【実施例】
【0025】
以下には、本発明のアルカリ金属二次電池を具体的に作製した例を実施例として説明する。
【0026】
[ガーネット型酸化物の作製]
ガーネット型酸化物Li
5+XLa
3(Zr
X,Nb
2-X)O
12(X=0〜2)は、Li
2CO
3、La(OH)
3、ZrO
2、およびNb
2O
5を出発原料に用いて合成を行った。ここで、実験例1〜7のXの値は、それぞれX=0,1.0,1.5,1.625,1.75,1.875,2.0とした(表1参照)。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にて遊星ボールミル(300rpm/ジルコニアボール)で1時間、混合・粉砕を行った。出発原料の混合粉末をボールとエタノールから分離したのち、Al
2O
3製のるつぼ中にて、950℃、10時間大気雰囲気で仮焼を行った。その後、本焼結でのLiの欠損を補う目的で、仮焼した粉末に、Li
5+XLa
3(Zr
X,Nb
2-X)O
12(X=0〜2)の組成中のLi量に対して Li換算で10at.%になるようにLi
2CO
3を過剰添加した。この混合粉末を、混合のためエタノール中にて遊星ボールミル(300rpm/ジルコニアボール)で1時間処理した。得られた粉末を再び950℃、10時間大気雰囲気の条件下で再度仮焼した。その後、成型したのち、1200℃、36時間大気中の条件下で本焼結を行い、試料(実験例1〜7)を作製した。
【0027】
【表1】
【0028】
[ガーネット酸化物の物性の測定及び結果]
1.相対密度
電子天秤にて測定した乾燥重量をノギスを用いて測定した実寸から求めた体積で除算することにより、各試料の測定密度を算出した。また、理論密度を算出し、測定密度を理論密度で除算し100を乗算した値を相対密度(%)とした。実験例1〜7の相対密度は、88〜92%であった。
【0029】
2.相及び格子定数
各試料の相及び格子定数は、XRDの測定結果から求めた。XRDの測定は、XRD測定器(ブルカー(Buruker)製、D8ADVANCE)を用いて、試料粉末をCuKα、2θ:10〜120°,0.01°step/1sec.の条件で測定した。結晶構造解析は、結晶構造解析用プログラム:Rietan−2000(Mater. Sci. Forum, p321−324(2000),198)を用いて解析を行った。代表例として実験例1,3,5,7つまりLi
5+XLa
3(Zr
X,Nb
2-X)O
12(X=0,1.5,1.75,2)のXRDパターンを
図3に示す。
図3から、各試料は不純物を含まず単相であることがわかる。また、実験例1〜3,5〜7につき、XRDパターンより求めた格子定数のX値依存性を
図4に示す。
図4から、Zrの割合が増えるほど格子定数が増大することがわかる。これは、Zr
4+のイオン半径(r
Zr4+=0.79Å)がNb
5+のイオン半径(r
Nb5+=0.69Å)よりも大きいためである。格子定数が連続的に変化していることから、NbはZrサイトに置換されていると考えられる(全率固溶が可能と考えられる)。
【0030】
3.伝導度
伝導度は、恒温槽中にてACインピーダンスアナライザーを用い(周波数:0.1Hz〜1MHz、振幅電圧:100mV)、ナイキストプロットの円弧より抵抗値を求め、この抵抗値から算出した。ACインピーダンスアナライザーで測定する際のブロッキング電極にはAu電極を用いた。Au電極は市販のAuペーストを850℃、30分の条件で焼き付けることで形成した。実験例1〜7つまりLi
5+XLa
3(Zr
X,Nb
2-X)O
12(X=0〜2)の25℃での伝導度のX値依存性を
図5に示す。
図5から、伝導度は、Xが1.4≦X<2のとき、公知のLi
7La
3Zr
2O
12(つまりX=2、実験例7)に比べて高くなり、Xが1.6≦X≦1.95のとき、実験例7に比べて一段と高くなり、Xが1.65≦X≦1.9の範囲のとき、ほぼ極大値(6×10
