【課題を解決するための手段】
【0012】
上記の限界を考慮すると、本特許は、アンモノサーマル法によってIII族窒化物結晶を生産することに実際に利用できる高圧ベッセルを実現するためのいくつかの新たなアイデアを開示する。本特許は、また、アンモノサーマル法によって成長させられたIII族窒化物結晶の純度、透明度および構造特性を向上させる新たな方法を開示する。
【0013】
本発明は、III族窒化物材料のアンモノサーマル成長での使用に適した新たな高圧ベッセルを開示する。このベッセルは、高圧ベッセルに組み込まれる場合、現在、大きさに限界がある超合金ロッドまたはビレットのような原材料から作られる。可能な最大の高圧ベッセルを得ることができる、複数域の高圧ベッセルが開示される。
【0014】
ベッセルは、ベッセルを密封するための一つ以上のクランプを有し得る。クランプは、クランプ内に放射方向のグレインフローを有する金属または合金から形成される。この構成は、ベッセルが、現在のベッセルよりも大きさがかなり大きくなることを可能にする。
【0015】
高圧ベッセルは、バッフルなどの流動制限デバイスによって少なくとも3つの領域に分割され得る。この実施形態において、ベッセルは、その中で多結晶GaNまたは他の原材料のような
原料が溶解、または供給される、
原料領域を有している。ベッセルは、また、その中でIII族窒化物材料がシード材料上に結晶化される、結晶化領域を有している。ベッセルは、また、
原料領域と結晶化領域との間の緩衝領域、結晶化
領域および/または
原料領域に隣接してクランプの近傍に一つ以上の冷却
領域、または両方を有する。
【0016】
本発明は、また、純度、透明度および構造特性が向上された結晶を成長させる新たな処置を開示する。アルカリ金属含有鉱化剤が、高圧ベッセルがアンモニアで充填されるまで、酸素と水分とに最も少なく曝露される状態で満たされる。プロセスステップの間の酸素汚染を低減するいくつかの方法が示される。また、構造特性を改善するためのシード結晶のバックエッチングおよび新しい温度傾斜スキームが開示される。
【0017】
さらに、本発明は、圧力ベッセルの内壁上への多結晶GaNの寄生的な堆積を低減しつつ、選択的に構造特性を改善し、成長速度を低下させることがない、方法を開示する。塩基性鉱化剤を使用するアンモノサーマル成長におけるGaNの逆行する溶解度のために、結晶化領域の温度は、従来、
原料領域の温度よりも高く設定される。しかしながら、結晶化領域の温度を
原料領域の温度よりもわずかに低く設定することによって、GaNを成長させることが可能であることを発見した。成長のためのこの「逆の」温度設定を用いることによって、反応器の壁へのGaNの寄生的な堆積を大いに低減させた。さらに、成長した結晶の構造特性が、成長速度を犠牲にすることなく改善された。
例えば、本発明は以下の項目を提供する。
(項目1)
III族窒化物結晶を成長させることに適している円筒形高圧ベッセルであって、主要本体と、該主要本体の各端部上に一つある二つの蓋とを備え、該主要本体は、析出硬化性Ni−Crベースの超合金からなり、垂直方向に沿うその最長の寸法と、2インチより大きいその内径と、4インチより大きいその最小の外径と、該内径の5倍より大きい該主要本体のその垂直方向の長さとを有し、
(a)該高圧ベッセルの内部チャンバーは、流動制限バッフルによって該垂直方向に沿って少なくとも3つの領域に分割されていることと、
(b)結晶化領域は、他の複数の領域の間に位置し、結晶成長の間、該複数の領域間で最高の温度に維持されることと、
(c)該両方の蓋に最も近い領域は、結晶成長の間、他の領域よりも低い温度に維持されることと、
(d)III族含有
原料によって充填された
原料領域は、該結晶化領域より上に位置することと
いう特徴をさらに含む、円筒形高圧ベッセル。
(項目2)
(a)上記主要本体は、鍛造された円形ロッドまたは鍛造された中空ロッドから構成され、該鍛造された円形ロッドまたは鍛造された中空ロッドの一次の鍛造圧が、元のビレットの半径方向に沿って該鍛造された円形ロッドまたは該鍛造された中空ロッドに適用されることと、
(b)上記両方の端部上の上記二つの蓋は、クランプによって閉鎖されることと、
