特許第5742223号(P5742223)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東レ株式会社の特許一覧

<>
  • 特許5742223-ビーム材の製造方法および製造装置 図000002
  • 特許5742223-ビーム材の製造方法および製造装置 図000003
  • 特許5742223-ビーム材の製造方法および製造装置 図000004
  • 特許5742223-ビーム材の製造方法および製造装置 図000005
  • 特許5742223-ビーム材の製造方法および製造装置 図000006
  • 特許5742223-ビーム材の製造方法および製造装置 図000007
  • 特許5742223-ビーム材の製造方法および製造装置 図000008
  • 特許5742223-ビーム材の製造方法および製造装置 図000009
  • 特許5742223-ビーム材の製造方法および製造装置 図000010
  • 特許5742223-ビーム材の製造方法および製造装置 図000011
  • 特許5742223-ビーム材の製造方法および製造装置 図000012
  • 特許5742223-ビーム材の製造方法および製造装置 図000013
  • 特許5742223-ビーム材の製造方法および製造装置 図000014
  • 特許5742223-ビーム材の製造方法および製造装置 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5742223
(24)【登録日】2015年5月15日
(45)【発行日】2015年7月1日
(54)【発明の名称】ビーム材の製造方法および製造装置
(51)【国際特許分類】
   B29C 70/06 20060101AFI20150611BHJP
   B29B 11/16 20060101ALI20150611BHJP
   B29C 43/18 20060101ALI20150611BHJP
   B29C 43/32 20060101ALI20150611BHJP
   B29K 105/06 20060101ALN20150611BHJP
   B29K 105/08 20060101ALN20150611BHJP
【FI】
   B29C67/14 T
   B29B11/16
   B29C43/18
   B29C43/32
   B29K105:06
   B29K105:08
【請求項の数】10
【全頁数】20
(21)【出願番号】特願2010-542468(P2010-542468)
(86)(22)【出願日】2010年10月13日
(86)【国際出願番号】JP2010067942
(87)【国際公開番号】WO2011046137
(87)【国際公開日】20110421
【審査請求日】2013年9月25日
(31)【優先権主張番号】特願2009-238825(P2009-238825)
(32)【優先日】2009年10月16日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000003159
【氏名又は名称】東レ株式会社
(72)【発明者】
【氏名】花輪 達也
(72)【発明者】
【氏名】鈴木 保
【審査官】 増田 亮子
(56)【参考文献】
【文献】 国際公開第2007/119371(WO,A1)
【文献】 実開平04−100839(JP,U)
【文献】 特開2007−001299(JP,A)
【文献】 国際公開第2008/090911(WO,A1)
【文献】 特開2007−001298(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 70/00−70/68
B29B 11/16
B29B 15/08−15/14
C08J 5/04−5/10、5/24
B29C 43/00−43/58
(57)【特許請求の範囲】
【請求項1】
ビーム材の長手方向に直交する断面において、ウェブ部と該ウェブ部から少なくとも1つの分岐部を経て両側に延びる少なくとも1組のフランジ部を有する強化繊維基材と、前記分岐部に形成された楔形状の空隙に充填されたフィラー成形体とから形成されているビーム材の製造方法であって、
前記強化繊維基材の厚さがビーム材の長手方向に変化し、かつ、この厚さ変化に伴い前記分岐部における前記強化繊維基材の曲率半径がビーム材の長手方向に変化するとともに、
前記ビーム材は、少なくとも2つの前記強化繊維基材が部分的に加熱および加圧されて前記ウェブ部を形成され、前記強化繊維基材の貼り合わせていない部分を左右に開いて前記フランジ部が形成されるとともに、前記分岐部に形成された前記楔形状の空隙にフィラー予備賦形体が装填され、押圧されてフィラー成形体となり、その後加熱および加圧されて一体化され、
前記フィラー成形体が少なくとも下記(A)〜(C)の製造工程から作られる、ビーム材の製造方法。
(A)強化繊維で構成されたフィラー材として長手方向に強化繊維の量が変化する強化繊維シートを供給するフィラー供給工程
(B)相対する少なくとも2つの型からなる予備賦形型を用い、該型間をフィラー材が通過するのに従い、該型間の相対位置を変化させることで型間の間隙を変化させて、長手方向に断面形状が変化するとともに、少なくとも1つの楔形状突起部を有するフィラー予備賦形体とする予備賦形工程
(C)前記強化繊維基材と前記フィラー予備賦形体とを、長手方向に双方を同期させながら間欠的に搬送し、前記フィラー予備賦形体が前記予備賦形型を通過した直後に前記フィラー予備賦形体を前記空隙内に装填し、前記楔形状突起部の先端が前記空隙の楔形状先端に向かうように前記フィラー予備賦形体を押圧することにより、前記フィラー予備賦形体を変形させてフィラー成形体とするフィラー変形工程
【請求項2】
前記(B)工程において、直線部と楔形状部とからなる凹部を有する型(x)と、前記型(x)の直線部に嵌入可能な凸部を有する型(y)と、前記型(x)に対する前記型(y)の相対位置を変化させる機構とを有する予備賦形型を用い、フィラー材を、前記型(x)および前記型(y)の間隙を通過させることで予備賦形する、請求項1に記載のビーム材の製造方法。
【請求項3】
前記(A)工程において、前記フィラー材として長手方向に幅が変化する形状の強化繊維シートを用いる、請求項1または2に記載のビーム材の製造方法。
【請求項4】
前記(A)工程において、前記強化繊維シートを幅方向に対して少なくとも3回以上波状に折り畳む、請求項に記載のビーム材の製造方法。
【請求項5】
前記強化繊維シートとして、シート形状をなす強化繊維に粒子状、繊維状、またはシート状の接着樹脂が少なくとも片面に部分的に添着されているものを用いる、請求項またはに記載のビーム材の製造方法。
【請求項6】
前記強化繊維シートとして、シート形状をなす強化繊維にあらかじめマトリックス樹脂が含浸されたプリプレグを用いる、請求項またはに記載のビーム材の製造方法。
【請求項7】
請求項1〜のいずれかの製造方法によって得られたビーム材であって、該ビーム材の長手方向に対する断面形状がI形、T形、J形のいずれかであるビーム材。
【請求項8】
