【実施例】
【0035】
以下、実施例により本発明を詳細に説明する。本発明における各特性の定義および測定法は以下の通りである。
(1)硫酸相対粘度:試料2.5gを96%濃硫酸25ccに溶解し、25℃恒温槽の一定温度下において、オストワルド粘度計を用いて測定した。
(2)総繊度:JIS L1013(1999) 8.3.1 A法により、所定荷重0.045cN/dtexで正量繊度を測定して総繊度とした。
(3)単繊維数:JIS L1013(1999) 8.4の方法で算出した。
(4)単繊維繊度:総繊度を単繊維数で除することで算出した。
(5)強度・伸度:JIS L1013 8.5.1標準時試験に示される定速伸長条件で測定した。試料をオリエンテック社製“テンシロン”(TENSILON)UCT−100を用い、掴み間隔は25cm、引張り速度は30cm/分で行った。なお、伸度はS−S曲線における最大強力を示した点の伸びから求めた。
(6)沸騰水収縮率:原糸をカセ状にサンプリングして、20℃、65%RHの温湿度調整室で24時間以上調整し、試料に0.045cN/dtex相当の荷重をかけて長さL
0を測定した。次に、この試料を無緊張状態で沸騰水中に30分間浸漬した後、上記温湿度調整室で4時間風乾し、再び試料に0.045cN/dtex相当の荷重をかけて長さL
1を測定した。それぞれの長さL
0およびL
1から次式により沸騰水収縮率を求めた。
沸騰水収縮率=[(L
0−L
1)/L
0]×100(%)
(7)繊度斑:ツェルベガー・ウースター(Zellweger USTER)社製のウースター・テスター・モニターC(USTER TESTER MONITOR C)を用いてハーフ値を測定した。INEATモードを使用して、糸条速度25m/分にて125mの測定を行った。
(8)風速:KANOMAX社製アネモマスターを各測定点で冷却風吹出部に密着させ測定した。測定点は冷却風吹出部を構成する筒体の上端部より0、50、100mmの位置と100mm以上は100mm毎に筒体の下端部まで、それぞれ円周方向に90度ずつ角度を変え4点測定し、この4点の風速平均を冷却風吹出部上端部からの各距離での風速とした。次いで、上下風速を設備的対応で変更した場合は、該変更位置で上部側と下部側に線引きし、意図的な風速比率変更を行わない場合は、上端部より300mmの位置で上部側と下部側に線引きし、区間風速積分を各有効冷却長で除することによってV
UとV
Lをそれぞれ求めた。
例えば、筒体上端部よりammの位置の風速をVa、冷却風吹出し長さをLとすると、350mmの位置で意図的に風速比率を変更させた場合の算出法は下記のとおりとなる。
V
U=[50(V
0+2V
50+V
100)+100(V
100+V
200)+150(V
200+V
300)]/2/350
V
L=[150(V
400+V
500)+100(V
500+V
600)+・・・]/2/(L−350)
なお、・・・は600mm以降で最大測定点まで同様に計算して足しあわせることを意味する。
【0036】
(9)ショックセンサー毛羽数:製糸工程にてオンラインでの毛羽個数をショックセンサー(SC)式毛羽カウンターで計測した。
(10)織物厚さ:JIS L 1096:1999 8.5に則り、試料の異なる5か所について厚さ測定機を用いて、23.5kPaの加圧下、厚さを落ち着かせるために10秒間待った後に厚さを測定し、平均値を算出した。
【0037】
(11)タテ糸・ヨコ糸の織物密度:JIS L 1096:1999 8.6.1に基づき測定した。試料を平らな台上に置き、不自然なしわや張力を除いて、異なる5か所について2.54cmの区間のタテ糸およびヨコ糸の本数を数え、それぞれの平均値を算出した。
【0038】
(12)カバーファクター:タテ糸およびヨコ糸の総繊度をそれぞれDw(dtex)、Df(dtex)、タテ糸およびヨコ糸の基布密度をそれぞれNw(本/2.54cm)、Nf(本/2.54cm)とし、下記の方法で算出した。
タテ糸カバーファクター:CFw=(Dw×0.9)
1/2×Nw
ヨコ糸カバーファクター:CFf=(Df×0.9)
1/2×Nf
総カバーファクター :CF=CFw+CFf