(c)該クランプは、析出硬化性Ni−Crベースの超合金の鍛造されたディスクから構成され、該析出硬化性Ni−Crベースの超合金の鍛造されたディスクの一次の鍛造圧が該元のビレットの上記長手方向に沿って適用される、ことと
いう特徴をさらに含む、項目1に記載の円筒形高圧ベッセル。
(項目3)
(a)上記主要本体は、鍛造された円形ロッドまたは鍛造された中空ロッドから構成され、該鍛造された円形ロッドまたは鍛造された中空ロッドの一次の鍛造圧が元のビレットの半径方向に沿って適用される、ことと、
(b)上記両方の端部上の上記二つの蓋は、クランプによって閉鎖されることと、
(c)該クランプは合金鋼で構成され、上記ベッセルは、結晶成長の間、550℃未満のクランプ温度を提供するように構成されていることと
をいう特徴をさらに含む、項目1に記載の円筒形高圧ベッセル。
(項目4)
(a)上記主要本体は、鍛造された円形ロッドまたは鍛造された中空ロッドから構成され、該鍛造された円形ロッドまたは鍛造された中空ロッドのグレインフローが元のビレットの長手方向に沿っている、ことと、
(b)上記両方の端部上の二つの蓋が、クランプによって閉鎖されることと、
(c)該クランプは、析出硬化性Ni−Crベースの超合金のディスクで構成され、該析出硬化性Ni−Crベースの超合金のディスクのグレインフローが該元のビレットの半径方向に沿っている、ことと
いう特徴をさらに含む、項目1に記載の円筒形高圧ベッセル。
(項目5)
一つ以上の緩衝空間が、上記結晶化領域と上記
原料領域との間の流動制限バッフルによって生成される、項目1〜4のうちのいずれか一項に記載のIII族窒化物結晶を成長させる円筒形高圧ベッセル。
(項目6)
上記緩衝空間の高さは、上記高圧ベッセルの内径の少なくとも1/5である、項目5に記載のIII族窒化物結晶を成長させる円筒形高圧ベッセル。
(項目7)
上記結晶化領域のための加熱器が550℃より高い温度を提供するように構成されている、項目1〜6のうちのいずれか一項に記載のIII族窒化物結晶を成長させる円筒形高圧ベッセル。
(項目8)
少なくとも上記高圧ベッセルおよび加熱器は、爆発封じ込め筺体内に収容され、該爆発封じ込め筺体の壁厚が1/2インチを超える、上記項目のうちのいずれか一項に記載のIII族窒化物結晶を成長させる円筒形高圧ベッセル。
(項目9)
アンモニアが、上記爆発封じ込め筐体の外側から遠隔的に弁を動作させることによって放出される、上記項目のうちのいずれか一項に記載のIII族窒化物結晶を成長させる円筒形高圧ベッセル。
(項目10)
項目1〜9のいずれか一項に記載の円筒形高圧ベッセルを使用してIII族窒化物シード結晶を成長させる方法であって、
(a)上記
原料領域内にIII族窒化物シード結晶を装填し、上記
原料領域内にIII族含有供給源を装填することと、
(b)上記鉱化剤が酸素および水分への最小の曝露を有する態様で該高圧ベッセルの中にアルカリ金属含有鉱化剤を装填することと、
(c)該高圧ベッセルを密封することと、
(d)該高圧ベッセルを1×10
−5ミリバールより低い圧力まで排気することと、
(e)該高圧ベッセルをアンモニアで充填することと、
(f)該結晶化領域の温度を500℃より上
に昇温することと、
(g)(f)に記載された温度条件を、結晶を成長させるのに十分な時間の間、維持することと、
(h)アンモニアを放出して、結晶成長を停止させることと、
(i)該高圧ベッセルを密封解除することと
を含む、方法。
(項目11)
ステップ(d)の間、上記高圧ベッセルを加熱することをさらに含む、項目10に記載の円筒形高圧ベッセル内においてIII族窒化物結晶を成長させる方法。
(項目12)
上記鉱化剤は、Li、Na、Kから選択される一つ以上のアルカリ金属であって、上記方法は、
(a)該鉱化剤から表面の酸化物層を除去するステップと、
(b)金属被覆によって該アルカリ金属の新鮮な表面を被覆するステップと、
(c)該高圧ベッセル内に該金属被覆アルカリ金属を装填するステップと
をさらに含む、項目10または11に記載の円筒形高圧ベッセル内においてIII族窒化物を成長させる方法。
(項目13)