-4Scm
-1以上)を取ることがわかる。上記1.で述べたとおり、各試料の相対密度は88〜92%であったことから、伝導度がX値に応じて変化するのは、密度による影響ではないと考えられる。
【0031】
ここで、ニオブを適量添加することで、伝導度が向上した理由について考察する。ガーネット型酸化物の結晶構造には、
図6に示すように、リチウムイオンが酸素イオンと4配位してなる四面体のLiO
4(I)と、リチウムイオンが酸素イオンと6配位してなる八面体のLiO
6(II)と、ランタンイオンが酸素イオンと8配位してなる十二面体のLaO
8(I)と、ジルコニウムイオンが酸素イオンと6配位してなる八面体のZrO
6とが含まれている。この結晶構造の全体像を
図7(a)に示す。この
図7(a)の結晶構造では、六面体のLiO
6(II)は八面体のZrO
6と十二面体のLaO
8とによって囲まれているため見えない状態となっている。
図7(b)は、
図7(a)の結晶構造からLiO
8(I)を削除して六面体のLiO
6(II)を露出させた様子を示す。このように、6配位しているリチウムイオンは、6個の酸素イオンと、3個のランタンイオンと、2個のジルコニウムイオンに囲まれた位置にあり、恐らく、伝導性にはほとんど寄与していないと考えられる。一方、4配位しているリチウムイオンは、酸素イオンを頂点とする四面体を形成している。リートベルド(Rietveld)構造解析より求めたLiO
4(I)四面体構造の変化を
図8に示す。LiO
4(I)四面体を形成する酸素イオン間距離は二つの長さがある。ここでは長尺の二辺をa、短尺の一辺をbとする。
図8(a)に示すように、長尺の辺aは、Nbの置換量によらずほとんど一定の値を示すのに対し、短尺の辺bは、Nbを適量置換することで長くなっている。つまり、酸素イオンが形成する三角形はNbを適量置換することで、正三角形に近付きつつ面積は増大している(
図8(b)参照)。このことから、適量のNbをZrと置換すると、伝導するリチウムイオン周りの構造(酸素イオンが形成している四面体)が最適となり、リチウムイオンの移動を容易にする効果があると考えられる。なお、Zrと置換する元素は、Nb以外の元素、たとえばSc,Ti,V,Y,Hf,Taなどであっても、同様の構造変化が見込まれることから、同様の効果が得られる。
【0032】
ここで、XRDの回折ピークの強度は、LiO
4(I)四面体構造を反映して変化する。すなわち、ZrサイトをNbで置換することによりLiO
4(I)四面体をなす三角形が上述したように変化するため、当然、XRDの各回折ピークの強度比も変化するのである。実験例1〜3,5,7の各試料の(220)回折の強度を1に規格化したときの各回折の規格化後強度のX値依存性を
図9に示す。代表的なピークとして(024)回折の規格化後強度に注目する(
図10参照)。(024)回折に関して言えば、公知のLi
7La
3Zr
2O
12(つまりX=2、実験例7)に比べて伝導度が高くなる1.4≦X<2に対応する規格化後強度は9.2以上であり、一段と伝導度が高くなる1.6≦X≦1.95に対応する規格化後強度は10.0以上であり、伝導度がほぼ極大値を取る1.65≦X≦1.9に対応する規格化後強度は10.2以上であることがわかる。
【0033】
4.活性化エネルギー(Ea)
活性化エネルギー(Ea)はアレニウス(Arrhenius)の式:σ=Aexp(−Ea/kT)(σ:伝導度、A:頻度因子、k:ボルツマン定数、T:絶対温度)を用い、アレニウスプロットの傾きより求めた。代表例として実験例1〜7のLi
5+XLa
3(Zr
X,Nb
2-X)O
12(X=0〜2)の伝導度の温度依存性(アレニウスプロット)を
図11に示す。
図11には、併せてLiイオン伝導性酸化物の中でも特に高い伝導度を示すガラスセラミックスLi
1+XTi
