温で一晩撹拌した。粗混合物を氷/水浴で冷却してから、これをEt
2O(1mL)中の2M HClでクエンチした。この混合物をEt
2O(50mL)、水(50mL)および2M NaOH(10mL)の間で分離した。水層をジエチルエーテルで抽出した(3×50mL)。有機層を合わせたものを乾燥(MgSO
4)させてから真空中で濃縮すると、不純な遊離アミン(化合物7)が得られた。この材料をTHF(25mL)に溶解し、Boc
2O(0.68g)およびEt
3N(0.86mL)で室温にて1時間処理した。粗混合物を真空中で濃縮し、残留物をシリカゲル・クロマトグラフィー(EtOAc/ヘプタン)により精製すると、わずかに不純な1.18gのラセミ化合物8が得られた。
【0105】
ラセミ・トランス−6,7−ジメトキシ−3,4,4a,5,10,10a−ヘキサヒドロ−2H−ベンゾ[g]キノリン−1−カルボン酸t−ブチルエステルのエナンチオマーのSFC分離(化合物9およびent−9)。
【0106】
【化12】
【0107】
Chiralcel OD 21.2×250mmカラムを装備したBerger SFCマルチグラムII装置でのキラルSFCを用いて、化合物8(19.7g)をそのエナンチオマーに分離した。溶媒系:CO
2/EtOH(85:15)、方法:一定勾配、流速50mL/分。UV230nm検出により画分収集を実施した。早く溶出してくるエナンチオマー(4aR,10aRエナンチオマー、化合物9):9.0gの白色の固形物。遅く溶出してくるエナンチオマー(4aS,10aSエナンチオマー、化合物ent−9):8.1gの白色の固形物。
【0108】
(4aS,10aS)−6,7−ジメトキシ−1,2,3,4,4a,5,10,10a−オクタヒドロベンゾ[g]キノリンヒドロクロリド(化合物ent−9’)。
【0109】
【化13】
【0110】
化合物ent−9(0.52g)をMeOH(15mL)に溶解し、Et
2O(7.5mL)中の5M HClで室温にて2時間処理した。この混合物を真空中で濃縮し、固形物を真空中で乾燥させると、化合物ent−9’が白色の固形物として得られた。LC/MS(方法14):室温、1.31分。
【0111】
(4aR,10aR)−1−プロピル−1,2,3,4,4a,5,10,10a−オクタヒドロベンゾ[g]キノリン−6,7−ジオールヒドロブロミド(化合物10)。
【0112】
【化14】
【0113】
化合物9(0.5g)を99%EtOH(5mL)に溶解し、Et
2O(4mL)中の2M HClで室温にて一晩処理した。粗混合物を真空中で濃縮し、残留物をEtOAcと10%水性NaOH(5mL)との間で分離した。水層をEtOAcで抽出し、有機層を合わせたものをブラインで洗浄し、乾燥(MgSO
4)させ、真空中で濃縮した。残留物を99%EtOH(5mL)に溶解し、プロピオンアルデヒド(0.52mL)、NaCNBH
3(0.45g)およびAcOH(3滴)で、室温にて一晩処理した。粗混合物を飽和水性NaHCO
3(12.5mL)、水(12.5mL)およびEtOAc(2×25mL)の間で分配した。有機層を合わせたものをブラインで洗浄し、乾燥(MgSO
4)させ、真空中で濃縮した。残留物をシリカゲル・クロマトグラフィー(MeOH/EtOAc)により精製した。得られた中間体を、マイクロ波条件下で、48%HBr(3mL)で150℃にて1時間処理してから、粗混合物を4℃で一晩保管した。沈殿した材料を濾過により単離し、真空中で乾燥させた。化合物10の収量:固形物として103mg。LC/MS(方法25):室温0.77分。
【0114】
(4aS,10aS)−1−プロピル−1,2,3,4,4a,5,10,10a−オクタヒドロベンゾ[g]キノリン−6,7−ジオールヒドロブロミド(化合物ent−10)。
【0115】
【化15】
【0116】
化合物10について記載した手順は、化合物ent−9’(0.5g、還元的アミノ化ステップの前にEtOAcと10%水性NaOHとの間で分離することによりHCl塩を遊離させた)からの出発に従った。化合物ent−10の収量:固形物として70mg。LC/MS(方法25):室温0.70分。化合物ent−10の小量試料をMeOHに溶解し、ゆっくり室温で2カ月にわたり結晶化させた。形成された白色の結晶を回収し、X線分析にかけた(
図1を参照のこと)。X線結晶学により化合物ent−10の絶対配置を決定し、化合物9および10、ひいてはその誘導体の立体化学の明確な測定を可能にした。
【0117】
(6aR,10aR)−7−n−プロピル−6,6a,7,8,9,10,10a,11−オクタヒドロ−1,3−ジオキサ−7−アザシクロペンタ[a]アントラセンヒドロクロリド(化合物11)。
【0118】
【化16】
【0119】
化合物10(7.80g)、Cs
2CO
3(18.6g)、CH
2BrCl(2.2mL)およびDMF(180mL)をアルゴン雰囲気下で1時間、100℃に加熱した。未精製の反応混合物を分液漏斗に加えて氷/水(300mL)で希釈した。その結果得られる混合物をEt
2Oで抽出した(3×300mL)。有機層を合わせたものをブライン(200mL)で洗浄し、乾燥(MgSO
4)させてから真空中で濃縮した。残留物をシリカゲル・クロマトグラフィー(EtOAc/MeOH)により精製すると薄い赤色の固形物が得られ、これをMeOH(25mL)に溶解し、Et
2O(20mL)中の2M HClおよびEt
2O(100mL)を加えることにより、塩酸塩として沈殿させた。沈殿生成物を濾過により単離し、真空中で乾燥させた。化合物11の収量:5.1g。LC/MS(方法111):室温0.70分。ELSD100%。UV97.0%。MH
+:274.0。
【0120】
(4aR,10aR)−n−1−プロピル−2,3,4,4a,5,7,8,9,10,10a−デカヒドロ−1H−ベンゾ[g]キノリン−6−オン(化合物12)
欧州特許第1274411号(特許文献1)に記載されている要領で化合物12の合成を調製でき、その内容は、参照により本明細書に組み込まれる。化合物12は、前記の特許において(−)−GMC6650と呼ばれている。
【0121】
実験の部
【0122】
例1
化合物11および12は、in−vivo投与すると、化合物10のカテコール含有活性代謝物に転換する。
【0123】
【化17】
【0124】
