【実施例】
【0029】
1.PET装置
以下、図面を参照して本発明の実施例を説明する。
図1は、実施例におけるPET装置の構成を示すブロック図であり、
図2は実施例における放射線検出器の概略斜視図であり、
図3は実施例における検出器リングの概略正面図である。なお、本発明の放射線の一例として、実施例ではγ線を挙げて説明する。
【0030】
実施例におけるPET装置1は、被検体Mを載置する天板2と、天板2を導入させる開口部を有するガントリ3と、被検体Mから放射されるγ線を検出する放射線検出器4と、ガントリ3の内部に放射線検出器4をリング状に配置された検出器リング5とを備える。検出器リング5に設けられた開口は、天板2の長手方向、つまり、被検体Mの体軸方向であるz方向に伸びた円筒形となっている。また、PET装置1は、天板2を駆動する天板移動機構6と、天板2の移動量を制御する天板移動制御部7と、各放射線検出器4にシリアルナンバーとなっている時刻情報を送るクロック8と、各放射線検出器4で検出されたイベント情報を収集するデータ収集器9と、収集されたイベント情報を基に断層像を再構成する画像再構成部10とを備える。
【0031】
天板2は、ガントリ3および検出器リング5の開口をz方向から貫通するように設けられており、z方向に沿って往復可能である。この様な天板2の往復移動は、天板移動機構6によって実現される。天板移動機構6は、天板移動制御部7によって天板2の移動量が制御される。天板2は、その全体が検出器リング5の外側に位置している待機位置から、検出器リング5の一方側の開口を通って内部に導入される。さらに、検出器リング5の内部を貫通して、検出器リング5のもう一方側の開口から突き出ることができる。
【0032】
放射線検出器4は、被検体Mから発生したγ線を光に変換するシンチレータブロック4aと、変換された光を光電変換して電気のパルス信号に変換する光電子倍増管4bとを備える。シンチレータブロック4aは複数個のシンチレータを有する。この光電子倍増管4bでパルス信号が検出されることをイベントと称す。放射線検出器4は、どのシンチレータ結晶が光を発したかという光発生位置、また、光のエネルギー、および光の発生した時間を検出する検出器信号処理回路21と接続されている。100個前後の放射線検出器4をz方向に垂直な平面上の仮想円に放射状に配列することで1つの単位リングが形成される。この単位リングをz方向に複数個配列することで検出器リング5が構成される。
【0033】
PET装置1は、さらに、各部を統括的に制御する主制御部11と、再構成された断層像を表示するモニタ12と、操作者が様々な設定入力する操作卓13と、断層像や種々のデータを保管する記憶器14とを備えている。主制御部11は、CPU(中央演算処理装置)などで構成されている。画像再構成部10はマイクロプロセッサまたはFPGA(Field Programmable Gate Array)で構成してもよいし、主制御部11のCPUの一部の構成としてもよい。また、操作卓13は、マウスやキーボードやジョイスティックやトラックボールやタッチパネルなどに代表されるポインティングデバイスで構成されている。操作者は、撮像開始を操作卓13から指示することができる。モニタ12として、たとえば、液晶表示装置またはCRTディスプレイが挙げられ、記憶器14としてはハードディスクやメモリ、ストレージなどの記憶媒体が挙げられる。
【0034】
2.データ収集器
次に、
図4および
図5を参照してデータ収集器の説明をする。
図4および
図5は、データ収集器の構成を示すブロック図である。
【0035】
データ収集器9は、放射線検出器4で検出されたパルス信号から、光が検出された位置情報、光のエネルギー情報、および光の検出された時間情報を収集し、対となる真のイベント情報を計数する。データ収集器9は、各放射線検出器4と接続される検出器信号処理回路21と、複数の検出器信号処理回路21から出力される情報を1つのグループとしてまとめて出力するグルーピング部22と、グルーピング部22間で各イベント情報のペアを判別して真のイベント情報を計数する同時計数部23を備える。
【0036】