上記ステップ(b)はアルカリ金属を融解することと、金属容器内でアルカリ金属を凝固させることとを含む、項目12に記載の方法。
(項目14)
上記金属被覆がNiである項目12また13に記載の方法。
(項目15)
上記アルカリ金属がNaである項目12〜14のいずれか一項に記載の方法。
(項目16)
項目10に記載のステップ(b)は気密容器を使用することによって実行され、該気密容器は、酸素と水分とが制御された環境において上記鉱化剤で充填され、該容器は該鉱化剤を放出する一方で、上記高圧ベッセルは、加熱によって自己昇圧される、項目10〜15のいずれか一項に記載の方法。
(項目17)
上記高圧ベッセルは、還元ガスで充填され、少なくとも一度、1×10
−5ミリバールより低い圧力まで連続的にポンプ排出される、項目10〜16のうちのいずれか一項に記載の方法。
(項目18)
上記高圧ベッセルは、項目17に記載のステップの間、加熱される、項目17に記載の方法。
(項目19)
上記還元ガスは、アンモニアを含有する、項目17または18に記載のIII族窒化物結晶を成長させる方法。
(項目20)
上記還元ガスは、水素を含有する、項目17〜19のいずれか一項に記載のIII族窒化物結晶を成長させる方法。
(項目21)
Ce、Ca、Mg、Al、MnおよびFeのうちの少なくとも一つを含有している添加剤が、上記鉱化剤にさらに添加される、項目10〜20のいずれか一項に記載の方法。
(項目22)
B、In、Zn、SnおよびBiのうちの少なくとも一つを含有する添加剤が、上記鉱化剤にさらに添加される、項目10〜20のいずれか一項に記載の方法。
(項目23)
上記III族窒化物シード結晶は、上記ステップ(f)において、結晶成長を開始させる前にバックエッチングされる、項目10〜20のいずれか一項に記載の方法。
(項目24)
上記III族窒化物シード結晶が、上記
原料領域の温度を400℃よりも高く維持することによってバックエッチングされ、上記結晶化領域の温度が、項目10に記載の上記ステップ(f)において結晶成長を開始する前に該
原料領域の温度よりも少なくとも50℃低く維持される、項目23に記載の方法。
(項目25)
上記III族窒化物シード結晶は、上記結晶化領域の温度を400℃より低く維持することによってバックエッチングされ、該結晶化領域の温度は、項目10に記載の上記ステップ(f)において結晶成長を開始させる前に上記
原料領域の温度より少なくとも50℃高く維持される、項目23に記載の方法。
(項目26)
上記III族窒化物シード結晶は、エッチングガスを含有する環境内において、項目10に記載の上記ステップ(a)の前に、800℃より高い温度で熱的にバックエッチングされ、該エッチングガスはフッ化水素、フッ素、塩化水素、塩素、臭化水素、臭素、ヨウ化水素、ヨウ素、アンモニアおよび水素から選択される、項目23に記載の方法。
(項目27)
上記III族窒化物シード結晶は、1マイクロメートルを超える量だけバックエッチン
グされる、項目23〜26のいずれか一項に記載の方法。
(項目28)
上記結晶化領域の温度は、項目10に記載の上記ステップ(f)において、結晶成長を開始させる前に、上記
原料領域の温度より低く維持される、項目10〜27のいずれか一項に記載の方法。
(項目29)
項目28における上記ステップのための持続期間は、1時間を超える、項目28に記載の方法。
(項目30)
アンモノ塩基性の溶液が使用され、上記結晶化領域の温度は、項目10に記載のステップ(g)の間、上記
原料領域の温度に設定されるか、または該
原料領域の温度よりも低く設定される、項目10〜29のいずれか一項に記載の方法。
(項目31)
上記結晶化領域と上記
原料領域との間の温度差は、30℃より小さい、項目30に記載の方法。
(項目32)
円筒形高圧ベッセルを使用してIII族窒化物結晶を成長させる方法であって、該円筒形高圧ベッセルは、一つ以上の流動制限バッフルによって分離される結晶化領域と
原料領域とを少なくとも有し、該方法は、
(a)該結晶化領域内にIII族窒化物シード結晶を装填し、該
原料領域内にIII族含有供給源を装填するステップと、