この活性代謝物(すなわち化合物10)は、in−vitroにおいてD1受容体およびD2受容体の両方で強力な作動薬として機能することが見出された。以下でより詳細に考察するように、in−vivo実験から得られたデータは、この活性代謝物は他のドパミン作動薬より優れたプロファイルを有し、Lドパ/アポモルヒネ治療で見られる有効性と同等であることを示す。
【0125】
例2
化合物10の薬理学的試験
D
1 cAMPアッセイ
本化合物が、ヒトの組換えD
1受容体を安定に発現するCHO細胞においてD
1受容体介在性のcAMP形成を刺激または阻害するいずれかの能力を次のように測定した。細胞を96ウェル・プレート中に、11000細胞/ウェルの濃度で実験の3日前に播種した。実験当日、PBS(リン酸緩衝生理食塩水))中の予熱したG緩衝液(1mM MgCl
2、0.9mM CaCl
2、1mM IBMX(3−i−ブチル−1−メチルキサンチン)中で細胞を1回洗浄し、30nM A68930と、G緩衝液(アンタゴニズム)中で希釈した試験化合物、またはG緩衝液(アゴニズム)中で希釈した試験化合物との混合物100マイクロLを加えることにより、アッセイを開始した。
【0126】
細胞を37℃で20分間インキュベートし、100マイクロLのS緩衝液(0.1M HClおよび0.1mM CaCl
2)を加えることにより反応を停止させ、プレートを4℃で1時間置いた。68マイクロLのN緩衝液(0.15M NaOHおよび60mM NaOAc)を加え、プレートを10分間振盪させた。60マイクロlの反応物を、40マイクロLの60mM酢酸ナトリウム、pH6.2を含有するcAMP FlashPlates(DuPont、NEN)に移し、100マイクロLのICミックス(50mM酢酸ナトリウム、pH6.2、0.1%アジ化ナトリウム、12mM CaCl
2、1%BSA(ウシ血清アルブミン)および0.15マイクロ−Ci/mLの
125I−cAMP)を加えた。4℃での18時間のインキュベーションに次いでプレートを1回洗浄し、Wallac TriLux計数器で計数した。化合物10は、このアッセイにおいてD
1作動薬として作用することが実証された。
【0127】
D
2 cAMPアッセイ
本化合物が、ヒトD
2受容体でトランスフェクトしたCHO細胞においてD
2受容体介在性のcAMP形成阻害を刺激または阻害するいずれかの能力を次のように測定した。細胞を96ウェル・プレート中に、8000細胞/ウェルの濃度で実験の3日前に播種した。実験当日、予熱したG緩衝液(PBS中の1mM MgCl
2、0.9mM CaCl
2、1mM IBMX)中で細胞を1回洗浄し、G緩衝液(アンタゴニズム)中の、1マイクロMキンピロール、10マイクロMフォルスコリンおよび試験化合物の混合物100マイクロl、または、G緩衝液(アゴニズム)中の10マイクロMフォルスコリンおよび試験化合物を加えることにより、アッセイを開始した。
【0128】
細胞を37℃で20分インキュベートし、100マイクロlのS緩衝液(0.1M HClおよび0.1mM CaCl
2)を加えることにより反応を停止させ、プレートを4℃で1時間置いた。68マイクロLのN緩衝液(0.15M NaOHおよび60mM酢酸ナトリウム)を加え、プレートを10分間振盪させた。60マイクロLの反応物を、40マイクロLの60mM NaOAc、pH6.2を含有するcAMP FlashPlates(DuPont、NEN)に移し、100マイクロLのICミックス(50mM NaOAc、pH6.2、0.1%アジ化ナトリウム、12mM CaCl
2、1%BSAおよび0.15マイクロ−Ci/mlの
125I−cAMP)を加えた。4℃での18時間のインキュベーションに次いでプレートを1回洗浄し、Wallac TriLux計数器で計数した。化合物10は、このアッセイにおいてD
2作動薬として作用することが実証された。
【0129】
D
5アッセイ
hD
5でトランスフェクトしたCHO−Ga16細胞におけるドパミンによる細胞内Ca
2+放出の濃度依存刺激。細胞にカルシウム指示色素フルオロ−4を1時間載せた。カルシウム応答(蛍光変化)をFLIPR(蛍光定量的な画像化プレート・リーダー)により2.5分間モニターした。2つ組のウェルのピーク応答(EC
50)を各データ点について平均し、薬物濃度と共にプロットした(ドパミンについては
図2を参照のこと)。化合物10はこのアッセイにおいてD
5作動薬として作用することが実証された。
【0130】
6−OHDAラット・モデル
ドパミン作動薬は、D1受容体、D2受容体のいずれか、またはその両方で活性を有する場合がある。両方の受容体タイプを刺激し回転を誘導する能力について化合物を評価するために、片側性の6−OHDA病変を有するラットにおける回転応答を用いることができる(Ungerstedt and Arbuthnott、Brain Res.、1970、24、485頁(非特許文献3)、Setlerら、Eur. J. Pharmacol.、1978、50(4)、419頁(非特許文献12)およびUngerstedtら、「Advances in Dopamine Research」、(Kohsaka編)、Pergamon Press、1982、Oxford、219頁(非特許文献13))。6−OHDA(6−ヒドロキシドパミン)は、神経生物学者が実験動物の脳内において注射部位でドパミン作動性ニューロンを選択的に殺すために使用する神経毒である。6−OHDAモデルにおいては、黒質線条体のドパミン細胞は、黒質の前面に位置する内側前脳束中に6−OHDAを注射することにより脳の一側(片側)上で破壊される。この片側性の注射がアポモルヒネなどのドパミン作動薬による刺激と合わさると、脳の一側のみが刺激されることから回転行動が誘導されることになる。実験は、当該化合物について回転を誘導する最小有効用量(MED)を決定することから成る。一旦MEDを決定したら、第2の実験を実施して、ネモナプリド遮断を克服するための、化合物のMED(MED
ネモナプリド)を決定した。ネモナプリドは、D2受容体を遮断するD2拮抗薬であることから、観察されるいずれの回転もD1受容体での活性に依存することになろう。最後に、一旦MED
ネモナプリドがわかったら、MED