2Si
XP
3-XO
12・AlPO
4(オハラ電解質、X=0.4)とLi
1.5Al
0.5Ge
1.5(PO
4)
3(LAGP)の伝導度の温度依存性(いずれも文献値)を示す。実験例1〜7につき、アレニウスプロットより求めた活性化エネルギーEa(25℃)のX値依存性を
図12に示す。
図12から、Xが1.4≦X<2のとき、Li
7La
3Zr
2O
12(つまりX=2、実験例7)より低い活性化エネルギーEa(つまり0.34eV未満)を示すことから、広い温度域で伝導度が安定した値をとるといえる。また、Xが1.5≦X≦1.9のときには活性化エネルギーが0.32eV以下となり、特にXが1.75のときに極小値0.3eVとなった。0.3eVという値は既存のLiイオン伝導性酸化物中で最も低い値と同等の値である(オハラ電解質:0.3eV、LAGP:0.31eV)。
【0034】
5.化学的安定性
ガーネット型酸化物Li
6.75La
3Zr
1.75Nb
0.25O
12(つまりX=1.75、実験例5)の室温大気中での化学的安定性を調べた。具体的には、大気中に放置したLi
6.75La
3Zr
1.75Nb
0.25O
12の伝導度の経時変化(0〜7日)の有無を確認することで行った。その結果を
図13に示す。バルクの抵抗成分が大気中に放置していた時間によらず一定であることから、ガーネット型酸化物は室温大気中でも安定と言える。
【0035】
6.電位窓
ガーネット型酸化物Li
6.75La
3Zr
1.75Nb
0.25O
12(つまりX=1.75、実験例5)の電位窓を調べた。電位窓は、Li
6.75La
3Zr
1.75Nb
0.25O
12のバルクペレットの片面に金を、もう片面にLiメタルを貼り付け、0〜5.5V(対Li
+)および−0.5V〜9.5V(対Li
+)の範囲で電位をスイープ(1mV/sec.)させることで調べた。その測定結果を
図14に示す。電位を0〜5.5Vの範囲で走査しても、電流は全く流れなかった。このことからLi
6.75La
3Zr
1.75Nb
0.25O
12は0〜5.5Vの範囲で安定と言える。走査する電位を−0.5 〜9Vに広げると、0Vを境にして、酸化・還元電流が流れた。これはリチウムの酸化・還元に起因すると思われる。また、約7V以上でわずかに酸化電流が流れ始めた。しかし、流れる酸化電流量が非常に微弱であること、目視で色に変化が無いことなどから、流れる酸化電流は電解質の分解ではなく、セラミックス中に含まれている微量の不純物や粒界の分解が原因だと考えている。
【0036】
[実施例1]
ガーネット型酸化物Li
6.75La
3Zr
1.75Nb
0.25O
12(つまりX=1.75、実験例5)を固体電解質とするリチウム二次電池を作製した。ここでは、固体電解質の形状は、直径13mm、2mm厚のペレットとした。原料材料の作製では、コバルト源として一酸化コバルト(CoO)、リチウム源として炭酸リチウム(Li
2CO
3)をモル比で1:0.8となるように、即ち、遷移金属が過剰となる条件で混合した。この混合体を75重量部と、揮発成分であるN−メチルピロリドン(NMP)を25重量部とを加え、分散させ合材化したものをスクリーン印刷法により固体電解質の表面に塗布した。これを乾燥させ、原料形成体とした。次に、この原料形成体を650℃、10時間、大気雰囲気の条件で焼成し、固体電解質上に正極活物質としてのコバルト酸リチウムを形成し、これを実施例1の複合体とした(
図1(a)参照)。次に、この複合体の固体電解質の裏面に負極活物質としての金属リチウム箔を圧着した。この複合体の正極側に集電体としての金箔を圧着し、負極側に集電体としての銅箔を圧着し、得られたものを実施例1の全固体型リチウム二次電池とした。
【0037】
[実施例2〜4]
原料材料の作製において、コバルト源として一酸化コバルト(CoO)、リチウム源として炭酸リチウム(Li
2CO