請求項1〜のいずれかの製造方法によって得られたビーム材にマトリックス樹脂を含浸させ、前記マトリックス樹脂を硬化させた繊維強化樹脂成形品。
【請求項9】
請求項の製造方法によって得られたビーム材に含浸されているマトリックス樹脂を硬化させた繊維強化樹脂成形品。
【請求項10】
少なくとも2つの、厚さがビーム材の長手方向に変化する平板状の強化繊維基材を間欠的に搬送する搬送装置と、搬送される前記平板状の強化繊維基材を型により部分的に加熱および加圧し、貼り合わせウェブ部を形成するウェブ部形成装置と、前記ウェブ部形成装置の後に設けられ、前記平板状の強化繊維基材の貼り合わせていない部分を左右に開き、フランジ部を形成するとともに、前記2つの強化繊維基材の厚さ変化に伴い分岐部における前記強化繊維基材の曲率半径が前記ビーム材の長手方向に変化する楔形状の空隙を形成するフランジ部形成装置と、強化繊維で構成されたフィラー材として長手方向に強化繊維の量が変化する強化繊維シートを供給しフィラー成形体を形成するフィラー成形装置と、前記フランジ部形成装置および前記フィラー成形装置の後に設けられ、前記強化繊維基材と前記フィラー成形体とを重ね合わせて加熱するとともに加圧して一体化する一体化装置とを備え、
さらに前記フィラー成形装置が以下の(a)、(b)の手段を備えていることを特徴とする、ビーム材の製造装置。
(a)直線部と楔形状部とからなる凹部を有する型(x)と、該型(x)の直線部に嵌入可能な凸部を有する型(y)と、型(x)に対する型(y)の相対位置を変化させる機構とを有する予備賦形型を備え、該型間を前記フィラー材が通過するのに従い、該型間の相対位置を変化させることで型間の間隙を変化させて、長手方向に断面形状が変化するとともに、少なくとも1つの楔形状突起部を有するフィラー予備賦形体を形成する手段
(b)前記強化繊維基材と前記フィラー予備賦形体とを、長手方向に双方を同期させながら間欠的に搬送し、前記フィラー予備賦形体が前記予備賦形型を通過した直後に前記フィラー予備賦形体を前記空隙内に装填し、前記楔形状突起部の先端が前記楔形状の空隙の先端に向かう方向に押圧する押圧手段
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、強化繊維基材からなるビーム材の製造方法および製造装置に関する。さらに詳しくは、ビーム材の、長手方向に直交する断面における楔形状の空隙に補強材として充填される、繊維構造体からなるフィラー成形体を、効率的に製造する方法および装置に関する。
【背景技術】
【0002】
炭素繊維やガラス繊維、アラミド繊維を強化繊維として用いた、炭素繊維強化プラスチック(CFRP)やガラス繊維強化プラスチック(GFRP)は、軽量でかつ高い耐久性を有するものであることから、自動車や航空機、船舶、建築部材などを構成する各種構成部材として理想的な材料である。
【0003】
これら強化繊維プラスチック(FRP)を成形する方法としては、例えば、強化繊維と高靭性のエポキシ樹脂からなる、プリプレグシートを積層した積層体をオートクレープ(圧力釜)で加圧および/または加熱して硬化させるオートクレープ成形法がある。また、マトリックス樹脂が含浸されていない、ドライな強化繊維シートを複数枚積層したもの(プリフォームと呼ばれることがある)を成形型に配置して、低粘度の液状マトリックス樹脂を該成形型内に注入することにより、強化繊維にマトリックス樹脂を含浸させて複合材料を成形する、レジントランスファーモールディング(以下、RTMと略す)成形方法や真空RTM成形方法なども良く知られている。
【0004】
このように様々な強化繊維シートを積層した強化繊維基材を組み合わせてビーム材を製造するにあたり、対になる強化繊維基材間(屈曲部を有する2つの強化繊維基材の分岐部)には空隙が生じる。これは、強化繊維基材を屈曲させた場合、繊維の剛性が高いため、強化繊維基材を完全には直角に変形させることが困難であるからである。
【0005】
例えば断面がT形のビーム材をRTM成形方法や真空RTM成型方法により製作する場合、製作上の理由から、図1に示すように、2つのL形状の強化繊維基材10a、10bと、1つの平板状の強化繊維基材10cと、を結合して、T形のビーム材のプリフォーム11を形成する。このとき、2つのL形状の部材と平板状の部材との結合体における分岐部(L形状の強化繊維基材の屈曲部に相当する部分)には、楔形の空隙12が形成される。この楔形の空隙をそのまま残した状態でT形のビーム材のプリフォームに樹脂を注入すると、前記空隙が樹脂リッチになる成形品が得られる。このような成形品を航空機の翼等に適用した場合、大きな引張り荷重が作用したとき樹脂リッチな空隙において剛性不足、接合強度不足などを生じ、破壊の起点となる可能性がある。また、成形時における樹脂注入の圧力で分岐部の繊維が乱れたり、局部的にプリフォームの空隙率に差が生じたりするため、成形品の内部欠陥となるボイドが樹脂リッチな空隙に発生することも考えられる。
【0006】
このような成形時の欠陥や強度低下を回避するために、プリフォームの製造段階で前記空隙部分を前もって補強する必要がある。補強対策として、繊維構造体からなる棒状予備賦形体(フィラー成形体)を空隙に充填し成形する方法が良く知られている。例えば、集束された2本以上の連続した糸条の集合体からなる横断面楔形状の心材と、心材の外周面に密着するように該外周面を覆う、筒状に織成された連続糸条からなる外被部材とが一体化されてなる棒状予備賦形体(フィラー成形体)およびその製造方法に関する発明が提案されている(特許文献1)。
【0007】
この方法は、肉厚が均一で、断面形状が一定であり、楔形状の空隙が長手方向に一定のビーム材に適用するのであれば、問題がない。しかしながら、例えば片持ちで使用する場合には、長手方向に厚さが変化する(先端部に向けて厚さが薄くなる)ビーム材が求められることがある。この場合、ビーム材の肉厚変化に従って空隙の断面が連続的又は段階的に変化するため、問題が生じる。なぜなら、楔形状の空隙を充填するフィラー成形体は、長手方向に沿って断面積を変化させることが困難であるからである。そして、断面積が一定のフィラー成形体を使用した場合、場所によっては空隙が多く残ったり、逆に空隙の断面に含まれる強化繊維の密度が過剰になったりし、これにより強度低下や剥離の問題が発生し易くなるからである。
【0008】
これを解決する手段として、フィラー成形体の断面積の変化を考慮したカットパターンの基材を準備し、この基材を割型構造のダイにより長手方向に引抜きながら、割型を徐々に取り出すことで、様々な断面や形状の空隙部に適用可能な棒状予備賦形体(フィラー成形体)を製造する製造方法および製造装置に関する発明が提案されている(特許文献2)。
【0009】
しかしながら、この発明においては、特に長尺で連続的に空隙の断面が複数回変化するビーム材のプリフォームを製造する場合、フィラー成形体の断面積を変化させるために多数のダイ(割型)を準備しなければならない。そのため、フィラー成形体を製作するための設備コストが増大したり、作業工程が極めて複雑なものになったりしてしまう。また、複数の種類のビーム材のプリフォームを製造する時には、プリフォームそれぞれの空隙に合うフィラー成形体を製作しなければならず、その都度、ダイを準備または交換しなければならないため、手間が掛かり非効率的である。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特許第3549271号公報