(b)アルカリ金属含有鉱化剤が酸素または水分に最小に曝露される態様で、該高圧ベッセル内に該鉱化剤を装填するステップと、
(c)該高圧ベッセルを密封するステップと、
(d)該高圧ベッセルを1×10
−5ミリバールより低い圧力までポンプ排出するステップと、
(e)該高圧ベッセルをアンモニアで充填するステップと、
(f)該結晶化領域の温度を500℃より上
に昇温するステップと、
(g)(f)に記載された該温度条件を、結晶を成長させるのに十分長い間、維持するステップと、
(h)アンモニアを放出して結晶成長を停止させるステップと、
(i)該高圧ベッセルを密封解除するステップと
を含む、方法。
(項目33)
上記ステップ(d)の間、上記高圧ベッセルを加熱することをさらに含む項目32に記載の方法。
(項目34)
一つ以上の流動制限バッフルによって分離される結晶化領域と
原料領域とを少なくとも有する円筒形高圧ベッセルを使用して、III族窒化物結晶を成長させる方法であって、
(a)鉱化剤としてLi、NaおよびKから選択されるアルカリ金属を使用することと、
(b)該鉱化剤から表面の酸化層を除去することと、
(c)金属被覆によって該アルカリ金属の新鮮な表面を被覆することと、
(d)該アルカリ金属が酸素および水分への最小の曝露を有する態様で、該高圧ベッセル内に該金属被覆アルカリ金属を装填することと、
(e)該結晶化領域内にIII族窒化物シード結晶を装填し、該
原料領域内にIII族含有供給源を装填することと、
(f)該高圧ベッセルを密封することと、
(g)該高圧ベッセルを1×10
−5ミリバールより低い圧力まで排気することと、
(h)該高圧ベッセルをアンモニアで充填させることと、
(i)該結晶化領域の温度を500℃より上
に昇温することと、
(j)(i)に記載された該温度条件を、結晶を成長させるのに十分長い間、維持することと、
(k)アンモニアを放出して結晶成長を停止させることと、
(l)該高圧ベッセルを密封解除することと
を含む、方法。
(項目35)
上記ステップ(c)は、金属容器内において上記アルカリ金属を融解させることと、凝固させることとを含む、項目34に記載の方法。
(項目36)
上記金属被覆がNiである、項目34に記載の方法。
(項目37)
円筒形高圧ベッセルを使用してIII族窒化物結晶を成長させる方法であって、該高圧ベッセルは、一つ以上の流動制限バッフルによって分離される結晶化領域と
原料領域とを少なくとも有し、該方法は、
(a)該結晶化領域内にIII族窒化物シード結晶を装填し、該
原料領域内にIII族含有供給源を装填することと、
(b)アルカリ金属含有鉱化剤が酸素または水分に最小に曝露される態様で、該高圧ベッセル内に該鉱化剤を装填することと、
(c)該高圧ベッセルを密封することと、
(d)該高圧ベッセルを1×10
−5ミリバールより低い圧力まで排気することと、
(e)該高圧ベッセルを還元ガスによって充填し、連続して該高圧ベッセルを1×10
−5ミリバールより小さい圧力まで排気することと、
(f)該高圧ベッセルをアンモニアによって充填することと、
(g)該結晶化領域の温度を500℃より上
に昇温することと、
(h)(g)に記載された該温度条件を、結晶を成長させるのに十分長い間、維持することと、
(i)アンモニアを放出して結晶成長を停止させることと、
(j)該高圧ベッセルを密封解除することと
を含む、方法。
(項目38)
該高圧ベッセルは、上記ステップ(e)の間、加熱される、項目37に記載の方法。
(項目39)
上記還元ガスは、アンモニアを含有する、項目37または38に記載の方法。
(項目40)
上記還元ガスは、水素を含有する、項目37〜39のいずれか一項に記載の方法。
(項目41)
一つ以上の流動制限バッフルによって分離される結晶化領域と
原料領域とを少なくとも有する円筒形高圧ベッセルを使用する、III族窒化物結晶を成長させる方法であって、
(a)該結晶化領域内にIII族窒化物シード結晶を装填し、該
原料領域内にIII族含有供給源を装填することと、
(b)アルカリ含有鉱化剤が酸素および水分への最小の曝露を有する態様で、該高圧ベッセルに該鉱化剤を装填することと、
(c)Ce、Ca、Mg、Al、MnおよびFeのうちの少なくとも一つを含有している添加剤を装填することと、