ネモナプリド用量を用い、D1拮抗薬SCH23390単独、D2拮抗薬ネモナプリド単独の効果を、最後に、SCH23390とネモナプリドとを用いた併用処置の効果を観察する第3の実験を行う。この第3の実験は、両方の受容体での化合物の活性を確認するものであるが、その理由は、いずれかの拮抗薬単独では試験化合物により誘導される回転応答を部分的に阻害することができるだけであるのに対し、併用処置ではラットにおける全ての回転が完全に遮断されるからである[Arnt and Hyttel、Psychopharmacology、1985、85(3)、346頁(非特許文献14)およびSonsallaら、J. Pharmacol Exp. Ther.、1988、247(1)、180頁(非特許文献15)]。このモデルを、D1/D2混合作動薬の原理実証用化合物としてアポモルヒネを使用して検証した。
【0131】
このモデルにおいて、化合物10は、D1/D2比率が約2〜4(これに対しアポモルヒネの場合は比率が約3)である「アポモルヒネ」様のプロファイルを有する。さらに、観察された作用の継続期間は、この化合物については約18時間であり、これは、Lドパ/アポモルヒネで見られる継続期間より有意に長い。D1成分は、プラミペキソールおよびロチゴチンにより例証されたようにはD2作動薬については観察できなかった。
【0132】
優越性モデル
アポモルヒネおよびLドパは、重度のドパミン枯渇のマウスモデルにおいて運動欠損(motility deficit)から回復させることが可能である。アポモルヒネおよびLドパは両方ともドパミンのD1受容体およびD2受容体を刺激する。D2受容体での作動薬であるプラミペキソールは、このモデルにおいては効果がない。
【0133】
実験を次のように実施した:MPTP(2×15mg/kg、皮下)でそれまでに処置を受け安定な病変を発症したマウスを使用し、ビヒクル処置したマウスを正常対照とする。MPTP(1−メチル−4−フェニル−1,2,3,6−テトラヒドロピリジン)は、脳の黒質中のあるニューロンを殺すことによりパーキンソン病の永久的な症状を引き起こす神経毒である。サルおよびマウスにおける疾患を試験するためにMPTPを使用する。実験当日、マウスをAMPT(250mg/kg、皮下)で処置してからホームケージに1.5時間戻し、その後マウスを運動ユニット(motility unit)中の個々のケージ内に置いた。AMPT(α−メチル−p−チロシン)は、脳のカテコールアミン活性(この場合、特にドパミン・レベル)を一時的に低下させる薬物である。AMPT注射の3時間後、化合物10で運動欠損の救済を試み、さらに1.5時間活性を記録した。救済処置後に収集した最初の30分のデータには「ノイズが含まれて(contaminated)」いたが、これは、ビヒクル対照におけるレベル増加により明らかなように、取扱いおよび注射で動物にストレスがかかっていたことによるものであり、このため、記録されたデータの最後の1時間を用いてデータを分析した。多様なドパミン作動性化合物を、このモデルにおいて生じた運動欠損から回復させる能力について試験した。Lドパ/ベンセラジドおよびアポモルヒネの両方は、マウスにおいて用量依存的な形で運動力を回復した。ベンセラジドは、血液脳関門を通過できないDOPAデカルボキシラーゼ阻害薬であり、脳外でのLドパのドパミンへの代謝を防止するために使用される。これに対し、D2作動薬であるプラミペキソールおよびブロモクリプチンは、マウスにおける運動力を回復しなかった。
【0134】
このモデルを使用して、化合物10は、D2作動薬に勝るLドパおよびアポモルヒネと同様の優越性を呈するか否かを評価した。化合物10について用量応答実験を実施したところ、内因性ドパミンの重度の枯渇により誘導された運動性低下障害から回復させる用量依存的な傾向が見られた。このモデルにおけるアポモルヒネ、プラミペキソールおよび化合物10の効果を直接比較する最終実験を実施し、化合物10は、処置したMPTPマウスにおいて運動力を回復でき、プラミペキソールより優れていたことを確認した。
【0135】
未投薬の6−OHDAラットを用いたジスキネジアモデルの誘導
片側性の6−OHDA病変を有する20匹のオスのSprague Dawleyラットを使用して、化合物10(皮下投与、n=7、第1群)によるジスキネジアの誘導を、Lドパ/ベンセラジド(6mg/kg / 15mg/kg、皮下、n=7、第2群)およびアポモルヒネ(1mg/kg、皮下、n=6、第3群)との比較で試験した。ベンセラジドは、血液脳関門を通過できないDOPAデカルボキシラーゼ阻害薬であり、脳外でのLドパのドパミンへの代謝を防止するために使用される。6−OHDAの手術後3週間、同側性の旋回を誘導する2.5mg/kgアンフェタミンにより誘導された回転応答について動物を試験した(アンフェタミンは、病変が生じていない側の無傷のニューロンを介して脳内のドパミンレベルを増加させる結果、脳の有病変側で主に作用するLドパおよびアポモルヒネなどの直接作動薬に対する動物の応答とは対照的に、動物を逆方向に回転させる)。この試験に含めた全ての動物は、60分に350回転超という基準を満たした。次に、アンフェタミンに対する動物の回転応答について群をバランスさせながら、3つの処置群にラットをランダムに割り付けた。
【0136】
実際のジスキネジア実験の間、ラットに1日1回試験化合物を皮下注射し、注射後3時間観察した。先に記載したとおりの異常不随意運動尺度(AIMS)(Lundbladら、Eur. J Neurosci.、15、120頁、(2002)(非特許文献16))を用い、ジスキネジアの存在について各動物を20分毎に1分間、3時間にわたり観察した。ラットに連続14日間薬物を投与し、1日目、2日目、3日目、4日目、5日目、8日目、10日目および12日目に評点付けを行った。二元配置反復測定ANOVAにより、有意な処置効果、時間効果および処置×時間の相互作用(treatment by time interaction)があったことが明らかになった(全てのケースにおいてp<0.001)。Holm−Sidak法を用いた事後比較により、化合物10で処置された動物は、Lドパまたはアポモルヒネのいずれかで処置された動物(評点は約70)と比較して有意に少ないジスキネジアを有した(評点は約30)ことが示される。Lドパ処置群とアポモルヒネ処置群との間に差はなかった。この実験後、アポモルヒネ群およびLドパ群において見られたジスキネジアの重症性に例Iがどのように影響するかを確認するために、全てのラットに15日目〜19日目に化合物10の皮下注射を行った。実験の19日目(化合物10については5日に相当する)にジスキネジアの評点付けを実施した。データから、Lドパおよびアポモルヒネにより誘導されたジスキネジアが、化合物10により誘導されたジスキネジアのレベル程度まで部分的に回復したことが示された(化合物10は、処置の12日後に観察された評点約30と比較して、第1群においてジスキネジアの増加を引き起こさなかった)。