検出器信号処理回路21は、さらに、放射線検出器4で光が検出された位置を算出する位置演算回路25と、放射線検出器4で検出された光のエネルギーを算出するエネルギー演算回路26と、放射線検出器4で光が検出された時間を検出するタイミング回路27と、位置演算回路25が出力する時間情報およびエネルギー演算回路26が出力するエネルギー情報を記憶するメモリ28とを有する。検出器信号処理回路21は、クロック8から入力されるクロック信号に基づき、予め定められた検出周期すなわち1フレームごとに信号処理を実施する。本実施例では、1フレームを127nsecとするが、この値に限ることなく設定してもよい。メモリ28は本発明における記憶部に相当する。
【0037】
位置演算回路25は、光電子倍増管4bで検出された光の位置を算出する。算出された位置情報はデータ線42を通ってメモリ28へ送られて保管される。エネルギー演算回路26は、光電子倍増管4bで検出された光のエネルギーを算出する。算出されたエネルギー情報もデータ線42を通ってメモリ28へ送られて保管される。
【0038】
タイミング回路27は、光電子倍増管4bで光が検出されてパルス信号が立ち上がる時の時刻を検出することができる。このように、放射線検出器4においてγ線がパルス信号として検出されるイベントの発生時間に対応する時間情報がタイミング発生回路27から出力されてデータ線40を通ってグルーピング部22内のタイミング合成部31へ入力される。イベントの発生の有無を、たとえば、1nsec単位で計測する場合、1フレームの時間情報は128個のデータを有する。そして、パルス信号の立ち上がりが検出されない場合ゼロのデータを有し、パルス信号の立ち上がりが検出された場合、対応する時間情報を有するデータを有する。
図6を参照して説明すると、たとえば、フレーム周期の開始から1nsecでイベントが発生した場合、1ビット目の情報を1にした時間情報Taを送り出す。他にも、フレーム周期の開始から7nsecでイベントが発生した場合、1〜3ビット目の情報を1にした時間情報Tbを送りだす。フレーム周期の開始から10nsecでイベントが発生した場合は、2および4ビット目の情報を1にした時間情報Thを送りだす。このようにして、1フレームの時間情報は、7ビットで表現することができる。各タイミング回路27から時間情報に関して7ビットの情報量が出力される。また、この時間情報には、どの検出器信号処理回路21において検出された情報であるかを表すID情報も添付される。ID情報として、たとえば、全ての検出器信号処理回路21に順番に振り分けられた通し番号でもよい。
【0039】
グルーピング部22は、同一グループとして分けられた複数の検出器信号処理回路21から入力される各イベント情報を1つにまとめて同時計数部23へ出力する。グルーピング部22は、各検出器信号処理回路21内のタイミング回路27から1つの検出周期中に入力される複数の時間情報を1つの合成時間情報に合成するタイミング合成部31と、同時計数部23により真の同時計数のイベントと判別された時間情報を送信した検出器信号処理回路を特定する処理回路特定部32と、各検出器信号処理回路21内のメモリ28から入力される位置情報およびエネルギー情報をグループの情報として出力するグルーピング回路33とを有する。
【0040】
タイミング合成部31は、論理和を取るOR回路で構成される。各タイミング回路27から入力される7ビットの時間情報の論理和を取るので、タイミング合成部31から出力される合成時間情報は127ビットの情報量を有する。
図6を参照して説明すると、検出する単位時間である1nsecに対して合成時間情報として1ビット対応させて、パルス信号の立ち上がりが検出された時間に対応するビットを1で表わし、パルス信号の立ち上がりが検出されなかった時間に対応するビットを0で表わす。
図6では、1、7、10nsecにおいて、イベントの発生が検出されたので、1、7、10ビット目の情報を1にした合成時間情報MTaが出力される。
【0041】
同一フレームで複数のイベントが発生し、複数のタイミング回路27から1のデータを含む時間情報が入力された場合、合成時間情報は、複数のビットが1になる。このように、1フレーム中に検出された各タイミング回路27の時間情報が全く同一の時刻でないかぎり、それぞれの時間情報が保持されて合成時間情報としてデータ線41を通って同時計数部23内の同時計数判定部36へ出力される。また、この合成時間情報には、どのタイミング合成部31において合成された情報であるかを表すID情報も添付される。ID情報として、たとえば、全てのグルーピング部22に順番に振り分けられた通し番号でもよい。なお、時間情報および合成時間情報は、このように単純なデータ以外にも、ビット数を減らすために暗号化されたデータでもよい。データ線40およびデータ線41は本発明における第1情報送信系統に相当する。