(d)該高圧ベッセルを密封することと、
(e)該高圧ベッセルを1×10
−5ミリバールより低い圧力に排気することと、
(f)該高圧ベッセルをアンモニアで充填することと、
(g)該結晶化領域の温度を500℃より上
に昇温することと、
(h)(g)に記載された温度条件を、結晶を成長させるのに十分な時間の間、維持することと、
(i)結晶成長を止めるためにアンモニアを放出することと、
(j)該高圧ベッセルを密封解除することと
を含む、方法。
(項目42)
一つ以上の流動制限バッフルによって分離される結晶化領域と
原料領域とを少なくとも有する円筒形高圧ベッセルを使用して、III族窒化物結晶を成長させる方法であって、
(a)該結晶化領域内にIII族窒化物シード結晶を装填し、該
原料領域内にIII族含有供給源を装填することと、
(b)アルカリ含有鉱化剤が酸素および水分への最小の曝露を有する態様で、該高圧ベッセルに該鉱化剤を装填することと、
(c)B、In、Zn、SnおよびBiのうちの少なくとも一つを含有している添加剤を装填することと、
(d)該高圧ベッセルを密封することと、
(e)該高圧ベッセルを1×10
−5ミリバールより低い圧力に排気することと、
(f)該高圧ベッセルをアンモニアで充填することと、
(g)該結晶化領域の温度を500℃より上
に昇温することと、
(h)(g)に記載された該温度条件を、結晶を成長させるのに十分な時間の間、維持することと、
(i)アンモニアを放出して結晶成長を停止させることと、
(j)該高圧ベッセルを密封解除することと
を含む、方法。
(項目43)
一つ以上の流動制限バッフルによって分離される結晶化領域と
原料領域とを少なくとも有する円筒形高圧ベッセルを使用して、III族窒化物結晶を成長させる方法であって、
(a)該結晶化領域内にIII族窒化物シード結晶を装填し、該
原料領域内にIII族含有供給源を装填することと、
(b)アルカリ含有鉱化剤が酸素および水分への最小の曝露を有する態様で、該高圧ベッセルに該鉱化剤を装填することと、
(c)該高圧ベッセルを密封することと、
(d)該高圧ベッセルを1×10
−5ミリバールより低い圧力まで排気することと、
(e)該高圧ベッセルをアンモニアで充填することと、
(f)該
原料領域の温度を400℃よりも高く維持することによって該シード結晶をバックエッチングすることであって、該結晶化領域の温度は、該
原料領域の温度よりも少なくとも50℃低く維持される、ことと、
(g)該結晶化領域の温度を500℃より上
に昇温することと、
(h)(g)に記載された該温度条件を、結晶を成長させるのに十分な時間の間、維持することと、
(i)アンモニアを放出して、結晶成長を停止させることと、
(j)該高圧ベッセルを密封解除することと
を含む、方法。
(項目44)
上記シード結晶は、上記ステップ(f)において、1マイクロメートルを超える量だけバックエッチングされる、項目43に記載の方法。
(項目45)
一つ以上の流動制限バッフルによって分離される結晶化領域と
原料領域とを少なくとも有する円筒形高圧ベッセルを使用して、III族窒化物結晶を成長させる方法であって、
(a)該結晶化領域内にIII族窒化物シード結晶を装填し、該
原料領域内にIII族含有供給源を装填することと、
(b)アルカリ含有鉱化剤が酸素および水分への最小の曝露を有する態様で、該高圧ベッセルに該鉱化剤を装填することと、
(c)該高圧ベッセルを密封することと、
(d)該高圧ベッセルを1×10
−5ミリバールより低い圧力まで排気することと、
(e)該高圧ベッセルをアンモニアで充填することと、
(f)該結晶化領域の温度を400℃よりも高く維持することによって、該シード結晶をバックエッチングすることであって、該結晶化領域の温度は、該
原料領域の温度よりも少なくとも50℃高く維持される、ことと、
(g)該結晶化領域の温度を500℃より上
に昇温することと、
(h)(g)に記載された該温度条件を、結晶を成長させるのに十分な時間の間、維持することと、
(i)アンモニアを放出して、結晶成長を停止させることと、
(j)該高圧ベッセルを密封解除することと
を含む、方法。
(項目46)