【0137】
ジスキネジアラット・モデル
独立のジスキネジア試験は、プラミペキソールまたは化合物10のいずれかを用いてのLドパ誘導性ジスキネジアの回復を検討するものであった。簡潔に言えば、18匹の動物をLドパ/ベンセラジド(1kg当たり6mg/15mg、皮下)で7日間処置した。動物を1日目、3日目および5日目に観察し、AIMSの評点付けを行った。次に、5日目の評点を用いて動物を動物6匹ずつ3つの群に分けた。第1群は毎日Lドパ処置を続けた。第2群は化合物10(皮下投与)で処置した。第3群はプラミペキソール(0.16mg/kg、皮下)で処置した。処置は10日間毎日続け、ジスキネジアの量を1日目、5日目、9日目および10日目に評点付けした。二元配置反復測定分散分析により、化合物10で処置された動物は、プラミペキソール群およびLドパ/ベンセラジド群のいずれより有意に少ないジスキネジアを有したことが示唆される。プラミペキソール群は、Lドパ/ベンセラジド群より有意に少ないジスキネジアを有した。したがって、化合物10は、Lドパにより誘導されたジスキネジアからの回復に関し、プラミペキソールに勝る優れたプロファイルを有した。
【0138】
MPTP処置した普通のマーモセットにおける抗パーキンソン病効果
この実験は、MPTP処置した6匹のマーモセットを用いて行った(1日2.0mg/kg、最長で連続5日間、滅菌済の0.9%生理食塩溶液に溶解)。全ての動物は、それまでに、ジスキネジアを誘導するために、最長30日間毎日投与されるLドパ(12.5mg/kg、経口、+カルビドパ12.5mg/kg、経口)で処置しておいた。試験に先立ち、全ての対象は、基本的な自発運動の顕著な低下、運動の協調不足、異常な、および/または硬直した姿勢、機敏性の低下および頭部のチェック運動(checking movement)など安定な運動欠損を呈した。試験化合物のいずれかの前にドンペリドンを60分投与した。ドンペリドンは、悪心および嘔吐を抑制する抗ドパミン作動薬である。ケージ内に戦略的に置かれた8つの赤外線ビームから成る8つの光電性のスイッチから成る試験用ケージを用いて自発運動を評価し、ビームの妨害を1回として記録する。次に、時間区分当たりのビームの回数の合計数を時間の経過に従いプロットするか、または、総合的な活動について曲線下面積(AUC)として示す。処置について知らされていない、訓練を受けた観察者により、運動障害の評価を実施した。
【0139】
これまでに記載されているように、Lドパ(12.5mg/kg、経口)は自発運動を増加させ、運動障害から回復させた(Smithら、Mov. Disord.、2002、17(5)、887頁(非特許文献17))。この挑戦のために選んだ用量は、この薬物の用量応答曲線の最高用量である。化合物10(皮下投与)は、自発運動の用量依存的な増加および運動障害からの回復をもたらし、Lドパ(12.5mg/kg、経口)の場合より大きい応答をもたらす傾向があった。 試験化合物は両方とも、Lドパと比較して運動障害からの持続的な回復をもたらし、Lドパ同様に有効であった。化合物10は、Lドパと比較して運動障害からの持続的な回復をもたらし、Lドパ同様に有効であった。
【0140】
例3
化合物11の薬理学的試験
D
1 cAMPアッセイ
本化合物が、ヒトの組換えD
1受容体を安定に発現するCHO細胞においてD
1受容体介在性のcAMP形成を刺激または阻害するいずれかの能力を次のように測定した。細胞を96ウェル・プレート中に、11000細胞/ウェルの濃度で実験の3日前に播種した。実験当日、PBS(リン酸緩衝生理食塩水)中の予熱したG緩衝液(1mM MgCl
2、0.9mM CaCl
2、1mM IBMX(3−i−ブチル−1−メチルキサンチン))中で細胞を1回洗浄し、30nM A68930と、G緩衝液(アンタゴニズム)中で希釈した試験化合物、またはG緩衝液(アゴニズム)中で希釈した試験化合物との混合物100マイクロLを加えることにより、アッセイを開始した。
【0141】
細胞を37℃で20分間インキュベートし、100マイクロLのS緩衝液(0.1M HClおよび0.1mM CaCl
2)を加えることにより反応を停止させ、プレートを4℃で1時間置いた。68マイクロLのN緩衝液(0.15M NaOHおよび60mM NaOAc)を加え、プレートを10分間振盪させた。60マイクロlの反応物を、40マイクロLの60mM酢酸ナトリウム、pH6.2を含有するcAMP FlashPlates(DuPont、NEN)に移し、100マイクロLのICミックス(50mM酢酸ナトリウム、pH6.2、0.1%アジ化ナトリウム、12mM CaCl
2、1%BSA(ウシ血清アルブミン)および0.15マイクロ−Ci/mLの
125I−cAMP)を加えた。4℃での18時間のインキュベーションに次いでプレートを1回洗浄し、Wallac TriLux計数器で計数した。本活性代謝物または化合物10は、このアッセイにおいてD
1作動薬であることが見出された。
【0142】
D
2 cAMPアッセイ
本化合物が、ヒトD
2受容体でトランスフェクトしたCHO細胞においてD
2受容体介在性のcAMP形成阻害を刺激または阻害するいずれかの能力を次のように測定した。細胞を96ウェル・プレート中に、8000細胞/ウェルの濃度で実験の3日前に播種した。実験当日、予熱したG緩衝液(PBS中の1mM MgCl
2、0.9mM CaCl
2、1mM IBMX)中で細胞を1回洗浄し、G緩衝液(アンタゴニズム)中の、1マイクロMキンピロール、10マイクロMフォルスコリンおよび試験化合物の混合物100マイクロl、または、G緩衝液(アゴニズム)中の10マイクロMフォルスコリンおよび試験化合物を加えることにより、アッセイを開始した。
【0143】
細胞を37℃で20分インキュベートし、100マイクロlのS緩衝液(0.1M HClおよび0.1mM CaCl
2)を加えることにより反応を停止させ、プレートを4℃で1時間置いた。68マイクロLのN緩衝液(0.15M NaOHおよび60mM酢酸ナトリウム)を加え、プレートを10分間振盪させた。60マイクロLの反応物を、40マイクロLの60mM NaOAc、pH6.2を含有するcAMP FlashPlates(DuPont、NEN)に移し、100マイクロLのICミックス(50mM NaOAc、pH6.2、0.1%アジ化ナトリウム、12mM CaCl
2、1%BSAおよび0.15マイクロ−Ci/mlの