3)、更に活物質であるコバルト酸リチウム(LiCoO
2:日本化学工業製セルシード)をモル比で1:0.8:4となるように混合した以外は、実施例1と同様の工程を経て得られたものを実施例2の全固体型リチウム二次電池とした(
図1(b)参照)。また、原料材料の作製において、コバルト源としてCo溶液(高純度化学研究所製MOD溶液)を約10μmの厚さとなるように固体電解質上に形成した以外は、実施例1と同様の工程を経て得られたものを実施例3の全固体型リチウム二次電池とした(
図1(c)参照)。また、原料材料の作製において、コバルト源を溶液(高純度化学研究所製MOD溶液)とし、これに活物質であるコバルト酸リチウム(LiCoO
2:日本化学工業製セルシード)をモル比で1:4となるように混合した以外は、実施例1と同様の工程を経て得られたものを実施例4の全固体型リチウム二次電池とした(
図1(d)参照)。
【0038】
[比較例1]
原料材料の作製において、活物質であるコバルト酸リチウム(LiCoO
2:日本化学工業製セルシード)のみを用いた以外は、実施例1と同様の工程を経て得られたものを比較例1の全固体型リチウム二次電池とした(
図1(g)参照)。
【0039】
[X線回折測定]
作製した実施例1の複合体をX線回折測定を行った。
図15は、実施例1の複合体のX線回折測定結果である。
図15に示すように、過剰量のコバルト源を含む原料材料を用いて作製したが、炭酸コバルトなどは検出されず、コバルト酸リチウムが生成していることが確認された。
【0040】
[SEM観察]
作製した実施例1の複合体をX線回折測定を行った。
図16は、実施例1の複合体の断面のSEM写真であり、
図17は、比較例1の複合体の断面のSEM写真である。
図16に示すように、実施例1の複合体では、固体電解質の表面に密接して活物質粒子が形成されていることが観察された。一方、比較例1の複合体では、固体電解質と活物質粒子との間に化合物層を確認することができた。この化合物層は、おそらくLiを含む化合物層であり、酸化リチウムを含む抵抗層であると推察された。実施例1の複合体では、固体電解質と活物質粒子との間に化合物層は存在せず、固体電解質の表面に存在するリチウムをも利用して活物質が生成されているものと推察された。また、比較例1のように固体電解質上に活物質を直接塗布して焼成すると、この界面近傍で比較的大きい空隙領域が観察されたが、実施例1のように固体電解質上のリチウムをも利用して活物質を形成すると固体電解質と活物質との密度がより高まることが観察された。
【0041】
[電池特性評価]
実施例1及び比較例1の全固体型リチウム二次電池を用い、正極の集電体として金を貼り付け、2.5V〜4.4V(対Li
+)の範囲で電位をスイープ(25℃、0.1mV/sec.)させることで電池特性を評価した。
図18は、実施例1及び比較例1の電池特性評価の測定結果であり、
図19は、比較例1を「1」に規格化した際の実施例1及び比較例1の面積容量及び界面抵抗の測定結果である。電位を走査したところ、
図18,19に示すように、比較例1に比して実施例1では、約3倍の面積容量が得られた。また、界面抵抗も比較例に比して低い値が得られた。これは、正極活物質と固体電解質との間でのリチウム化合物層(抵抗層)の有無に起因していると推察された。
【0042】
[負極活物質の検討]
次に、固体電解質上への負極活物質の形成について検討した。ガーネット型酸化物Li
6.75La
3Zr
1.75Nb
0.25O
12(つまりX=1.75、実験例5)を固体電解質とし、Li
4Ti
5O