(13)織物目付:JIS L 1096:1999 8.4.2に則り、20cm×20cmの試験片を3枚採取し、それぞれの質量(g)を量り、その平均値を1m
2当たりの質量(g/m
2)で表した。
【0039】
(14)引張強度:JIS K 6404:1999 3 6.試験方法B(ストリップ法)に則り、織物のタテ方向及びヨコ方向のそれぞれについて、試験片を5枚ずつ採取し、幅の両側から糸を取り除いて幅30mmとし、引張試験機にて、つかみ間隔150mm、引張速度200mm/minで試験片が切断するまで引っ張り、切断に至るまでの最大荷重を測定し、タテ方向及びヨコ方向のそれぞれについて平均値を算出した。
【0040】
(15)破断伸度:JIS K 6404:1999 3 6.試験方法B(ストリップ法)に則り、織物のタテ方向及びヨコ方向のそれぞれについて、試験片を5枚ずつ採取し、幅の両側から糸を取り除いて幅30mmとし、これら試験片の中央部に100mm間隔の標線を付け、引張試験機にて、つかみ間隔150mm、引張速度200mm/minで試験片が切断するまで引っ張り、切断に至るときの標線間の距離を読み取り、下記式によって、破断伸度を算出し、タテ方向及びヨコ方向のそれぞれについて平均値を算出した。
E=[(L−100)/100]×100
E:破断伸度(%)、
L:切断時の標線間の距離(mm)。
(16)式1および式2:式1および式2はタテ方向のおよびヨコ方向の引張強度をタテおよびヨコ糸の総繊度と織密度で除して算出した。
式1=T1(N/cm)/D1(dtex)/S1(本/2.54cm)
式2=T2(N/cm)/D2(dtex)/S2(本/2.54cm)
(17)引裂強力:JIS K 6404:1999 4 6.試験方法B(シングルタング法)に準じ、長辺200mm、短辺76mmの試験片を織物のタテ、ヨコ、両方にそれぞれ5個の試験片を採取し、試験片の短辺の中央に辺と直角に75mmの切込みを入れ、引張試験機にてつかみ間隔75mm、引張速度200mm/minで試験片が引ききるまで引裂き、その時の引裂き荷重を測定した。得られた引裂き荷重のチャート記録線より、最初のピークを除いた極大点の中から大きい順に3点選び、その平均値をとった。最後にタテ方向及びヨコ方向のそれぞれについて、平均値を算出した。
【0041】
(18)剛軟度:ASTM D 4032−94:2002に則り、長辺204mm、短辺102mmの試験片を織物のタテ、ヨコ、両方にそれぞれ5個の試験片を採取し測定した。得られた最大荷重(N)について、タテ方向及びヨコ方向のそれぞれについて平均値を算出した。
【0042】
(19)通気度:JIS L 1096:1999 8.27.1 A法(フラジール形法)に準じて、試験差圧19.6kPaで試験したときの通気量を測定した。試料の異なる5か所から約20cm×20cmの試験片を採取し、口径100mmの円筒の一端に試験片を取り付け、取り付け箇所から空気の漏れが無いように固定し、レギュレーターを用いて試験差圧19.6kPaに調整し、そのときに試験片を通過する空気量を流量計で計測し、5枚の試験片についての平均値を算出した。
(20)滑脱抵抗力
ASTM D6479−02に従って、基布サンプルの端から5mmの位置に目印をつけ、該位置に正確に針を刺し、測定した。
タテ方向の滑脱抵抗力は、ヨコ糸に沿ってピンを刺し、そのピンでヨコ糸をタテ糸方向に移動させるときの最大荷重を測定したものであり、ヨコ方向の滑脱抵抗力は、タテ糸に沿ってピンを刺し、そのピンでタテ糸をヨコ方向に移動させるときの最大荷重を測定したものである。
[実施例1〜10、参考例4]