125I−cAMP)を加えた。4℃での18時間のインキュベーションに次いでプレートを1回洗浄し、Wallac TriLux計数器で計数した。本活性代謝物または化合物10は、このアッセイにおいてD
2作動薬であることが見出された。
【0144】
D
5アッセイ
hD
5でトランスフェクトしたCHO−Ga16細胞におけるドパミンによる細胞内Ca
2+放出の濃度依存刺激。細胞にカルシウム指示色素フルオロ−4を1時間載せた。カルシウム応答(蛍光変化)をFLIPR(蛍光定量的な画像化プレート・リーダー)により2.5分間モニターした。2つ組のウェルのピーク応答(EC
50)を各データ点について平均し、薬物濃度と共にプロットした。本活性代謝物または化合物10は、このアッセイにおいてD
5作動薬であることが見出された。
【0145】
6−OHDAラット・モデル
ドパミン作動薬は、D1受容体、D2受容体のいずれか、またはその両方で活性を有する場合がある。両方の受容体タイプを刺激し回転を誘導する能力について化合物を評価するために、片側性の6−OHDA病変を有するラットにおける回転応答を用いることができた[Ungerstedt and Arbuthnott、Brain Res.、24、485頁、(1970)(非特許文献3)、Setlerら、Eur. J. Pharmacol.、50(4)、419頁、(1978)(非特許文献12)およびUngerstedtら、「Advances in Dopamine Research」、(Kohsaka編)、Pergamon Press、1982、Oxford、219頁(非特許文献13)]。6−OHDA(6−ヒドロキシドパミン)は、神経生物学者が実験動物の脳内において注射部位でドパミン作動性ニューロンを選択的に殺すために使用する神経毒である。6−OHDAモデルにおいては、黒質線条体のドパミン細胞は、黒質の前面に位置する内側前脳束中に6−OHDAを注射することにより脳の一側(片側)上で破壊される。この片側性の注射がアポモルヒネなどのドパミン作動薬による刺激と合わさると、脳の一側のみが刺激されることから回転行動が誘導されることになる。実験は、当該化合物について回転を誘導する最小有効用量(MED)を決定することから成る。一旦MEDを決定したら、第2の実験を実施して、ネモナプリド遮断を克服するための、化合物のMED(MED
ネモナプリド)を決定する。ネモナプリドは、D2受容体を遮断するD2拮抗薬であることから、観察されるいずれの回転もD1受容体での活性に依存することになろう。最後に、一旦MED
ネモナプリドがわかったら、MED
ネモナプリド用量を用い、D1拮抗薬CH23390単独、D2拮抗薬ネモナプリド単独の効果を、最後に、SCH23390とネモナプリドとを用いた併用処置の効果を観察する第3の実験を行う。この第3の実験は、両方の受容体での化合物の活性を確認するものであるが、その理由は、いずれかの拮抗薬単独では試験化合物により誘導される回転応答を部分的に阻害することができるだけであるのに対し、併用処置ではラットにおける全ての回転が完全に遮断されるからである[Arnt and Hyttel、Psychopharmacology、85(3)、346頁、(1985)(非特許文献14)およびSonsallaら、J. Pharmacol Exp. Ther.、247(1)、180頁、(1988)(非特許文献15)]。このモデルを、D1/D2混合作動薬の原理実証用化合物としてアポモルヒネを使用して検証した。
【0146】
このモデルにおいては、本活性代謝物または化合物10および化合物11は、D1/D2比率が約2(これに対しアポモルヒネの場合は比率が約3)である「アポモルヒネ」様のプロファイルを有する。さらに、観察された作用の継続期間は、この化合物については約18時間であり、これは、Lドパ/アポモルヒネで見られる継続期間より有意に長い。D1成分は、プラミペキソールおよびロチゴチンにより例証されたようにはD2作動薬については観察できなかった。
【0147】
優越性モデル
アポモルヒネおよびLドパは、重度のドパミン枯渇のマウスモデルにおいて運動欠損(motility deficit)から回復させることが可能である。アポモルヒネおよびLドパは両方とも、ドパミンのD1受容体およびD2受容体を刺激する。D2様受容体での作動薬であるプラミペキソールは、このモデルにおいては効果がない。
【0148】
実験を次のように実施した:MPTP(2×15mg/kg、皮下)でそれまでに処置を受け安定な病変を発症したマウスを使用し、ビヒクル処置したマウスを正常対照とした。MPTP(1−メチル−4−フェニル−1,2,3,6−テトラヒドロピリジン)は、脳の黒質中のあるニューロンを殺すことによりパーキンソン病の永久的な症状を引き起こす神経毒である。サルおよびマウスにおける疾患を試験するためにMPTPを使用する。実験当日、マウスをAMPT(250mg/kg、皮下)で処置してからホームケージに1.5時間戻し、その後マウスを運動ユニット(motility unit)中の個々のケージ内に置いた。AMPT(α−メチル−p−チロシン)は、脳のカテコールアミン活性(この場合、特にドパミン・レベル)を一時的に低下させる薬物である。AMPT注射の3時間後、本活性代謝物または化合物10で運動力欠損の救済を試み、さらに1.5時間活性を記録した。救済処置後に収集した最初の30分のデータには「ノイズが含まれて(contaminated)」いたが、これは、ビヒクル対照におけるレベル増加により明らかなように、取扱いおよび注射で動物にストレスがかかっていたことによるものであり、このため、記録されたデータの最後の1時間を用いてデータを分析した。多様なドパミン作動性化合物を、このモデルにおいて生じた運動欠損を回復する能力について試験する。Lドパ/ベンセラジドおよびアポモルヒネは両方とも、マウスにおいて用量依存的な形で運動力を回復した。ベンセラジドは、血液脳関門を通過できないDOPAデカルボキシラーゼ阻害薬であり、脳外でのLドパのドパミンへの代謝を防止するために使用される。これに対し、D2作動薬であるプラミペキソールおよびブロモクリプチンは、マウスにおいて運動力を回復しなかった。
【0149】
このモデルを使用して、本活性代謝物または化合物10は、D2作動薬に勝るLドパおよびアポモルヒネと同様の優越性を呈するか否かを評価した。用量応答実験を実施したところ、内因性ドパミンの重度の枯渇により誘導された運動性低下障害から回復する用量依存的な傾向が見られた。アポモルヒネ、プラミペキソールおよび化合物10の効果を直接比較する最終実験を実施した。化合物10は、処置したMPTPマウスにおいて運動力を回復でき、プラミペキソールより優れていることが確認された。