【特許文献2】特開2007−1299号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明の目的は、上述したような点に鑑み、強化繊維基材からなるビーム材を製造するにあたり、ビーム材の長手方向に直交する断面において強化繊維基材の分岐部に形成される楔形状の空隙の断面が、ビーム材の長手方向に変化する場合においても、空隙に充填するフィラー成形体を連続的にかつ効率良く製造することができる、ビーム材の製造方法および製造装置を提供することにある。
【課題を解決するための手段】
【0012】
上記の目的を達成するために、本発明は以下のいずれかを採用するものである。
(1) ビーム材の長手方向に直交する断面において、ウェブ部と該ウェブ部から少なくとも1つの分岐部を経て両側に延びる少なくとも1組のフランジ部を有する強化繊維基材と、前記分岐部に形成された楔形状の空隙に充填されたフィラー成形体とから形成されているビーム材の製造方法であって、
前記強化繊維基材の厚さがビーム材の長手方向に変化し、かつ、この厚さ変化に伴い前記分岐部における前記強化繊維基材の曲率半径がビーム材の長手方向に変化するとともに、
前記ビーム材は、少なくとも2つの前記強化繊維基材が部分的に加熱および加圧されて前記ウェブ部を形成され、前記強化繊維基材の貼り合わせていない部分を左右に開いて前記フランジ部が形成されるとともに、前記分岐部に形成された前記楔形状の空隙にフィラー予備賦形体が装填され、押圧されてフィラー成形体となり、その後加熱および加圧されて一体化され、
前記フィラー成形体が少なくとも下記(A)〜(C)の製造工程から作られる、ビーム材の製造方法。
(A)強化繊維で構成されたフィラー材として長手方向に強化繊維の量が変化する強化繊維シートを供給するフィラー供給工程
(B)相対する少なくとも2つの型からなる予備賦形型を用い、該型間をフィラー材が通過するのに従い、該型間の相対位置を変化させることで型間の間隙を変化させて、長手方向に断面形状が変化するとともに、少なくとも1つの楔形状突起部を有するフィラー予備賦形体とする予備賦形工程
(C)前記強化繊維基材と前記フィラー予備賦形体とを、長手方向に双方を同期させながら間欠的に搬送し、前記フィラー予備賦形体が前記予備賦形型を通過した直後に前記フィラー予備賦形体を前記空隙内に装填し、前記楔形状突起部の先端が前記空隙の楔形状先端に向かうように前記フィラー予備賦形体を押圧することにより、前記フィラー予備賦形体を変形させてフィラー成形体とするフィラー変形工
(2) 前記(B)工程において、直線部と楔形状部とからなる凹部を有する型(x)と、前記型(x)の直線部に嵌入可能な凸部を有する型(y)と、前記型(x)に対する前記型(y)の相対位置を変化させる機構とを有する予備賦形型を用い、フィラー材を、前記型(x)および前記型(y)の間隙を通過させることで予備賦形する、前記(1)に記載のビーム材の製造方法。
) 前記(A)工程において、前記フィラー材として長手方向に幅が変化する形状の強化繊維シートを用いる、前記(1)または(2)に記載のビーム材の製造方法。
) 前記(A)工程において、前記強化繊維シートを幅方向に対して少なくとも3回以上波状に折り畳む、前記()に記載のビーム材の製造方法。
) 前記強化繊維シートとして、シート形状をなす強化繊維に粒子状、繊維状、またはシート状の接着樹脂が少なくとも片面に部分的に添着されているものを用いる、前記()または()に記載のビーム材の製造方法。
) 前記強化繊維シートとして、シート形状をなす強化繊維にあらかじめマトリックス樹脂が含浸されたプリプレグを用いる、前記()または()に記載のビーム材の製造方法。
) 前記(1)〜()のいずれかの製造方法によって得られたビーム材であって、該ビーム材の長手方向に対する断面形状がI形、T形、J形のいずれかであるビーム材。
) 前記(1)〜()のいずれかの製造方法によって得られたビーム材にマトリックス樹脂を含浸させ、前記マトリックス樹脂を硬化させた繊維強化樹脂成形品。
)前記()の製造方法によって得られたビーム材に含浸されているマトリックス樹脂を硬化させた繊維強化樹脂成形品。
(1) 少なくとも2つの、厚さがビーム材の長手方向に変化する平板状の強化繊維基材を間欠的に搬送する搬送装置と、搬送される前記平板状の強化繊維基材を型により部分的に加熱および加圧し、貼り合わせウェブ部を形成するウェブ部形成装置と、前記ウェブ部形成装置の後に設けられ、前記平板状の強化繊維基材の貼り合わせていない部分を左右に開き、フランジ部を形成するとともに、前記2つの強化繊維基材の厚さ変化に伴い分岐部における前記強化繊維基材の曲率半径が前記ビーム材の長手方向に変化する楔形状の空隙を形成するフランジ部形成装置と、強化繊維で構成されたフィラー材として長手方向に強化繊維の量が変化する強化繊維シートを供給しフィラー成形体を形成するフィラー成形装置と、前記フランジ部形成装置および前記フィラー成形装置の後に設けられ、前記強化繊維基材と前記フィラー成形体とを重ね合わせて加熱するとともに加圧して一体化する一体化装置とを備え、
さらに前記フィラー成形装置が以下の(a)、(b)の手段を備えていることを特徴とする、ビーム材の製造装置。
(a)直線部と楔形状部とからなる凹部を有する型(x)と、該型(x)の直線部に嵌入可能な凸部を有する型(y)と、型(x)に対する型(y)の相対位置を変化させる機構とを有する予備賦形型を備え、該型間を前記フィラー材が通過するのに従い、該型間の相対位置を変化させることで型間の間隙を変化させて、長手方向に断面形状が変化するとともに、少なくとも1つの楔形状突起部を有するフィラー予備賦形体を形成する手段
(b)前記強化繊維基材と前記フィラー予備賦形体とを、長手方向に双方を同期させながら間欠的に搬送し、前記フィラー予備賦形体が前記予備賦形型を通過した直後に前記フィラー予備賦形体を前記空隙内に装填し、前記楔形状突起部の先端が前記楔形状の空隙の先端に向かう方向に押圧する押圧手段。
【0013】
本発明において、「フィラー材」とは、強化繊維が少なくとも一方向に引き揃えられた平坦な強化繊維シートで構成されるものや、線状の強化繊維ストランドで構成されるものが挙げられる。強化繊維シートの場合は、後述する接着性樹脂を強化繊維に部分的に接着させ、形態安定化させたドライな強化繊維布帛で構成しても良いし、強化繊維全体にマトリックス樹脂を含浸し形態安定化させたプリプレグで構成しても良い。これら強化繊維シートとしては、一方向織物、二方向織物、組み物、不織布などが好適に用いられる。また、強化繊維ストランドの場合は、複数の強化繊維を引き揃えたストランド単体やその集合体、組み紐などが挙げられる。強化繊維としては炭素繊維やガラス繊維、アラミド繊維などを用いることができる。
【0014】
また、「強化繊維基材」とは、上記したような「強化繊維シート」そのもの、もしくはそれを複数枚積層したものである。積層する場合には、強化繊維シートの繊維の方向を、例えば疑似等方性を持たせるために下層から順に0°、+45°、−45°、90°と変えて積層しても良いし、特定の方向にのみ強化させるように積層しても良い。