液相重合で得られたナイロン66チップに酸化防止剤として酢酸銅の5重量%水溶液を添加して混合し、ポリマ重量に対し、銅として68ppm添加吸着させた。次に沃化カリウムの50重量%水溶液および臭化カリウムの20重量%水溶液をポリマチップ100重量部に対してそれぞれカリウムとして0.1重量部となるよう添加吸着させ、バッチ式固相重合装置を用いて固相重合させて硫酸相対粘度が3.8のナイロン66ペレットを得た。得られたナイロン66ペレットをエクストルーダーへ供給し、計量ポンプにより総繊度が表1および表2の糸条を2本得るように吐出量を調節して紡糸口金に配し、295℃で溶融紡糸した。各紡糸口金は、表1および表2に示す単繊維数の糸条を2糸条得ることのできる数、即ち表1および表2に示す単繊維数の2倍の吐出孔が直径0.22mmで3つの同心円上に配置され、最外周の吐出孔群を同心円状に結んだときの直径は、徐冷筒(加熱筒)および冷却筒の内径より14mm小さいものを用いた。糸条吐出面の下方50mmにはヒーターを併設した円状の水蒸気吹出し装置を設置し、直径2mmで深度が4mmの孔を均等間隔に12個有し、表1および表2に示した温度に加熱した水蒸気を表1および表2の圧力で斜め60℃方向に吹き出させた。さらに口金直下には350℃に加熱した表1および表2の長さの徐冷筒を設け、表1および表2の冷却風吹出し長さを有する円筒状の環状冷却装置を用いて、20℃の冷却風を冷却筒内と大気圧との差圧が表1および表2の値となるように加圧して送風し、紡出糸条を冷却固化せしめた。冷却筒の冷却風吹出部を構成する筒体としては、厚さ4.6mmで濾過精度40μmの孔を有するフェノール樹脂含浸セルロースリボンを螺旋状に巻き付け筒状に成形した富士フィルター製“フジボン”を用いた。また、冷却筒の冷却風吹出部の上端から350mmの位置に、筒内上下での冷却風の速度を変更させるようにドーナツ状で開口率22.7%のパンチングプレートを配置した。冷却固化された糸条には、次に平滑剤等を有する非水系油剤を付与し、紡糸引き取りローラに捲回し、紡出糸条を引き取った。引き続き、連続して糸条を延伸・熱処理ゾーンに供給し、直接紡糸延伸法によりナイロン66繊維を製造した。この際、最も回転速度の大きい延伸ローラの回転速度(以下、延伸速度)を3200m/分の一定速度とし、引取速度と延伸速度比で表される総合延伸倍率が表1および表2に示される値となるように引き取りローラの回転速度を調節した。
【0043】
引き取られた糸条は、引き取りローラと給糸ローラの間で5%のストレッチをかけ、次いで給糸ローラと第1延伸ローラの間で該ローラ間の回転速度比が2となるように1段目の延伸、第1延伸ローラと第2延伸ローラの間で2段目の延伸を行った。引き続き、第2延伸ローラと弛緩ローラとの間で表1および表2に示した弛緩率で弛緩熱処理を施し、交絡付与装置にて糸条を交絡処理した後、巻き取り機にて巻き取った。各ローラの表面温度は、引き取りローラが常温、給糸ローラが40℃、第1延伸ローラが140℃、第2延伸ローラは230℃、弛緩ローラが150℃となるように設定した。また、原糸付着油分量が1.0重量%となるように非水系油剤の付与量を調整した。交絡処理は、交絡付与装置内で走行糸条に直角方向から高圧空気を噴射することにより行った。交絡付与装置の前後には走行糸条を規制するガイドを設け、噴射する空気の圧力は0.35MPaで一定とした。
得られたナイロン66繊維の特性を表1および表2に示す。
弛緩ローラと交絡付与装置の間にショックセンサー式毛羽カウンターを設置し、10
7mあたりの毛羽数も同様に表1および表2に示す。
【0044】
実施例1〜10では、総繊度200〜500dtexの範囲で1〜4dtexの単繊維繊度を有し、且つ強度9.0cN/dtex以上、伸度20%以上の高強度・高伸度のポリアミドマルチフィラメントを得ることができ、またショックセンサー毛羽数が20個/千万m以下であって毛羽品位は良好であった。
[比較例1〜4、参考例1〜3]
表2に示した硫酸相対粘度のチップを用い、計量ポンプにより総繊度が表2の糸条を2本得るように吐出量を調節して紡糸口金に配し、表2に示す単繊維数の糸条を2糸条得ることのできる数、即ち表2に示す単繊維数の2倍の吐出孔を有し、吐出孔間隔の最小値が7.5mmで千鳥配列となるように配列したものを用いた。1500mmの長さを有する横吹出し冷却装置から30m/分の冷却風を均一に吹き出させることによって、表2に示した延伸速度で2糸条得ることができるようにし、表2の条件でナイロン66繊維の製造を試みた以外は実施例1と同様にして行った。得られたナイロン66繊維の繊維物性および毛羽結果を表2に示した。
【0045】