【0150】
ジスキネジアラット・モデル
文献(Lundbladら、Eur. J Neurosci.、2002、15、120頁(非特許文献16))中で報告されているジスキネジアラット・モデルを使用して、ジスキネジアに関する本活性代謝物対Lドパ/ベンセラジドの効果を調べ、ジスキネジアを「パーキンソン病症状を呈する」ラットにおける異常な不随意運動(AIM)として評価した。
【0151】
試験デザイン
試験を通して、動物には1日1回t=−20分、0〜180分でLドパ/ベンセラジド(6mg/kgおよび15mg/kg、皮下)または本活性代謝物(化合物10)(B群)を投与した。ジスキネジアについて動物を評点付けした。1〜14日目:全ての動物にLドパ/ベンセラジド(A群)または本活性代謝物(化合物10)(B群)を投与した。
【0152】
1日目、3日目、5日目、8日目および12日目に、先に記載したとおりの異常不随意運動尺度(AIMS)(Lundbladら、Eur. J Neurosci.、2002、15、120頁(非特許文献16))を用いてジスキネジアを記録することによるAIM評点法(AIM−scoring)により、動物を評点付けした。15〜26日目:A群の動物を、Lドパ/ベンセラジドの代わりに試験薬で処置した(B群として)。15日目、16日目、17日目、19日目、22日目、24日目および26日目:AIM評点法により、動物を評点付けした。
【0153】
6−OHDAラットにおけるLドパ誘導性ジスキネジアからの回復
処置の8日後、A群の動物のジスキネジア評点は10〜12であり、この数値は12日目まで一定であった。これに対し、B群の動物は有意に少ないジスキネジアを有した(評点は2〜4)。B群については、ジスキネジアの度合いは試験の間中変化しなかった。A群の動物をLドパ/ベンセラジドから試験薬に変更させた後、この群の動物のジスキネジアレベルは、他方の群の動物について観察されたレベルまで徐々に低下した。したがって、化合物11は、Lドパより有意に少ないジスキネジアを誘導し、Lドパにより誘導されるジスキネジアを減少させることができた。
【0154】
MPTP処置した普通のマーモセットにおける抗パーキンソン病効果
この実験は、MPTP処置した6匹のマーモセットを用いて行った(1日2.0mg/kg、最長で連続5日間、滅菌済の0.9%生理食塩溶液に溶解)。全ての動物は、それまでに、ジスキネジアを誘導するために、最長30日間毎日投与されるLドパ(12.5mg/kg、経口、+カルビドパ12.5mg/kg、経口)で処置しておいた。試験に先立ち、全ての対象は、基本的な自発運動の顕著な低下、運動の協調不足、異常な、および/または硬直した姿勢、機敏性の低下および頭部のチェック運動(checking movement)など安定な運動欠損を呈した。試験化合物のいずれかの前にドンペリドンを60分投与した。ドンペリドンは、悪心および嘔吐を抑制する抗ドパミン作動薬である。ケージ内に戦略的に置かれる8つの赤外線ビームから成る8つの光電性のスイッチから成る試験用ケージを用いて自発運動を評価し、ビームの妨害を1回として記録する。次に、時間区分当たりのビームの回数の合計数を時間の経過に従いプロットするか、または、総合的な活動について曲線下面積(AUC)として示す。処置について知らされていない、訓練を受けた観察者により、運動障害の評価を実施した。
【0155】
これまでに記載されているように、Lドパ(12.5mg/kg、経口)は自発運動を増加させ、運動障害を回復した(Smithら、Mov. Disord.、2002、17(5)、887頁(非特許文献17))。この挑戦のために選んだ用量は、この薬物の用量応答曲線の最高用量である。化合物11(経口投与)ならびに化合物10(皮下投与)は自発運動の用量依存的な増加および運動障害からの回復をもたらし、こうした増加および回復はLドパ(12.5mg/kg、経口)の場合より大きい応答で生じる傾向があった。試験化合物は両方とも、Lドパと比較して運動障害からの持続的な回復をもたらし、Lドパ同様に有効であった。
【0156】
in vitro肝細胞アッセイ
凍結保存したオスのラットの肝細胞プール(Sprague Dawley)、および、10名のドナー(男女)に由来するヒト肝細胞プールをIn Vitro Technologies Inc.、BA、USAから購入した。細胞を水浴中で37℃にて解凍し、生細胞を計数し、各ウェルがラットおよびヒトの肝細胞についてそれぞれ250,000細胞/mLおよび500,000細胞/mLを含有する96ウェル・プレート中の5mM Hepes緩衝液を添加したダルベッコ改変イーグル培地(高グルコース)中の合計100マイクロLに播種した。インキュベーションは、プレ・インキュベーションの15分後に開始し、ラットについては0分、5分、15分、30分および60分時点、ならびに、ヒト肝細胞については0分、30分、60分、90分および120分時点で停止させた。インキュベーションは、10%1M HClを含有する等体積の氷冷のアセトニトリルを加えることにより停止させた。遠心分離に次ぎ、20マイクロLの上清をHPLCカラムAtlantis、dC18、3マイクロm、150×内径2.1mm(Waters、MA、USA)上に注射した。移動相は以下の組成を有した:A:5%アセトニトリル、95%H
2O、3.7ml/l 25%NH
3水溶液、1.8mL/Lギ酸。移動相B:100%アセトニトリルおよび0.1%ギ酸。流速は0.3ml/分であった。勾配は0%〜75%B、5分〜20分で運転し、Q−TOFマイクロ質量分析計(Waters、MA、USA)を用いて溶出液を分析した。生成物/代謝産物の形成を、精密質量測定、および、合成した標準との比較により確認すると、一致する保持時間が得られた。このアッセイにおいては、化合物11が化合物10に代謝されることが実証された。
【0157】
例4
化合物12の薬理学的試験
D
1 cAMPアッセイ
本化合物が、ヒトの組換えD
1受容体を安定に発現するCHO細胞においてD
1受容体介在性のcAMP形成を刺激または阻害するいずれかの能力を次のように測定した。細胞を96ウェル・プレート中に、11000細胞/ウェルの濃度で実験の3日前に播種した。実験当日、PBS(リン酸緩衝生理食塩水)中の予熱したG緩衝液(1mM MgCl
2、0.9mM CaCl