【0042】
処理回路特定部32は、同時計数部23内の同時計数判定部36により判別された真の同時計数におけるイベントの時間情報が同時計数情報として同時計数判定部36よりデータ線45を通って入力される。入力された同時計数情報となる時間情報を送信した検出器信号処理回路21を特定し、真のイベントの時間情報と対応する位置情報およびエネルギー情報をグルーピング回路33へ出力するように出力許可信号をデータ線46を介して検出器信号処理回路21内のメモリ28に指示する。データ線45およびデータ線46は本発明における第3情報送信系統に相当する。
【0043】
グルーピング回路33は、各検出器信号処理回路21内のメモリ28からデータ線43を通って送られる真のイベントの位置情報およびエネルギー情報を、グループの代表として同時計数回路37へデータ線44を介して送り出す。データ線43およびデータ線44は本発明における第2送信系統に相当する。
【0044】
同時計数部23は、各グルーピング部22のタイミング合成部31から送られる各合成時間情報を照合する同時計数判別部36と、真の同時計数と判別された2つのイベントの位置情報、エネルギー情報を対となる真のイベント情報として画像再構成部10へ出力する同時計数回路37とを有する。
【0045】
同時計数判別部36は、各タイミング合成部31から送られる合成時間情報を照合して、それぞれ対となる時間情報の有無を判別して、真の同時計数となるイベントの時間情報を検出する。1のデータを有する合成時間情報を出力したタイミング合成部31に対して、そのグループと対向して配置されているグループのタイミング合成部31からの出力された合成時間情報を検索して、互いの時間情報を優先的に照合して同時計数の有無を判別する。真の同時計数または偶発同時計数におけるイベントと判別された時間情報は、同時計数回路37へ送られると共に、同時計数情報として添付されたID情報を基にそれぞれのグルーピング部22の処理回路特定部32へ送られる。
【0046】
同時計数回路37は、各グルーピング回路33から送られる真のイベントと判別された位置情報およびエネルギー情報に同時計数判定部36から送られた時間情報をセットにする。さらに、互いにペアとなるイベントの位置情報、エネルギー情報および時間情報を対の真のイベント情報として画像再構成部10へ出力する。
【0047】
3.イベントデータ収集
次に、
図7を参照して、イベントデータの収集方法を説明する。
図7は実施例に係るイベントデータの収集の流れを示すフローチャートである。
【0048】
被検体Mから放出されるγ線が放射線検出器4に入射すると、シンチレータブロック4aにてγ線から光に変換される。変換された光が光電子倍増管4bに入射すると、パルス信号として検出される。つまり、被検体Mから放出されるγ線がパルス信号として検出されるイベントが発生する。検出器信号処理回路21では、この検出されたパルス信号から、このイベントにおける各種情報が検出される。すなわち、位置演算回路25は光が検出された位置情報を、エネルギー演算回路26は光のエネルギー情報を、タイミング回路27は光の検出時刻である時間情報をそれぞれ検出する(ステップS01)。
【0049】
検出された位置情報およびエネルギー情報はメモリ28に一旦保管される。イベント情報の中で時間情報だけがグルーピング22内のタイミング合成部31へ送信される。(ステップS02)。タイミング合成部31では、同じフレーム内で検出された時間情報、つまり、同一のフレームで入力された時間情報の論理和を取ることで合成した合成時間情報を作成する(ステップS03)。合成された合成時間情報は同時計数部23内の同時計数判別部36へ送信される(ステップS04)。
【0050】
同時計数判別部36は、同じフレームで入力された複数の合成時間情報から対となる時間情報を判別して、真の同時計数となるイベントの時間情報を検出する(ステップS05)。次に、真の同時計数と判別されたイベントの時間情報を同時計数情報として、添付されたID情報を基に、このイベントの時間情報を含む合成時間情報を送信したグルーピング部22の処理回路特定部32へ送信する(ステップS06)。
【0051】