比較例1は延伸倍率が低いにもかかわらず、実施例1に比べショックセンサー毛羽数の多いものであり、タフネスも劣るものであった。
【0046】
比較例2は冷却固化工程での単糸衝突が発生し、延伸倍率を大きく下げているにも関わらず、実施例6に比べショックセンサー毛羽数が150個/千万mと非常に多いものであった。
【0047】
比較例3は横吹出し冷却装置を用いて高延伸倍率としており、タフネスが低下し、ショックセンサー毛羽数が多いものであった。
【0048】
比較例4は低粘度のチップを用いているために、タフネスが低下し、ショックセンサー毛羽数が300個/千万mと非常に多く、糸切れも多いものであって、製織可能な毛羽品位ではなかった。
[比較例5]
延伸速度を2000m/分とし、3段延伸法を用いた以外は比較例1と同様に実施した。
【0049】
3段延伸とし、延伸速度を下げたことにより、高強度繊維が得られるものの、ショックセンサー毛羽数が200個/千万mと非常に多く、製織可能な毛羽品位ではなかった。
【0050】
【表1】
【0051】
【表2】
【0052】
[実施例11]
実施例5のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が57.5本/2.54cm、ヨコ糸の生機密度が58本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはバーテンプルを設置して基布を把持し、バックローラーと綜絞との間に、バックローラーから40cmの位置で、ワープラインから7cmタテ糸を持ち上げるようにガイドロールを取り付けた構成とした。
製織条件としては、製織時のタテ糸張力を150cN/本、織機停止時の上糸の張力を120cN/本、下糸の張力を169cN/本となるように調整し、織機回転数は500rpmとした。
【0053】
次いでこの基布に、オープンソーパー型精練機で精練槽温度80℃、水洗槽温度40℃で精練し、引き続き120℃で乾燥し、引き続きピンテンター乾燥機を用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で120℃にて1分間の熱セット加工を施した。
【0054】
得られたエアバッグ用基布の特性を表3に示した。得られたエアバッグ用基布は、従来のエアバッグ用基布と同等の機械特性を有しながら、軽量性、薄地性、柔軟性に優れたものであった。また、製織時の毛羽による停台回数は、2.5回/千mと量産に耐えうる製織状況であった。
[実施例12]
実施例7のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が69.0本/2.54cm、ヨコ糸の生機密度が69.0本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはバーテンプルを設置して基布を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を120cN/本、織機停止時の上糸の張力を120cN/本、下糸の張力を120cN/本となるように調整し、織機回転数は500rpmとした。
【0055】
次いでこの基布に、引き続きピンテンター乾燥機を用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で160℃にて1分間の熱セット加工を施した。
【0056】
得られたエアバッグ用基布の特性を表3に示した。得られたエアバッグ用基布は、従来のエアバッグ用基布と同等の機械特性を有しながら、軽量性、薄地性、柔軟性に優れたものであった。また、製織時の毛羽による停台回数は、2.0回/千mと量産に耐えうる製織状況であった。
[実施例13]
実施例1のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が49.0本/2.54cm、ヨコ糸の生機密度が49.0本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはバーテンプルを設置して基布を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を180cN/本、織機停止時の上糸の張力を180cN/本、下糸の張力を180cN/本となるように調整し、織機回転数は500rpmとした。