2、1mM IBMX(3−i−ブチル−1−メチルキサンチン))中で細胞を1回洗浄し、30nM A68930と、G緩衝液(アンタゴニズム)中で希釈した試験化合物、またはG緩衝液(アゴニズム)中で希釈した試験化合物との混合物100マイクロLを加えることにより、アッセイを開始した。
【0158】
細胞を37℃で20分間インキュベートし、100マイクロLのS緩衝液(0.1M HClおよび0.1mM CaCl
2)を加えることにより反応を停止させ、プレートを4℃で1時間置いた。68マイクロLのN緩衝液(0.15M NaOHおよび60mM NaOAc)を加え、プレートを10分間振盪させた。60マイクロlの反応物を、40マイクロLの60mM酢酸ナトリウム、pH6.2を含有するcAMP FlashPlates(DuPont、NEN)に移し、100マイクロLのICミックス(50mM酢酸ナトリウム、pH6.2、0.1%アジ化ナトリウム、12mM CaCl
2、1%BSA(ウシ血清アルブミン)および0.15マイクロ−Ci/mLの
125I−cAMP)を加えた。4℃での18時間のインキュベーションに次いでプレートを1回洗浄し、Wallac TriLux計数器で計数した。本活性代謝物(すなわち化合物10)は、このアッセイにおいてD
1作動薬であることが見出された。
【0159】
D
2 cAMPアッセイ
本化合物が、ヒトD
2受容体でトランスフェクトしたCHO細胞においてD
2受容体介在性のcAMP形成阻害を刺激または阻害するいずれかの能力を次のように測定した。細胞を96ウェル・プレート中に、8000細胞/ウェルの濃度で実験の3日前に播種した。実験当日、予熱したG緩衝液(PBS中の1mM MgCl
2、0.9mM CaCl
2、1mM IBMX)中で細胞を1回洗浄し、G緩衝液(アンタゴニズム)中の、1マイクロMキンピロール、10マイクロMフォルスコリンおよび試験化合物の混合物100マイクロl、または、G緩衝液(アゴニズム)中の10マイクロMフォルスコリンおよび試験化合物を加えることにより、アッセイを開始した。
【0160】
細胞を37℃で20分インキュベートし、100マイクロlのS緩衝液(0.1M HClおよび0.1mM CaCl
2)を加えることにより反応を停止させ、プレートを4℃で1時間置いた。68マイクロLのN緩衝液(0.15M NaOHおよび60mM酢酸ナトリウム)を加え、プレートを10分間振盪させた。60マイクロLの反応物を、40マイクロLの60mM NaOAc、pH6.2を含有するcAMP FlashPlates(DuPont、NEN)に移し、100マイクロLのICミックス(50mM NaOAc、pH6.2、0.1%アジ化ナトリウム、12mM CaCl
2、1%BSAおよび0.15マイクロ−Ci/mlの
125I−cAMP)を加えた。4℃での18時間のインキュベーションに次いでプレートを1回洗浄し、Wallac TriLux計数器で計数した。本活性代謝物(すなわち化合物10)は、このアッセイにおいてD
2作動薬であることが見出された。
【0161】
D
5アッセイ
hD
5でトランスフェクトしたCHO−Ga16細胞におけるドパミンによる細胞内Ca
2+放出の濃度依存刺激。細胞にカルシウム指示色素フルオロ−4を1時間載せた。カルシウム応答(蛍光変化)をFLIPR(蛍光定量的な画像化プレート・リーダー)により2.5分間モニターした。2つ組のウェルのピーク応答(EC
50)を各データ点について平均し、薬物濃度と共にプロットした(ドパミンについては
図1を参照のこと)。本活性代謝物(すなわち化合物10)は、このアッセイにおいてD
5作動薬であることが見出された。
【0162】
6−OHDAラット・モデル
ドパミン作動薬は、D1受容体、D2受容体のいずれかまたは両方で活性を有する場合がある。両方の受容体タイプを刺激し回転を誘導する能力について化合物を評価するために、片側性の6−OHDA病変を有するラットにおける回転応答を用いることができる[Ungerstedt and Arbuthnott、Brain Res.、24、485頁、(1970)(非特許文献3)、Setlerら、Eur. J. Pharmacol.、50(4)、419頁、(1978)(非特許文献12)およびUngerstedtら、「Advances in Dopamine Research」、(Kohsaka編)、Pergamon Press、1982、Oxford、219頁(非特許文献13)]。6−OHDA(6−ヒドロキシドパミン)は、神経生物学者が実験動物の脳内において注射部位でドパミン作動性ニューロンを選択的に殺すために使用する神経毒である。6−OHDAモデルにおいては、黒質線条体のドパミン細胞は、黒質の前面に位置する内側前脳束中に6−OHDAを注射することにより脳の一側(片側)上で破壊される。この片側性の注射がアポモルヒネなどのドパミン作動薬による刺激と合わさると、脳の一側のみが刺激されることから回転行動が誘導されることになる。実験は、当該化合物について回転を誘導する最小有効用量(MED)を決定することから成る。一旦MEDを決定したら、第2の実験を実施して、ネモナプリド遮断を克服するための、化合物のMED(MED
ネモナプリド)を決定する。ネモナプリドは、D2受容体を遮断するD2拮抗薬であることから、観察されるいずれの回転もD1受容体での活性に依存することになろう。最後に、一旦MED
ネモナプリドがわかったら、MED
ネモナプリド用量を用い、D1拮抗薬SCH23390単独、D2拮抗薬ネモナプリド単独の効果を、最後に、SCH23390とネモナプリドとを用いた併用処置の効果を観察する第3の実験を行う。この第3の実験は、両方の受容体での化合物の活性を確認するものであるが、その理由は、いずれかの拮抗薬単独では試験化合物により誘導される回転応答を部分的に阻害することができるだけであるのに対し、併用処置ではラットにおける全ての回転が完全に遮断されるからである[Arnt and Hyttel、Psychopharmacology、1985、85(3)、346頁(非特許文献14)およびSonsallaら、J. Pharmacol Exp. Ther.、1988、247(1)、180頁(非特許文献15)]。このモデルを、D1/D2混合作動薬の原理実証用化合物としてアポモルヒネを使用して検証した。
【0163】