上記シード結晶は、上記ステップ(f)において、1マイクロメートルを超える量だけバックエッチングされる、項目45に記載の方法。
(項目47)
一つ以上の流動制限バッフルによって分離される結晶化領域と
原料領域とを少なくとも有する円筒形高圧ベッセルを使用して、III族窒化物結晶を成長させる方法であって、
(a)エッチングガスを含有する環境内において800℃より高い温度で、熱的にバックエッチングすることであって、該エッチングガスは、フッ化水素、フッ素、塩化水素、塩素、臭化水素、臭素、ヨウ化水素、ヨウ素、アンモニアまたは水素から選択される、ことと、
(b)該結晶化領域内にIII族窒化物シード結晶を装填し、該
原料領域内にIII族含有供給源を装填することと、
(c)アルカリ含有鉱化剤が酸素および水分への最小の曝露を有する態様で、該高圧ベッセルに該鉱化剤を装填することと、
(d)該高圧ベッセルを密封することと、
(e)該高圧ベッセルを1×10
−5ミリバールより低い圧力まで排気することと、
(f)該高圧ベッセルをアンモニアで充填することと、
(g)該結晶化領域の温度を500℃より上
に昇温することと、
(h)(g)に記載された該温度条件を、結晶を成長させるのに十分な時間の間、維持することと、
(i)アンモニアを放出して、結晶成長を停止させることと、
(j)該高圧ベッセルを密封解除することと
を含む、方法。
(項目48)
上記シード結晶は、上記ステップ(a)において、1マイクロメートルを超える量だけバックエッチングされる、項目47に記載の方法。
(項目49)
一つ以上の流動制限バッフルによって分離される結晶化領域と
原料領域とを少なくとも有する円筒形高圧ベッセルを使用して、III族窒化物結晶を成長させる方法であって、
(a)該結晶化領域内にIII族窒化物シード結晶を装填し、該
原料領域内にIII族含有供給源を装填することと、
(b)アルカリ含有鉱化剤が酸素および水分への最小の曝露を有する態様で、該高圧ベッセルに該鉱化剤を装填することと、
(c)該高圧ベッセルを密封することと、
(d)該高圧ベッセルを1×10
−5ミリバールより低い圧力まで排気することと、
(e)該高圧ベッセルをアンモニアで充填することと、
(f)該結晶化領域の温度を、結晶成長を開始させる前に1時間より長く該
原料領域の温度より低く維持することと、
(g)該結晶化領域の温度を500℃より上
に昇温することと、
(h)(g)に記載された該温度条件を、結晶を成長させるのに十分な時間の間、維持することと、
(i)アンモニアを放出して、結晶成長を停止させることと、
(j)該高圧ベッセルを密封解除することと
を含む、方法。
(項目50)
アンモノ塩基性の溶液が使用され、上記結晶化領域の温度が、上記
原料領域の温度に設定されるか、または該
原料領域の温度よりも低く設定される、項目32〜49のいずれか一項に記載の方法。
(項目51)
上記結晶化領域と上記
原料領域との間の温度差は、30℃より小さい、項目50に記載の方法。
(項目52)
項目10〜51のいずれか一項に記載の方法によって成長させられる単結晶GaN。
(項目53)
項目52に記載の単結晶GaNに等価な単結晶GaN。
(項目54)
項目52または53に記載の単結晶GaNからスライスされる単結晶GaNウェハー。
(項目55)
III族窒化物結晶性インゴットのアンモノサーマル成長のための反応器であって、
(a)チャンバーを画定する本体と、
(b)該反応器の端部を密封する第一のクランプであって、該第一のクランプは、該クランプの半径方向のグレインフローを有する金属または合金から形成される、第一のクランプと
を備える、反応器。
(項目56)
III族窒化物結晶性インゴットのアンモノサーマル成長のための反応器であって、
(a)チャンバーを画定する本体と、
(b)該反応器の
原料領域を加熱する第一の加熱器と、
(c)該反応器の結晶化領域を加熱する第二の加熱器と、
(d)緩衝領域および端部領域から選択される第三の領域と、
(e)検定によって、該
原料領域から該結晶化領域を分離するか、または該反応器の端部領域から該結晶化領域を分離する、少なくとも一つのバッフルと
を備え、該検定は、