【0057】
次いでこの基布に、オープンソーパー型精練機で精練槽温度80℃、水洗槽温度40℃で精練し、引き続き120℃で乾燥し、引き続きピンテンター乾燥機を用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で120℃にて1分間の熱セット加工を施した。
【0058】
得られたエアバッグ用基布の特性を表3に示した。得られたエアバッグ用基布は、従来のエアバッグ用基布と同等の機械特性を有しながら、軽量性、薄地性、柔軟性に優れたものであった。また、製織時の毛羽による停台回数は、4.0回/千mと量産に耐えうる製織状況であった。
[実施例14]
実施例2のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が49.0本/2.54cm、ヨコ糸の生機密度が49.0本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはバーテンプルを設置して基布を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を180cN/本、織機停止時の上糸の張力を180cN/本、下糸の張力を180cN/本となるように調整し、織機回転数は500rpmとした。
【0059】
次いでこの基布に、オープンソーパー型精練機で精練槽温度80℃、水洗槽温度40℃で精練し、引き続き120℃で乾燥し、引き続きピンテンター乾燥機を用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で120℃にて1分間の熱セット加工を施した。
【0060】
得られたエアバッグ用基布の特性を表3に示した。得られたエアバッグ用基布は、従来のエアバッグ用基布と同等の機械特性を有しながら、軽量性、薄地性、柔軟性に優れたものであった。また、製織時の毛羽による停台回数は、2.0回/千mと量産に耐えうる製織状況であった。
[実施例15]
実施例3のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が54.5本/2.54cm、ヨコ糸の生機密度が55.5本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはバーテンプルを設置して基布を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を170cN/本、織機停止時の上糸の張力を170cN/本、下糸の張力を170cN/本となるように調整し、織機回転数は500rpmとした。
【0061】
次いでこの基布に、オープンソーパー型精練機で精練槽温度65℃、水洗槽温度40℃で精練し、引き続き120℃で乾燥し、引き続きピンテンター乾燥機を用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で120℃にて1分間の熱セット加工を施した。
【0062】
得られたエアバッグ用基布の特性を表3に示した。得られたエアバッグ用基布は、従来のエアバッグ用基布と同等の機械特性を有しながら、軽量性、薄地性、柔軟性に優れたものであった。また、製織時の毛羽による停台回数は、1.4回/千mと量産に耐えうる製織状況であった。
[実施例16]
実施例1のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が45.0本/2.54cm、ヨコ糸の生機密度が47.0本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはリングテンプルを設置して基布の耳部を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を100cN/本、織機停止時の上糸の張力を100cN/本、下糸の張力を100cN/本となるように調整し、織機回転数は600rpmとした。
【0063】