【0015】
なお、本発明において、「フィラー材」と「強化繊維基材」は同じ材料である必要がない。「フィラー材」にドライな強化繊維シートを用い、「強化繊維基材」にプリプレグを用いたり、また、「フィラー材」に強化繊維ストランドを用い、「強化繊維基材」に強化繊維シートを用いたりしても良い。もちろん、それらの逆でも良い。
【0016】
「ウェブ部と該ウェブ部から少なくとも1つの分岐部を経て両側に延びる少なくとも1組のフランジ部を有する強化繊維基材」とは、少なくとも、屈曲部を有する複数の強化繊維基材が組み合わせられてウェブ部とフランジ部とを構成している組み合わせ体である。例えば、図1に示すように、3つの強化繊維基材10a〜10cが組み合わせられてウェブ部とフランジ部とを形成しているようなものでも良いし、図1における、平板上の強化繊維基材10cがなく、屈曲部を有する複数の強化繊維基材のみでウェブ部およびフランジ部を形成しているようなものでも良い。なお、「フランジ部」とは、例えばT形断面の梁部材において、上縁(もしくは下縁)に設けられる水平の板要素であり、「ウェブ部」とは、フランジ部に接続された鉛直の板要素である。主にフランジ部は曲げモーメント、ウェブ部はせん断力に抵抗力を作用することにより、断面2次モーメントが大きくなり、曲げ剛性が向上する。
【0017】
「楔形状」とは、一端が広く他端に向かうに従って狭くなるような形のことをいう。ただし、他端に向かうに従って狭くなっていく度合いは、均等であることが好ましいが、均等でなくても良い。
【0018】
さらに、「接着樹脂」とは、粒子状、繊維状、またはフィルム状の形態を有し、強化繊維に部分的に添着させるものである。「接着樹脂」は、強化繊維への樹脂の接着や、常温環境での取扱いを考慮すると、50乃至100℃範囲のガラス転移温度を有しているものが好ましい。接着樹脂の成分としては、強化繊維基材の取扱い性を向上させるものが好ましく、さらに好ましくはそれを用いて得られる強化繊維プラスチックの機械的特性を向上させるものである。接着樹脂としては、各種の熱硬化性樹脂および/または熱可塑性樹脂を使用できる。熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂などが挙げられ、熱可塑性樹脂としては、例えばポリエーテルサルファン樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリフェニレンスルファイド樹脂、ポリエーテルエーテルケトン樹脂などが挙げられる。
【0019】
また、「マトリックス樹脂」とは、強化繊維全体にわたって含浸される樹脂であり、強化繊維をシート状に形態安定化させるものである。マトリックス樹脂としては、前記接着樹脂と同様に、各種熱硬化樹脂および/または熱可塑性樹脂を用いることができる。熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂などが挙げられ、熱可塑性樹脂としては、例えばポリエーテルサルファン樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリフェニレンスルファイド樹脂、ポリエーテルエーテルケトン樹脂などが挙げられる。
【発明の効果】
【0020】
本発明の製造方法および製造装置によれば、以下に説明するとおり、強化繊維基材からなるビーム材を製造するにあたり、強化繊維基材の長手方向に直交する断面にある楔形状の空隙(例えば対になる強化繊維基材が分岐する部分に形成される空隙部)の断面形状が強化繊維基材の長手方向に変化する場合においても、空隙に充填するフィラー成形体を連続的にかつ効率良く製造することができ、高品位のビーム材を得ることができる。
【図面の簡単な説明】
【0021】
図1】本発明によって得られるビーム材の分岐部を示す概略断面図である。
図2】本発明に用いるビーム材の製造装置の一例を示す概略斜視図である。
図3】本発明におけるフィラー成形体の製造工程の一例を示す概略傾斜図である。
図4】本発明に用い得る予備賦形型の一例を示す(a)概略断面図および(b)概略斜視図である。
図5】(a)強化繊維基材の肉厚が厚いものから薄いものへ変化する場合のビーム材の一例、および(b)フィラー材が装填されている予備賦形型の一例、を示す概略断面図である。
図6】本発明に用いるフィラー材の裁断パターン例(a)〜(e)を示す概略図である。
図7】繊維量が多いフィラー材を使用した場合における(a)予備賦形型による賦形、(b)フィラー成形体への変形原理、をそれぞれ示す概略断面図である。
図8】繊維量が最も少ないフィラー材を使用した場合における(a)予備賦形型による賦形、(b)フィラー成形体への変形原理、をそれぞれ示す概略断面図である。
図9】フィラー予備賦形体24の好ましい押圧方法の一例を示す概略図である。
図10】予備賦形下型の凹部の形状パターン例(a)〜(c)を示す概略断面図である。
図11】本発明に用い得る別の形態の予備賦形型を示す(a)概略断面図および(b)概略斜視図である。
図12図11に示す予備賦形下型23aと予備賦形上型23bに囲まれる領域の断面32の面積変化を示す概略断面図である。
図13】本発明に用いるフィラー材の折り畳み方の一例を示す概略断面図である。
図14】本発明に用い得るフィラー材の折り畳みガイドを示す概略断面図である。
【発明を実施するための形態】
【0022】
以下に、本発明のビーム材の製造方法と製造装置の好ましい実施の形態を、図を参照しながら説明する。具体的には、ビーム材を構成する対になる強化繊維基材の分岐部に形成される空隙の断面形状変化に対応させて、フィラー成形体の楔形状をなす曲線のR形状(曲率半径)を大きいものから小さいものへ変化させる場合について、説明する。
【0023】
図2は、本発明のビーム材の製造装置の一例を示す概略斜視図である。さらに詳しくは、図1に示すT形断面形状のビーム材を製造する装置である。該装置は、主に、材料供給装置(材料供給装置80a、80b等)、材料搬送装置(牽引装置81等)、ウェブ部形成装置82、フランジ部形成装置83、フィラー成形装置84、一体化装置85からなる。以下、それら装置の詳細を説明する。
【0024】
材料供給装置は、ビーム材の製造装置の適切な場所に、強化繊維基材やフィラー材などの各種材料を載置する装置である。例えば、図1における平板状の強化繊維基材10cを載置するテーブルを含む材料供給装置80a、フィラー材20を載置するテーブルを含む材料供給装置80bなどが、これに該当する。なお、図2には、図1における強化繊維基材10a、10bの材料供給装置が図示されていないが、図2の装置はこれも備えている。
【0025】
材料供給装置を構成するテーブルには、各種材料の進行方向に対して平行なガイドを設置することが好ましい。こうすると、後述する一体化装置85で各種材料が一体化されるとき位置ズレを生じ難くすることができる。
【0026】