12を負極活物質とする複合体の作製を行った。原料材料の作製では、チタン源としてチタン溶液(高純度化学製MOD溶液)、リチウム源としてリチウム溶液(高純度化学製MOD溶液)をモル比で1:0.8となるように、即ち、遷移金属が過剰となる条件で混合した。この混合溶液を固体電解質上に滴下して乾燥し、原料形成体とした。次に、この原料形成体を900℃、12時間、大気雰囲気の条件で焼成し、固体電解質上に負極活物質としてのチタン酸リチウムを形成し、複合体とした。この複合体では、うまくX線回折を測定できなかったことから、次のモデル反応も行った。固体電解質の代わりに、アルミナ板を用い、これに上記混合溶液を滴下して乾燥、焼成を行った。このサンプルのX線回折測定結果を測定した。
図20は、負極活物質を形成したX線回折測定結果である。
図20に示すように、負極活物質としてのチタン酸リチウムが検出された。なお、ここでは、負極活物質をLi
4Ti
5O
12をとして検討したが、LiV
2O
3などのリチウムバナジウム複合酸化物、Li
3-yCo
yN(0.3≦y≦0.5)などの窒化物を負極活物質としても同様に作成できるものと推察された。この測定結果から、負極活物質であっても上記正極活物質と同様の工程で複合体を作製することができるものと推察された。この結果より、1回の焼成工程により正負極活物質を形成した複合体を作成することができることが示唆された。例えば、固体電解質の一方の面に正極活物質となる原料材料を焼成温度を調整した状態で形成すると共に、固体電解質の他方の面に負極活物質となる原料材料を焼成温度を調整した状態で形成し、この原料形成体を焼成することが考えられる。焼成温度の調整は、例えば、焼結助剤の添加などにより行うことが挙げられる。
【0043】
以下に従来のリチウムイオン二次電池と本実施例の全固体型リチウム二次電池との相違点をまとめて説明する。
(1)非水リチウムイオン二次電池との対比
非水リチウムイオン二次電池で用いる電解液は、本実施例の全固体型リチウム二次電池で用いたガーネット型酸化物と比べて高いリチウムイオン伝導度を有する。しかし、電解液は、高温(60℃)において分解による劣化や発火による危険性がある。このため高温では使用できない、もしくは、温度が上がらないよう、なんらかの冷却設備が必要である。これに対して、本実施例で用いたガーネット型酸化物は高温でも安定であり、発火の心配もない。そのため、安全性が高く、冷却設備が不要というメリットがある。また、これまでに報告されている電解液のほとんどは、高電位(4.5V以上)で分解してしまうため、高電位の正極活物質を使うのは困難である。これに対して、本実施例で用いたガーネット型酸化物は、8Vでも安定であるため(
図14参照)、これまでに報告されているほぼ全ての正極活物質を利用することができる。
【0044】
(2)硫化物系電解質を用いる全固体型リチウム二次電池との対比
硫化物系電解質(例えばLi
3.25Ge
0.25P
0.25S
4など)の伝導度と本実施例で用いたガーネット型酸化物の伝導度との間にはほとんど差がないため、両者の間では電解質抵抗の差はほとんどない。また、硫化物系電解質の電位窓は広い(0〜10V程度)という報告が多く、その点でも大きな差はない。しかし、硫化物系電解質は大気中の水分などと反応して硫化水素ガスを発生させるという化学的安定性の点で問題があるのに対し、本実施例で用いたガーネット型酸化物はそのような問題がない。
【0045】
(3)他の酸化物を用いる全固体型リチウム二次電池との対比
本実施例で用いたガーネット型酸化物は、従来のガーネット型酸化物に比べてリチウムイオン伝導度が数倍大きい。そのため電解質抵抗は数分の1程度に低減できる。また、従来より知られているオハラ電解質(ガラスセラミックス)は、リチウムイオン伝導度が本実施例で用いたガーネット型酸化物と同等であるが、オハラ電解質は1.5V付近で還元されて絶縁性が低下してしまうため、高電圧の電池を作製するのが困難である(例えば、現在の電池の主流であるカーボン系の負極活物質を用いることができない)。これに対して、本実施例で用いたガーネット型酸化物は8Vでも還元されることなく安定なため(
図14参照)、高電圧の電池を作製することができる。