処理回路特定部32は、タイミング合成部31から検出器信号処理回路21のID情報が添付された各時間情報が入力されており、この時間情報と同時計数情報とを照合して、真の同時計数と判別されたイベントの時間情報を検出した検出器信号処理回路21を特定する(ステップS07)。複数の検出器信号処理回路21から全く同じタイミングの時間情報が入力されている場合、すなわち、1nsec単位で全く同時にイベントが発生した場合、これらの検出器信号処理回路21の中からランダムにいずれか1つ選択する。処理回路特定部32は、さらに、特定された検出器信号処理回路21へこのイベントに対応する位置情報およびエネルギー情報を出力するように出力許可信号を送る(ステップS08)。
【0052】
グルーピング部22の処理回路特定部32より出力許可信号が入力された検出器信号処理回路21のメモリ28は、真のイベントと判別された時間情報に対応する位置情報およびエネルギー情報をグルーピング部22のグルーピング回路32へ送信する(ステップS09)。グルーピング回路32は、入力された位置情報およびエネルギー情報を真のイベント情報として同時計数回路37へ送信する(ステップS10)。
【0053】
同時計数回路37は、入力される真のイベント情報に対してそれぞれ対となるイベント情報を合わせて対のイベント情報を作成して画像再構成部10へ送信する(ステップS11)。再構成された放射線断層像は主制御部11を介してモニタ12で表示されるか記憶器14で保存される。以上のデータ収集方法によれば、ステップS01からステップS11までのそれぞれのステップの処理を1フレーム期間で処理すればよく、11フレーム周期で1フレーム期間に収集された各イベント情報に対して対となる真のイベント情報の作成をすることができる。
【0054】
このように、実施例のデータ収集器9およびそれを備えるPET装置1、データ収集方法によれば、フレームごとに検出された時間情報を先に照合することで、真の同時計数となるイベントに対応する時間情報を効率的に判別することができる。つまり、真の同時計数となるイベントの判別に対して、これまで位置情報、エネルギー情報および時間情報と3つの情報を用いて実施していたのを、時間情報だけを用いることで、処理する情報量を軽減することができる。
【0055】
さらに、各グループ内において1フレーム中に発生したイベントの時間情報が合成されて合成時間情報として真のイベントの判別に用いられるので、真のイベントの数え落としを低減することができる。検出器信号処理回路21からグルーピング部22を介して同時計数部までの時間情報のデータ送信系統と位置およびエネルギー情報のデータ送信系統とを分けて2系統とすることで、時間情報と位置およびエネルギー情報との送信を別々に実施することができ、時間情報の処理と位置およびエネルギー情報の処理とを時間差を設けて実施することができる。
【0056】
また、同時計数部23から検出器信号処理回路21へのデータ送信系統を有することで、真のイベントと判別された時間情報に対応する位置およびエネルギー情報だけを取り込む指示を送ることができる。検出器信号処理回路4から同時計数部23へのデータ送信系統が一方通行であったが、双方向とすることで、時間情報を用いて先に真のイベントの判別を実施した後で、位置およびエネルギー情報を取り込むことができる。このようにして対となる真のイベント情報を作成することで、各構成要素間で送受信する情報量を軽減することができる。
【0057】
本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
【0058】
(1)上述した実施例では、位置情報およびエネルギー情報を保管するメモリ28が検出器信号処理回路21に設けられていたが、これに限られない。たとえば、
図8に示すようにグルーピング部22’に位置情報およびエネルギー情報を保管するメモリ34を設けてもよい。位置演算回路25およびエネルギー演算回路26は、算出した位置情報およびエネルギー情報をデータ線42’を通ってメモリ34へ出力して保管する。同時計数判別部36は、真の同時計数と判別された時間情報を同時計数情報としてそれぞれのグルーピング部22’のメモリ34へ送り、同時計数情報として送られた時間情報に対応する位置情報およびエネルギー情報をグルーピング回路33へ出力するように指示する。このような構成により、グルーピング部22から検出器信号処理回路21’へのデータ線43を省略することができ、信号処理の高速化を図ることができる。
【0059】
(2)上述した実施例では、放射線断層装置としてPET装置1を採用したがこれに限らず、PET−CT装置でもよいし、PET−MR装置でもよい。