材料搬送装置は、ビーム材の製造装置内において各種材料を下流側に搬送する手段である。例えば、図1における強化繊維基材10a、10bに相当する強化繊維基材21a、21bを一定の間隔で間欠的に一体化装置85へ搬送する牽引装置81がこれに該当する。該牽引装置81は、複数のチャックとそれを駆動するアクチュエーターなどから構成され、2つの平板状の強化繊維基材21a、21bを把持できるようになっている。なお、図2に示す装置には、図示されていないが、強化繊維基材21a、21bの間欠送りと同期しながら、強化繊維基材10cやフィラー材20を下流側に搬送する材料搬送装置も備えられている。
【0027】
ウェブ部形成装置82は、加熱機構を有する左右の型から構成されており、牽引動作の停止時に2つの強化繊維基材21a、21bを部分的に加熱および加圧する。こうすることで、ビーム材におけるウェブ部を賦形するとともに、強化繊維基材の層間に配された接着樹脂を軟化または溶融して該層間を接着し、該形状を固定する。
【0028】
フランジ部形成装置83は、ウェブ部形成装置82の下流側に設けられており、2つの強化繊維基材21a、21bの間に設けられたガイドプレートなどからなっている。このガイドプレートは流線形状をしており、強化繊維基材21a、21bの貼り合わせていない部分を徐々に左右へ開いていく。これにより、強化繊維基材21a、21bの形状が平板状からフランジ部を有するL形状へ変形していき、同時に、強化繊維基材21a、21bの分岐部にフランジ部よりも凹んだ楔形状の空隙が形成される。
【0029】
なお、図2では、フランジ部形成装置83をガイドプレートで示したが、強化繊維基材をローラ等で扱きながら徐々にL形に開くローラドレープ機構としても良い。
【0030】
フィラー成形装置84は、例えば図3に示すように、凹部を有する予備賦形下型23aと、該型に嵌入可能な、凸部を有する予備賦形上型23bとを備えている。また、これら型によって成形されるフィラー予備賦形体24を、強化繊維基材21a、21bの貼り合わせていない部分を左右に開くことで形成された楔形状の空隙の先端に向かう方向に押圧し、フィラー成形体27とするためのプレス機26も備えている。このようなフィラー成形装置84は、所望とする断面形状を有するフィラー成形体27を強化繊維基材の組み合わせ体と共に間欠的に連続成形する。
【0031】
一体化装置85は、フランジ部形成装置83およびフィラー成形装置84の下流側に設けられており、少なくとも加熱機構、好ましくは加熱機構と冷却機構とを有する、上型と左右に分割可能な下型とから構成されている。該一体化装置85は、フランジ部形成装置83によりL形に開かれた2つの強化繊維基材21a、21bとフィラー成形体27とに、平板状の強化繊維基材10cを重ねて一体化し、加熱および加圧する。こうすることで、強化繊維基材表面の接着樹脂材料が軟化または溶融し、層間が接着され、その直後に冷却することで、ビーム材の形状を固定することができる。なお、一体化装置85には、強化繊維基材21a、21bの牽引装置81の間欠送りおよび強化繊維基材10cやフィラー材20の搬送装置の間欠送りと連動する形で、形成されたビーム材を順次送れるように牽引機構86が備えられている。
【0032】
以上のような装置において、ビーム材は例えば次のように製造される。まず、強化繊維基材やフィラー材などの各種材料が、材料供給装置(材料供給装置80a、80b等)によってビーム材の製造装置の所定の場所に載置される。その後、それら各種材料は、材料搬送装置(牽引装置81等)により間欠的に一体化装置85へ搬送される。一体化装置85へ搬送される途中で、強化繊維基材21a、21bは、ウェブ部形成装置82により部分的に加熱および加圧されてウェブ部が形成される。また、ウェブ部が形成された後には、フランジ部形成装置83により、強化繊維基材21a、21bの貼り合わせていない部分が左右に開かれ、フランジ部が形成される。このとき、強化繊維基材21a、21bの分岐部には、フランジ部よりも凹んだ楔形状の空隙も形成される。一方、フィラー材は、材料搬送装置から一体化装置85へと搬送される途中で、フィラー成形装置84を構成する予備賦形型23により加圧され、少なくとも1つの楔形状突起部を有するフィラー予備賦形体とされる。続いてフィラー予備賦形体は、強化繊維基材21a、21bの分岐部に形成された空隙内に装填され、前記楔形状突起部の先端が前記空隙の楔形状先端に向かうようにプレス機26で押圧され、フィラー成形体になる。このようにして搬送・製造されたL形状の強化繊維基材21a、21bおよびフィラー成形体27は、必要に応じて平板状の強化繊維基材10cが重ねられ、一体化装置85にて加熱および加圧して一体化される。
【0033】
なお、図2に示す形態においては、強化繊維基材を組み合わせてウェブ部とフランジ部とを形成するにあたって、2つのL形状の強化繊維基材21a、21bに加えて平板状の強化繊維基材10cを組み合わせているが、屈曲部を有する2つの強化繊維基材のみから形成しても良い。但し、得られるビーム材の曲げ剛性を向上するという観点からは、屈曲部を有する少なくとも2つの強化繊維基材21a、21bに平板状の強化繊維基材10cを組み合わせることが好ましい。
【0034】
次に、フィラー成形体の製造工程の詳細を、図3の概略斜視図を用いて説明する。
【0035】
図3において、20は、接着性樹脂材料を強化繊維に散布して部分的に接着させ、形態を安定化させた、ドライな強化繊維シートで構成されたフィラー材である。21a、21bは、それぞれ、フィラー材の強化繊維シートと同様の強化繊維シートを積層させた平板状の強化繊維基材を、屈曲させて作ったL形状の強化繊維基材である。
【0036】
強化繊維基材21aと21bは、上述したように、互いに、部分的に加熱および加圧され、貼り付けられて、金型25により把持されて間欠的に下流側に搬送されている。このとき、フィラー材20は、金型25で把持された2つのL形状の強化繊維基材21a、21bの移動と同じタイミングで予備賦形型23(予備賦形下型23a、予備賦形上型23b)へ搬送されながら、折り畳まれる。折り畳まれたフィラー材20は、それぞれ加熱体により加熱された予備賦形下型23aと予備賦形上型23bの型間を通過して加熱および加圧されて、フィラー予備賦形体24に予備賦形される。その後、フィラー予備賦形体24は、金型25で把持された2つのL形状の強化繊維基材21a、21bの分岐部に形成される楔形状の空隙にプレス機26で直接押圧されることで、形状が変形し、該空隙に適合した形状を有するフィラー成形体27となる。
【0037】
このとき、フィラー予備賦形体24は、予備賦形型23により楔形状の突起部を有するように予備賦形されるので、2つのL形状の強化繊維基材21a、21bの分岐部に形成される楔形状の空隙の奥まで未充填部無く適正な密度で充填することができる。
【0038】
なお、予備賦形型23では、フィラー材20が予備賦形体を形成するのに所望する温度を予め有しているのであれば、加圧するだけでも良い。したがって、フィラー材20を、予備賦形型23よりも上流側で加熱し、引き続いて加熱機構のない予備賦形型23で加圧してフィラー予備賦形体24としても良い。また、フィラー材20を加熱機構のない予備賦形型23により楔形状の突起部を有するように予備賦形した後に加熱し、得られたフィラー予備賦形体24を2つのL形状の強化繊維基材21a、21bの分岐部に形成される楔形状の空隙に向かって押圧しても良い。
【0039】