このモデルにおいては、化合物10および12は、D1/D2比率が約2〜4(これに対しアポモルヒネの場合は比率が約3)である「アポモルヒネ」様のプロファイルを有する。さらに、観察された作用の継続期間は、この化合物については約18時間であり、これは、Lドパ/アポモルヒネで見られる継続期間より有意に長い。D1成分は、プラミペキソールおよびロチゴチンにより例証されたようにはD2作動薬については観察できなかった。
【0164】
優越性モデル
アポモルヒネおよびLドパは、重度のドパミン枯渇のマウスモデルにおいて運動欠損から回復することが可能である。アポモルヒネおよびLドパは両方とも、D1受容体およびD2受容体を刺激する。D2受容体での作動薬であるプラミペキソールは、このモデルにおいては効果がない。
【0165】
実験を次のように実施した:MPTP(2×15mg/kg、皮下)でそれまでに処置を受け安定な病変を発症したマウスを使用し、ビヒクル処置したマウスを正常対照とした。MPTP(1−メチル−4−フェニル−1,2,3,6−テトラヒドロピリジン)は、脳の黒質中のあるニューロンを殺すことによりパーキンソン病の永久的な症状を引き起こす神経毒である。サルおよびマウスにおける疾患を試験するためにMPTPを使用する。実験当日、マウスをAMPT(250mg/kg、皮下)で処置してからホームケージに1.5時間戻し、その後マウスを運動ユニット中の個々のケージ内に置いた。AMPT(α−メチル−p−チロシン)は、脳のカテコールアミン活性(この場合、特にドパミン・レベル)を一時的に低下させる薬物である。AMPT注射の3時間後、化合物10で運動力欠損の救済を試み、さらに1.5時間活性を記録した。救済処置後に収集した最初の30分のデータには「ノイズが含まれて」いたが、これは、ビヒクル対照におけるレベル増加により明らかなように、取扱いおよび注射で動物にストレスがかかっていたことによるものであり、このため、記録されたデータの最後の1時間を用いてデータを分析した。多様なドパミン作動性化合物を、このモデルにおいて生じた運動欠損から回復させる能力について試験した。Lドパ/ベンセラジドおよびアポモルヒネは両方とも、マウスにおいて用量依存的な形で運動力を回復した。ベンセラジドは、血液脳関門を通過できないDOPAデカルボキシラーゼ阻害薬であり、脳外でのLドパのドパミンへの代謝を防止するために使用した。これに対し、D2作動薬であるプラミペキソールおよびブロモクリプチンは、マウスにおいて運動力を回復しなかった。
【0166】
このモデルを使用して、化合物10は、D2作動薬に勝るLドパおよびアポモルヒネと同様の優越性を呈するか否かを評価した。用量応答実験を実施したところ、内因性ドパミンの重度の枯渇により誘導された運動性低下障害から回復させる用量依存的な傾向が見られた。アポモルヒネ、プラミペキソールおよび化合物10の効果を直接比較する最終実験を実施した。化合物10は、処置したMPTPマウスにおいて運動力を回復でき、プラミペキソールより優れていることが確認された。
【0167】
ジスキネジアラット・モデル
文献(Lundbladら、Eur. J Neurosci.、2002、15、120頁(非特許文献16))中で報告されているジスキネジアラット・モデルを使用して、ジスキネジアに関する化合物12対Lドパ/ベンセラジドの効果を調べ、ジスキネジアを「パーキンソン病症状を呈する」ラットにおける異常な不随意運動(AIM)として評価した。
【0168】
試験デザイン
試験を通して、動物には1日1回t=−20分、0〜180分でLドパ/ベンセラジド(6mg/kgおよび15mg/kg、皮下)または化合物12(B群)を投与した。ジスキネジアについて動物を評点付けした。1〜14日目:全ての動物にLドパ/ベンセラジド(A群)または化合物12(B群)を投与した。
【0169】
1日目、3日目、5日目、8日目および12日目に、先に記載したとおりの異常不随意運動尺度(AIMS)を用いてジスキネジアを記録することによるAIM評点法により、動物を評点付けした。15〜26日目:A群の動物を、Lドパ/ベンセラジドの代わりに化合物12で処置した(B群として)。15日目、16日目、17日目、19日目、22日目、24日目および26日目:AIM評点法により動物を評点付けした。
【0170】
結果
処置の8日後、A群の動物のジスキネジア評点は70〜80であり、この数値は15日目まで一定であった。これに対し、B群の動物は有意に少ないジスキネジアを有した(評点は10〜25)。B群については、ジスキネジアの度合いは試験の間中変化しなかった。A群の動物をLドパ/ベンセラジドから化合物12に10日間変更させた後、この群の動物のジスキネジアレベルは、30〜35の評点まで徐々に低下した。したがって、化合物12は、Lドパより有意に少ないジスキネジアを誘導し、Lドパにより誘導されるジスキネジアを減少させることができた。
【0171】
MPTP処置した普通のマーモセットにおける抗パーキンソン病効果
この実験は、MPTP処置した6匹のマーモセットを用いて行った(1日2.0mg/kg、最長で連続5日間、滅菌済の0.9%生理食塩溶液に溶解)。全ての動物は、それまでに、ジスキネジアを誘導するために、最長30日間毎日投与されるLドパ(12.5mg/kg、経口、+カルビドパ12.5mg/kg、経口)で処置しておいた。試験に先立ち、全ての対象は、基本的な自発運動の顕著な低下、運動の協調不足、異常な、および/または硬直した姿勢、機敏性の低下および頭部のチェック運動など安定な運動欠損を呈した。試験化合物のいずれかの前にドンペリドンを60分投与した。ケージ内に戦略的に置かれる8つの赤外線ビームから成る8つの光電性のスイッチから成る試験用ケージを用いて自発運動を評価し、ビームの妨害を1回として記録する。次に、時間区分当たりのビームの回数の合計数を時間の経過に従いプロットするか、または、総合的な活動について曲線下面積(AUC)として示す。処置について知らされていない、訓練を受けた観察者により、運動障害の評価を実施した。
【0172】
これまでに記載されているように、Lドパ(12.5mg/kg、経口)は自発運動を増加させ、運動障害から回復させた(Smithら、Mov. Disord.、2002、17(5)、887頁(非特許文献17))。この挑戦のために選んだ用量は、この薬物の用量応答曲線の最高用量である。化合物12(経口投与)ならびに化合物10(経口投与)は自発運動の用量依存的な増加および運動障害からの回復をもたらし、こうした増加および回復はLドパ(12.5mg/kg、経口)の場合より大きい応答で生じる傾向があった。試験化合物は両方とも、Lドパと比較して運動障害からの持続的な回復をもたらし、Lドパ同様に有効であった。