次いでこの基布を、乾燥温度85℃で乾燥したのち、精錬・セットを行うことなく、粘度が16Pa・sのメチルビニルシリコーン樹脂液を用いて、厚さ4mmのナイフを用いたフローティングナイフ法で、コーティング時の張力90kgf/m、ナイフと織物との接圧20kgf/m、速度20m/minでコーティングを行い、引き続き、190℃で1分間加硫処理を行った。
【0064】
得られたエアバッグ用基布の特性を表3に示した。得られたエアバッグ用基布は、従来のエアバッグ用基布と同等の機械特性を有しながら、軽量性、薄地性、柔軟性に優れたものであった。特に、塗布量は従来と変わらない条件でコーティングしたにもかかわらず、塗布量を低減することに成功した。また、製織時の毛羽による停台回数は、3.0回/千mと量産に耐えうる製織状況であった。
[実施例17]
実施例8のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が49.0本/2.54cm、ヨコ糸の生機密度が51.0本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはリングテンプルを設置して基布の耳部を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を100cN/本、織機停止時の上糸の張力を100cN/本、下糸の張力を100cN/本となるように調整し、織機回転数は600rpmとした。
【0065】
次いでこの基布を、乾燥温度85℃で乾燥したのち、精錬・セットを行うことなく、粘度が16Pa・sのメチルビニルシリコーン樹脂液を用いて、厚さ4mmのナイフを用いたフローティングナイフ法で、コーティング時の張力90kgf/m、ナイフと織物との接圧20kgf/m、速度20m/minでコーティングを行い、引き続き、190℃で1分間加硫処理を行った。
【0066】
得られたエアバッグ用基布の特性を表3に示した。得られたエアバッグ用基布は、従来のエアバッグ用基布と同等の機械特性を有しながら、軽量性、薄地性、柔軟性に優れたものであった。特に、塗布量は従来と変わらない条件でコーティングしたにもかかわらず、塗布量を低減することに成功した。また、製織時の毛羽による停台回数は、3.0回/千mと量産に耐えうる製織状況であった。
[実施例18]
実施例7のナイロン66繊維をタテ糸およびヨコ糸として用い、無撚りのまま、タテ糸の生機密度が67.0本/2.54cm、ヨコ糸の生機密度が69.0本/2.54cmの基布を製織した。
織機にはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはリングテンプルを設置して基布を把持し、バックローラーと綜絞との間にはガイドロールを配置しない構成とした。
製織条件としては、製織時のタテ糸張力を80cN/本、織機停止時の上糸の張力を80cN/本、下糸の張力を80cN/本となるように調整し、織機回転数は600rpmとした。
【0067】
次いでこの基布を、乾燥温度85℃で乾燥したのち、精錬・セットを行うことなく、粘度が16Pa・sのメチルビニルシリコーン樹脂液を用いて、厚さ4mmのナイフを用いたフローティングナイフ法で、コーティング時の張力90kgf/m、ナイフと織物との接圧20kgf/m、速度20m/minでコーティングを行い、引き続き、190℃で1分間加硫処理を行った。
【0068】
得られたエアバッグ用基布の特性を表3に示した。得られたエアバッグ用基布は、従来のエアバッグ用基布と同等の機械特性を有しながら、軽量性、薄地性、柔軟性に優れたものであった。特に、塗布量は従来と変わらない条件でコーティングしたにもかかわらず、塗布量を低減することに成功した。また、製織時の毛羽による停台回数は、1.0回/千mと量産に耐えうる製織状況であった。
【0069】
【表3】
【0070】
[比較例6]
参考例2のナイロン66繊維をタテ糸およびヨコ糸として用い、表4に示す条件とした以外は実施例11と同様にしてエアバッグ用基布を製造した。
得られたエアバッグ用基布の特性を表4に示した。得られたエアバッグ用基布は、実施例8の基布に比べ、同等の機械特性を有しているが、軽量性、薄地性、柔軟性のいずれも劣るものであった。製織時の毛羽による停台回数は、1.2回/千mと量産に耐えうる製織状況であった。