ただし、上述した態様のように予備賦形型23でフィラー材20を加熱するとともに加圧する場合、フィラー材20が変形されやすく、またフィラー予備賦形体24をフィラー成形体27に変形させることも容易になるので、好ましい。加えて、ビーム材の製造装置として小型化が可能になる。
【0040】
そして、予備賦形型23でフィラー材20を加熱するとともに加圧する場合、フィラー予備賦形体24は、予備賦形型23から引き出した直後は加熱処理により軟化しているが、常温大気中に置かれると徐々に冷却され硬化してしまい、フィラー成形体27への変形が困難になってしまう。そのため、プレス機26による押圧は、予備賦形型の型間通過直後、すなわち、フィラー予備賦形体が予備賦形下型23a、予備賦形上型23bの間を通過した直後の搬送停止時に行われるのが好ましい。
【0041】
続いて、本発明で使用可能な予備賦形型について説明する。
【0042】
予備賦形型には、直線部と楔形状部とからなる凹部を有する型(x)と、該型(x)の直線部に嵌入可能な凸部を有する型(y)とからなるものを用いることが好ましい。さらには、これら対向する2つの型(x)、(y)の相対位置を変化させる機構を備えているものが好ましい。
【0043】
具体的には、例えば図4に示すような、予備賦形下型23aと予備賦形上型23bとから構成されている予備賦形型を例示できる。図4において、(a)が概略断面図、(b)が概略斜視図である。
【0044】
図4に示す予備賦形下型23aには、深さ方向に設けられた直線部30と、該直線部をつなぐ楔形状の曲線部31とからなる凹部が設けられている。このとき、直線部30の長さは、最大の繊維量のフィラー材20を投入しても凹部内に全て含まれるように大きく設定することが好ましい。また、曲線部31は、2つのL形状の強化繊維基材21a、21bからなる組み合わせ体における分岐部に形成される屈曲部の曲率半径に対応した円弧からなる。一方、予備賦形上型23bには、下型の直線部30に嵌入可能な凸部が設けられている。このような予備賦形下型23aと予備賦形上型23bに囲まれる領域(断面32)にフィラー材が収容され、加熱・加圧されることにより、該フィラー材は楔形状の突起部を有するように予備賦形される。
【0045】
予備賦形下型23aと予備賦形上型23bに囲まれる領域(断面32)について、図5を用いてさらに詳しく説明する。図5(a)は、2つのL形状の強化繊維基材21a、21bの肉厚が、ビーム材の長手方向にt(図5(a)における上方の図)からt−Δt(図5(a)における下方の図)に変化するビーム材の断面図である。強化繊維基材の屈曲部の谷側の曲率半径が一定のRであるビーム材を製造する場合、図5(a)に示すように、フィラー予備賦形体と接触する強化繊維基材の屈曲部の山側の曲率半径は、肉厚の変化に対応してR+tからR+t−Δtへと変化する。このとき、図5(b)に示すように、予備賦形下型23aの曲線部31の曲率半径は、最大肉厚tのときの山側の曲率半径R+tに一致させることが好ましい。さらに予備賦形型に囲まれる領域の断面32の横幅40は、L形状の強化繊維基材の肉厚が最も薄いとき(肉厚がt−Δtのとき)の分岐部に形成される楔形状の空隙の断面積Aと、予備賦形下型23aと予備賦形上型23bとが最も密着した時に囲まれる領域の断面32の面積Bとが、A≧Bとなるような幅に設定することが好ましい。つまり、予備賦形下型23aの曲線部31は曲率半径がR+tとなるが、予備賦形下型23aと予備賦形上型23bとに囲まれる断面の横幅40は、図5(b)の点線で示すように半径(R+t)×2の値より小さくなることが好ましい。このように予備賦形型を構成することにより、得られるフィラー予備賦形体は、プレス機により押し潰され、予備賦形体に含まれる強化繊維が左右へ広がり易くなり、最終的に適正な形状に変形し易くなる。
【0046】
また、対向する2つの型の相対位置を変化させる機構としては、例えば図4(b)に示すような構成を採用することができる。例えば、予備賦形上型23bが予備賦形下型23aに対して滑らかに接近または退避できるように、上下の型間にガイドシャフト33を設置する等、スライド機構を持たすことが好ましい。このように、予備賦形下型23aに対する予備賦形上型23bの鉛直方向の相対位置を変えられるように、予備賦形下型23aまたは予備賦形上型23bの一方を上下方向に退避もしくは接近可能に構成することで、フィラー材20の繊維量の変化に対応して、フィラー予備賦形体24の形状(長手方向に直交する断面の面積)を変化させることが可能となる。
【0047】
なお、予備賦形下型23aに対する予備賦形上型23bの相対位置については、あらかじめフィラー材20の繊維量の変化に対応して入力したデータに基づき、サーボモータによって適宜、予備賦形下型23aと予備賦形上型23bとの間隔を調整しても良い。また、バネによって上下型の間隔を調整しても良い。さらに、予備賦形上型23bを重力で落とし予備賦形下型23aに嵌入させる場合、フィラー材20の反力によって予備賦形上型23bが適切な位置に自動的に収まるので、好ましい。
【0048】
さらに、予備賦形型には、フィラー材を加熱するための機構を設けられていることが好ましい。具体的には、例えば図4に示すように、予備賦形下型23aおよび予備賦形上型23bに、フィラー材20を加熱するための加熱体を通す中空部22がそれぞれ1つまたは複数設けられていることが好ましい。加熱体としては、作業効率の観点から、短時間で昇温が可能な電熱ヒーターが好ましく用いられるが、これらに限定されるものではない。加熱体は図示されない温度調整装置により、型温を狙いの温度に調整できるようになっており、フィラー材を該型に接触することで加熱できるようになっていることが好ましい。フィラー材20の加熱温度範囲としては特に制限は無いが、フィラー材に含まれる接着樹脂もしくはマトリックス樹脂を適切な温度で軟化するために、接着樹脂やマトリックス樹脂の軟化温度Tgより5℃以上高いことが好ましく、10℃以上高ければさらに好ましい。
【0049】
また、予備賦形型のフィラー材と接触する表面は離型性を有した材質であることが好ましい。
【0050】
次に、フィラー予備賦形体24の断面形状を変化させ、フィラー成形体27に成形する方法を、以下の図面に基づいてさらに詳しく説明する。
【0051】
図6は、本発明において用いることができる、強化繊維シートからなるフィラー材20の裁断パターンの一例を示す概略図である。
【0052】
例えば図6(a)に示すように、フィラー準備工程で用いられる強化繊維シートは、長手方向にわたって強化繊維シートの幅を適宜変えて繊維量を変化させるように裁断される。これにより、ビーム材の分岐部に形成される空隙の長手方向にわたる断面積変化に適合できる。その際、準備する強化繊維シートの形状は、実質的に台形形状であれば良い。例えば図6(a)に示すように、広幅の辺50と狭幅の辺51に対して他の2辺のうち1つの辺が直角であっても良いし、図6(b)に示すように、強化繊維シートの広幅の辺50と狭幅の辺51に対して他の2辺の両方が斜めに裁断されていても良い。その他にも、ビーム材の分岐部に形成される空隙の断面積に適合するのであれば、図6(c)〜(e)に示すように、部分的に斜めに裁断したり、階段状に裁断したりすることも好ましい。