存在する場合、複数のバッフルによって画定される該緩衝領域は、第一の端部バッフルと、該第一のバッフルとの間に一つ以上の選択的なバッフルを有する対向の端部バッフルとを備え、該第一の端部バッフルから該複数の対向の端部バッフルまでの距離は、該反応器の内径の少なくとも1/5であることと、
該反応器は、該端部領域が存在する場合、該端部領域に第一のクランプをさらに備えていることと
を含む、反応器。
(項目57)
上記第三の領域は、緩衝領域である、項目56に記載の反応器。
(項目58)
上記第三の領域は、端部領域である、項目56に記載の反応器。
(項目59)
上記反応器は、上記端部領域をさらに備える、項目57に記載の反応器である
(項目60)
上記端部領域の上記クランプは、該クランプ内に半径方向のグレインフローを有する金属または合金から形成される、項目58または59に記載の反応器。
(項目61)
上記クランプは、超合金から形成される、項目55〜60のいずれか一項に記載の反応器。
(項目62)
上記超合金は、Ni−Cr超合金を含む、項目55〜61のいずれか一項に記載の反応器。
(項目63)
上記クランプは、高
張力鋼から形成される、項目55〜60のいずれか一項に記載の反応器。
(項目64)
上記第一の加熱器は、上記反応器が超臨界アンモニア内において逆行する溶解度を有するガリウム窒化物結晶を成長させるように構成される場合、該反応器の結晶化領域内において該反応器の温度の近くであるが、該温度よりも高くない温度に該反応器の該
原料領域を維持するように構成される、項目55〜63のいずれか一項に記載の反応器。
(項目65)
上記第一の加熱器は、上記
原料領域を、上記結晶化領域の温度よりも約30℃以下だけ
高く維持するように構成される、項目64に記載の反応器。
(項目66)
上記反応器の第二の端部を密封する第二のクランプをさらに備える、項目55〜65のいずれか一項に記載の反応器。
(項目67)
III族窒化物結晶性インゴットのアンモノサーマル成長のための反応器であって、
(a)チャンバーを画定する本体と、
(b)カプセル材料内の鉱化剤であって、該カプセル材料は、該反応器内の成長条件下において破裂可能である酸素と水とが浸透しない材料である、カプセル材料内の鉱化剤と
を備える、反応器。
(項目68)
上記カプセル材料は、上記鉱化剤上の金属または合金の被覆であって、該鉱化剤は、上記反応器内の結晶成長条件において、軟化または融解する、項目67に記載の反応器。
(項目69)
上記カプセル材料は、上記反応器内の結晶成長条件下で破裂する水と酸素とが透過しない容器を備える、項目67に記載の反応器。
(項目70)
上記容器によって画定され、上記カプセル材料を含有するチャンバーは、結晶成長条件下で該反応器内の圧力よりも低い圧力を有する、項目69に記載の反応器。
(項目71)
III族窒化物結晶性材料を形成する方法であって、
(a)実質的に酸素と水とを含まない鉱化剤をアンモノサーマル成長反応器の反応チャンバーに提供することと、
(b)該チャンバーを排気することと、
(c)該チャンバー内で該III族窒化物結晶性材料を成長させることと
を含む、方法。
(項目72)
上記反応チャンバー内に酸素ゲッターを提供することをさらに含む、項目71に記載の方法。
(項目73)
ガリウム窒化物結晶性材料を形成する方法であって、
(a)反応器の
原料領域内において多結晶GaNを含む
原料を加熱することと、
(b)該反応器の結晶化領域においてシード材料を加熱することと、
(c)アルカリ鉱化剤によって超臨界アンモニア内に該多結晶GaNを溶解させることと、
(d)該溶解されたGaNをシード材料上に堆積させて、該ガリウム窒化物結晶性材料を成長させることと
を含み、
(e)該
原料領域の温度は、該結晶化領域の温度よりも高いが、その近くである、方法。
(項目74)
上記
原料領域の温度は、上記シード材料上に上記溶解されたGaNを堆積させる行為の間、上記結晶化領域の温度よりも約30℃以下だけ高い、項目73に記載の方法。
(項目75)
上記結晶性材料を成長させる行為の前に、上記
原料をバックエッチングすることをさらに含む、項目71〜74のうちのいずれか一項に記載の方法。