[比較例7]
比較例3のナイロン66繊維をタテ糸およびヨコ糸として用い、表4に示す条件とした以外は実施例11と同様にしてエアバッグ用基布を製造した。
得られたエアバッグ用基布の特性を表2に示した。得られたエアバッグ用基布は、実施例8の基布に比べ、軽量性、薄地性、柔軟性は同等であったが、伸度が小さく、エアバッグ用基布としては、タフネス性がなく、エアバッグ展開時に破断してしまうおそれがあった。また、製織時の毛羽による停台回数は、19.2回/千mと生産効率を著しく悪化させたばかりか、欠点数が多く、エアバッグ用基布には適用できない規格外製品となった。
[比較例8]
比較例2のナイロン66繊維をタテ糸およびヨコ糸として用い、タテ糸の生機密度が52.5本/2.54cm、ヨコ糸の生機密度が54.5本/2.54cmとした以外は実施例14と同様にしてエアバッグ用基布を製造した。
得られたエアバッグ用基布の特性を表4に示した。得られたエアバッグ用基布は、実施例14の基布に比べ、引張強力が小さく、軽量性、薄地性、柔軟性のいずれも劣るものであった。また、製織時の毛羽による停台回数は38.5回/千mと、生産効率を著しく悪化させたばかりか、欠点数が多く、エアバッグ用基布には適用できない規格外製品となった。
[比較例9]
参考例3のナイロン66繊維をタテ糸およびヨコ糸として用い、タテ糸の生機密度が54.5本/2.54cm、ヨコ糸の生機密度が54.0本/2.54cmとした以外は実施例14と同様にしてエアバッグ用基布を製造した。
得られたエアバッグ用基布の特性を表4に示した。得られたエアバッグ用基布は、実施例14の基布に比べ、通気度以外は同等の機械特性を有しているが、軽量性、薄地性、柔軟性のいずれも劣るものであった。製織時の毛羽による停台回数は、3.5回/千mと、量産に耐えうる製織状況であった。
[比較例10]
参考例1のナイロン66繊維をタテ糸およびヨコ糸として用い、タテ糸の生機密度が54.5本/2.54cm、ヨコ糸の生機密度が54.0本/2.54cmとした以外は実施例14と同様にしてエアバッグ用基布を製造した。
得られたエアバッグ用基布の特性を表4に示した。得られたエアバッグ用基布は、実施例14の基布に比べ、同等の機械特性を有しているが、軽量性、薄地性、柔軟性のいずれも劣るものであった。製織時の毛羽による停台回数は、0.8回/千mと量産に耐えうる製織状況であった。
[比較例11]
参考例3のナイロン66繊維をタテ糸およびヨコ糸として用い、タテ糸の生機密度が49.5本/2.54cm、ヨコ糸の生機密度が51.0本/2.54cmとした以外は実施例16と同様にしてエアバッグ用基布を製造した。
得られたエアバッグ用基布の特性を表4に示した。得られたエアバッグ用基布は、実施例16の基布に比べ、同等の機械特性を有しているが、軽量性、薄地性、柔軟性のいずれも劣るものであった。製織時の毛羽による停台回数は、3.1回/千mと、量産に耐えうる製織状況であった。
[比較例12]
参考例1のナイロン66繊維をタテ糸およびヨコ糸として用い、タテ糸の生機密度が49.5本/2.54cm、ヨコ糸の生機密度が51.0本/2.54cmとした以外は実施例17と同様にしてエアバッグ用基布を製造した。
得られたエアバッグ用基布の特性を表4に示した。得られたエアバッグ用基布は、実施例17の基布に比べ、同等の機械特性を有しているが、軽量性、薄地性、柔軟性のいずれも劣るものであった。製織時の毛羽による停台回数は、0.4回/千mと量産に耐えうる製織状況であった。
[比較例13]
参考例2のナイロン66繊維をタテ糸およびヨコ糸として用い、タテ糸の生機密度が57.0本/2.54cm、ヨコ糸の生機密度が59.0本/2.54cmとした以外は実施例16と同様にしてエアバッグ用基布を製造した。
得られたエアバッグ用基布の特性を表4に示した。得られたエアバッグ用基布は、実施例16の基布に比べ、同等の機械特性を有しているが、軽量性、薄地性、柔軟性のいずれも劣るものであった。製織時の毛羽による停台回数は、0.5回/千mと量産に耐えうる製織状況であった。
【0071】
【表4】