【0053】
なお、長手方向にわたり一定断面のフィラー成形体を製造する場合は、一定の幅の強化繊維シートを準備すれば良い。また、フィラー材20に複数本のストランドの集合体を用いる場合は、ストランドの本数を減らすことにより、ビーム材の分岐部に形成される空隙の断面積に適合させても良い。
【0054】
次に、フィラー材20の繊維量が多い場合および少ない場合、すなわち強化繊維シートの幅が広幅の辺50と狭幅の辺51それぞれの位置において、フィラー予備賦形体24の賦形、さらにはフィラー成形体27に変形させる仕組みについて、図7および図8を参照して順に説明する。
【0055】
図7は、繊維量が多いフィラー材20からフィラー予備賦形体24を形成し、さらにはフィラー成形体27に変形させる仕組みを示す概略断面図である。
【0056】
フィラー材20の繊維量が多い場合、図7(a)に示すように、予備賦形上型23bは予備賦形下型23aに対して上方に退避した状態となる。フィラー材20は、上下の予備賦形型の間で加熱および加圧されて、直線部と楔形状部を有するフィラー予備賦形体24に成形される。次いで、図7(b)に示すように、前記フィラー予備賦形体24は、2つのL形状の強化繊維基材21a、21bの組み合わせ体における強化繊維基材の分岐部に形成された空隙内に配置される。その後、プレス機26によりフィラー予備賦形体24を該分岐部に形成された空隙に対して直接押圧する。こうすることで、フィラー予備賦形体24の直線部(図4における予備賦形下型23aの直線部30に相当する部分)に含まれる繊維を広げて、L形状の強化繊維基材21a、21bの屈曲部の曲線形状に沿った曲線部を形成する。
【0057】
一方、図8は、繊維量が最も少ないフィラー材20からフィラー予備賦形体24を成形し、さらにはフィラー成形体27に変形させる仕組みを示す概略断面図である。
【0058】
図8(a)に示すように、フィラー材20の繊維量が最も少ない場合も、フィラー材20は、上下の予備賦形型の間で加熱および加圧されてフィラー予備賦形体24に成形される。しかし、予備賦形型へ投入する繊維量が最も少ないため、フィラー予備賦形体24に直線部が形成されない。そして、フィラー予備賦形体24は、その後、図8(b)に示すように、2つのL形状の強化繊維基材21a、21bの組み合わせ体における強化繊維基材の分岐部に形成された空隙内に配置される。
【0059】
なお、フィラー材20の繊維量が最も少ない場合というのは、フィラー成形体27に対応するL形状の強化繊維基材21a、21bの屈曲部の曲率半径が、図7(b)に示すようなフィラー材20の繊維量が多い場合(すなわち、L形状の強化繊維基材21a、21bの肉厚が厚い場合)に比べて、小さい場合である。一方、上記予備賦形型で得られたフィラー予備賦形体24は、曲線部における曲率半径が、予備賦形下型23aの凹部の形状に沿って形成された大きな曲率半径である。そのため、L形状の強化繊維基材21a、21bの分岐部にフィラー予備賦形体24を配置した段階では、図8(b)に示すように、フィラー予備賦形体24の楔形状部先端のみが嵌入した状態になっている。
【0060】
その後、プレス機26によりフィラー予備賦形体24を前記空隙の楔形状に沿うように変形させて、フィラー成形体27を形成する。
【0061】
なお、プレス機26によりフィラー予備賦形体24を押圧する際には、フィラー予備賦形体24が前記空隙の楔形状に沿って変形するように、図9に示すような方法で押圧することが好ましい。すなわち、該フィラー予備賦形体24の長手方向に直交する断面において、フィラー予備賦形体24が前記空隙の楔形状の曲線に沿って変形するように、外側から内側に向かって押圧することが好ましい。このようにすることで、空隙の奥まで適正な密度でフィラー賦形体が充填されたビーム材を容易に得ることができる。
【0062】
プレス機26の幅は、2つのL形状の強化繊維基材21a、21bの分岐部を含み、その両端にある平坦部までをも含む幅であることが好ましい。また、屈曲部を有する強化繊維基材で形成された空隙にフィラー成形体27を配置した後に、図1のように、平板状の強化繊維基材10cを組み合わせる場合には、該平板状の強化繊維基材10cが平坦に重ね合わせられることが求められる。そのため、フィラー成形体27が2つのL形状の強化繊維基材21a、21bの平坦部より盛り上がることがなく押圧できるように、プレス機26の幅が十分に設けられていることが好ましい。プレス機26のプレス機構としては、エアーや油圧等が好適に用いられるが、これらに制限されるものではない。また、プレス機26は、フィラー予備賦形体24を変形し易くするように、フィラー予備賦形体との接触面が加熱されていることが好ましい。
【0063】
以上に説明した実施形態においては、予備賦形下型の曲線部31の形状を、L形状の強化繊維基材21a、21bの最大厚み(最大の積層枚数)の曲率半径に相当する円弧状としたが、この形状に限定されるものではない。例えば、図10(a)、(b)に示すような直線状や屈曲線状でも良いし、図10(c)のように楔形状を形成する円弧状部の先端が丸くなっていても良い。但し、2つのL形状の強化繊維基材21a、21bの分岐部に形成される楔形状の空隙の奥までフィラー成形体を未充填部無く適正な密度で充填するという観点からすると、図4に示すような、先端がより尖った楔形状であることが好ましい。
【0064】
また、予備賦形型は次のような構成を採ることができる。
【0065】
図11(a)、(b)はそれぞれ予備賦形型の別の形態を示す概略断面図および概略斜視図である。
図11(a)において、予備賦形下型23aは、左右2つに分割されている。2つの予備賦形下型23aは、それぞれが型長方向に対して直交する方向に平行な櫛歯を有し、それら櫛歯は、左右の型の櫛歯が互いに噛み合うように型長方向に配置されている。また、2つの2つの予備賦形下型23aは、両者を合わせることで楔形状の空隙が形成されるような曲線部70を有している。曲線部70は2つのL形状の強化繊維基材21a、21bの分岐部における屈曲部の曲率半径に対応した円弧状からなる。
【0066】
さらに、予備賦形下型23aと予備賦形上型23bとの間には、予備賦形下型23aの予備賦形上型23bに対する水平方向の位置を変えることができるように、スライド機構72が設けられている。プレス機構71によって予備賦形下型23aを図内の矢印の方向へ押圧することで、予備賦形下型23aを移動することができる。
【0067】
また、予備賦形下型23a、予備賦形上型23bには、フィラー材20を加熱するための加熱体を通す中空部22が、それぞれ1つまたは複数設けられている。図4(b)を用いて前述した予備賦形型と同様に、加熱体は適宜選択することができる。
【0068】
図11に示す予備賦形下型23aと予備賦形上型23bに囲まれる領域の断面32について、図12を用いて詳しく説明する。図12(a)、(b)は、それぞれ、図11に示す予備賦形下型23aおよび予備賦形上型23bに囲まれる領域の断面32の面積の変化を示す概略断面図である。
【0069】
図12(a)において、予備賦形下型23aの曲線部70の曲率半径は、図5を用いて前述した実施形態と同様に、2つのL形状の強化繊維基材21a、21bの最大肉厚tのときの山側の曲率半径R+tに一致させている。そして、左右2つの予備賦形下型23aは、2つの予備賦形下型23aと予備賦形上型23bとの間に設けられたスライド機構72により、櫛歯が互いに噛み合わない位置(図12(a))や互いに噛み合う位置(図12(b))に位置を変えることができる。これにより、予備賦形下型23aと予備賦形上型23bとで囲まれる領域(断面32)の面積を変化させることができ、断面変化を有するフィラー予備賦形体を成形することができる。
【0070】
なお、予備賦形下型23aの櫛歯は細かく、数多く設けることが好ましい。こうすることで、繊維量を変化させたフィラー材20が予備賦形型間を通過する際、該フィラー材が凹部に入り込みにくくなる。さらには、フィラー材20をより均等に予備賦形下型23aに接触させることができるので、フィラー材の加熱ムラを防ぐことができる。なお、噛み合う櫛歯の凹部では型表面とフィラー材20が接触せず、フィラー材20が加熱されない恐れがあるため、櫛歯の数は多くする方が好ましい。また、櫛歯にフィラー材20が絡まることがないように、櫛歯表面は離型性を有する材質であることが好ましい。
【0071】
予備賦形下型23aの水平方向に関する移動については、プレス機構71としてサーボモータを用い、あらかじめフィラー材20の繊維量の変化に対応して入力したデータに基づき、該サーボモータの出力を適宜調整するようにしても良い。また、バネ、エアー、油圧等で予備賦形下型23aに一定の圧力をかけて、フィラー材20の反力によって予備賦形下型23aが適切な位置に自動的に収まるような機構にしても良い。もちろん、これらに限定されるものではない。
【0072】
さらに、図示しないが、予備賦形下型23aと予備賦形上型23bの両方の互いに対向する面に櫛歯を設け、予備賦形下型23aと予備賦形上型23bの少なくとも一方を鉛直方向へ移動可能な構成としても良い。こうすることでも、予備賦形下型23aおよび予備賦形上型23bで囲まれる断面の面積を変化させることができる。なお、この場合の予備賦形型においても、上型および下型の一方が水平方向に可動な予備賦形型と同様の動作機構を採ることができる。
【0073】
次に、予備賦形型に搬送されるフィラー材の折り畳み方法を説明する。
【0074】
図13は、フィラー材に強化繊維シートを用いる場合の、該シートの折り畳み方法の一例を示す概略断面図である。
【0075】
図13に示すように、フィラー材20は、その両端に挟まれた中間部分が、予備賦形型の直線部(例えば図4に示す予備賦形下型23aの直線部30)と略平行に縦方向となるように、強化繊維シートの幅方向に少なくとも3回以上波状に折り畳まれることが好ましい。こうすることで、プレス機26によりフィラー予備賦形体24を空隙に直接押圧する際に、フィラー予備賦形体に含まれる繊維が広がり易くなり、空隙の形状にあったフィラー成形体27への変形が容易となる。すなわち、図7(b)のように、L形状の強化繊維基材21a、21bの分岐部における曲率半径が大きい場合には、フィラー予備賦形体24の直線部(例えば図4に示す予備賦形下型23aの直線部30に対応する部分)に相当する折り畳み部分の繊維が押し潰されたり左右に倒れたりすることにより、分岐部に沿った形状を有するフィラー成形体27となる。また、図8(b)のように、分岐部における曲率半径が小さい場合には、フィラー予備賦形体24が図中の下矢印の方向に押し潰されることにより、分岐部に沿った形状を有するフィラー成形体27となる。
【0076】
なお、フィラー材20を確実に折り畳む方法としては、予備賦形型よりも上流側の位置に、図14に示すような折り畳みガイド60a、60b、60cを順に設け、フィラー材20を長手方向に通しながら徐々に折り畳んでいっても良い。また、あらかじめ縦方向に波状に折り畳んだフィラー材20を準備してフィラー予備賦形型へ投入しても良い。
【0077】
以上のとおり、図2乃至図14のような装置および繊維量を変化させたフィラー材20を用いることにより、長手方向に関して断面形状が変化するビーム材に対して、フィラー成形体27を適正な密度に充填することが可能となる。
【0078】
なお、本発明は、長手方向に関して断面形状が一定のビーム材を製造する場合にも、勿論、適用できる。
【0079】
上記形態においては、複数枚の強化繊維シートの層間に接着樹脂が配された強化繊維基材を用いた態様について説明したが、複数枚の強化繊維シートの層間に接着樹脂を配していない場合や1枚の強化繊維シート単体の場合でも、上述した製造手段を用いてビーム材を成形することができる。また、強化繊維基材としては、強化繊維シートを棒状や筒状に丸めたものなどを適用することも可能である。すなわち、例えば強化繊維シートを無端の棒状や筒状にし、さらにそれを平板状に押し潰せば、上記したような強化繊維基材として用いることも可能である。
【0080】
さらに、以上のような装置・方法にて得られたビーム材は、その後、ドライな強化繊維基材や強化繊維シートを使用した場合は、RTM成形方法や真空RTM成型方法により、ビーム材(プリフォーム)にマトリックス樹脂を注入させて強化繊維プラスチック成形品とすることができる。なお、強化繊維基材としてドライな基材を用い、フィラー材としてプリプレグを用いた場合も、RTM成形方法や真空RTM成型方法により強化繊維基材にマトリックス樹脂を注入し、強化繊維プラスチック成形品を得れば良い。一方、強化繊維基材にプリプレグを使用した場合には、ビーム材(プリフォーム)をオートクレープ(圧力釜)により加圧および/または加熱して硬化させることで、強化繊維プラスチック成形品とすることができる。
【0081】
そして、上記実施形態ではT形断面を有するビーム材を用いて説明したが、ビーム材の長手方向に対する断面(長手方向に直交する断面)の形状は、J形、I形、十字形のような形状であっても良い。
【産業上の利用可能性】
【0082】
本発明は、強化繊維基材を用いたビーム材に限らず、紙やフィルムなどを用いたビーム材の製造にも応用することができ、さらにその応用範囲はこれらに限られるものではない。
【符号の説明】
【0083】
10a、10b:L形状の強化繊維基材
10c:平板状の強化繊維基材
11:プリフォーム
12:空隙
20:フィラー材
21a、21b:強化繊維基材
22:中空部
23a:予備賦形下型
23b:予備賦形上型
24:フィラー予備賦形体
25:金型
26:プレス機
27:フィラー成形体
30:直線部
31:曲線部
32:予備賦形下型と予備賦形上型とに囲まれる領域の断面
33:ガイドシャフト
40:横幅
50:広幅の辺
51:狭幅の辺
60a、60b、60c:折り畳みガイド
70:曲線部
71:プレス機構
72:スライド機構
80a、80b:材料供給装置
81:牽引装置
82:ウェブ部形成装置
83:フランジ部形成装置
84:フィラー成形装置
85:一体化装置
86:牽引機構
A:肉厚が最も小さい場合の空隙部の断面積
B:予備賦形下型と予備賦形上型が最も密着している時に囲まれる断面積
R:強化繊維基材の屈曲部の谷側の曲率半径
t:L形状の強化繊維基材の厚さ
Δt:L形状の強化繊維基材の厚さ変化
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14