(58)【調査した分野】(Int.Cl.,DB名)
前記合成回路は、前記測定信号が前記閾値を超えている旨を示す判定結果が前記判定回路から連続して得られた場合には、予め規定された期間の間、前記判定回路の判定結果に拘わらず前記フィルタによって処理されていない前記測定信号を選択することを特徴とする請求項1又は請求項2記載の光ファイバ温度分布測定装置。
前記フィルタによって処理された前記測定信号のレベルを低減させて前記合成回路に出力する低減回路を備えることを特徴とする請求項1から請求項3の何れか一項に記載の光ファイバ温度分布測定装置。
【発明を実施するための形態】
【0015】
以下、図面を参照して本発明の実施形態による光ファイバ温度分布測定装置について詳細に説明する。
【0016】
〔第1実施形態〕
図1は、本発明の第1実施形態による光ファイバ温度分布測定装置の要部構成を示すブロック図である。
図1に示す通り、本実施形態の光ファイバ温度分布測定装置1は、パルス発生部10、光源11、方向性結合器12、温度基準部13、光フィルタ14、光電変換回路(O/E)15a,15b、増幅回路16a,16b、A/D変換回路17a,17b、平均化回路18、フィルタ部19a,19b、演算部20、及び温度補正部21を備える。
【0017】
この光ファイバ温度分布測定装置1は、コネクタCNに接続される光ファイバFB内で生ずる後方ラマン散乱光(ストークス光及び反ストークス光)を受光して光ファイバFBの長さ方向における温度分布を測定する光ファイバ測定装置(R−OTDR)である。ここで、光ファイバFBは、例えば数km〜数十km程度の長さを有する石英系マルチモード光ファイバを用いることができる。尚、シングルモード光ファイバを用いてもよい。
【0018】
パルス発生部10は、光源11からパルス光を発生させるタイミング、及び平均化回路18を動作させるタイミングを規定するパルス信号を出力する。光源11は、例えば半導体レーザ等を備えており、パルス発生部10からパルス信号が出力されるタイミングでパルス状のレーザ光を射出する。尚、光源11から射出されるレーザ光の波数をk0とする。方向性結合器12は、光源11から射出されたレーザ光が温度基準部13に導かれ、且つ、光ファイバFBで生じた後方散乱光が光フィルタ14に導かれるよう、光源11、温度基準部13、及び光フィルタ14を光学的に結合する。
【0019】
温度基準部13は、巻回された光ファイバ13aと温度センサ13bとを備えており、光ファイバ温度分布測定装置1内部の温度(基準温度)を得るためのものである。光ファイバ13aは、一端が方向性結合器12と光学的に結合され、他端がコネクタCN(光ファイバFBの一端が接続されるコネクタ)と光学的に結合された数十〜数百m程度の全長を有する光ファイバである。温度センサ13bは、例えば白金測温抵抗体を備えており、光ファイバ13aの近傍の温度を測定する。この温度センサ13bの測定結果は、演算部20に出力される。
【0020】
光フィルタ14は、方向性結合器12からの後方散乱光に含まれる後方ラマン散乱光(ストークス光ST及び反ストークス光AS)を抽出するとともに、ストークス光STと反ストークス光ASとを分離して出力するフィルタである。尚、光ファイバFBで生ずるラマンシフト(波数)をkrとすると、ストークス光STの波数はk0−krで表され、反ストークス光ASの波数はk0+krで表される。
【0021】
光電変換回路15a,15bは、例えばアバランシェ・フォトダイオード等の受光素子を備えており、光フィルタ14から出力されるストークス光ST及び反ストークス光ASをそれぞれ光電変換する。増幅回路16a,16bは光電変換回路15a,15bから出力される光電変換信号をそれぞれ所定の増幅率で増幅する。
【0022】
A/D変換回路17a,17bは、増幅回路16a,16bで増幅された光電変換信号をサンプリングし、ディジタル化したサンプルデータを出力する。これらA/D変換回路17a,17bは、コネクタCNの位置を原点とし、光ファイバFBの長手方向に一定間隔(例えば、1[m]の間隔)で設定されたサンプルポイント(測定点)において生ずる後方ラマン散乱光(ストークス光ST及び反ストークス光AS)の光電変換信号をサンプリングするように動作タイミングが規定される。
【0023】
平均化回路18は、パルス発生部10からのパルス信号によって動作し、光源11から複数回に亘って射出されるレーザ光が光ファイバFBに入射される度に得られるA/D変換回路17a,17bのサンプルデータをそれぞれ個別に平均化する。光ファイバFBで生ずる後方ラマン散乱光(ストークス光ST及び反ストークス光AS)は微弱であるため、光ファイバFBに対して複数回に亘ってレーザ光を入射させて得られるサンプルデータを平均化することにより、所望の信号対雑音比(S/N比)を得ている。
【0024】
フィルタ部19aは、平均化回路18で平均化されたA/D変換回路17aのサンプルデータD11(ストークス光STの強度分布を示す測定信号)に対してフィルタ処理を行い、そのサンプルデータD11に含まれるノイズを除去する。同様に、フィルタ部19bは、平均化回路18で平均化されたA/D変換回路17bのサンプルデータD12(反ストークス光ASの強度分布を示す測定信号)に対してフィルタ処理を行い、そのサンプルデータD12に含まれるノイズを除去する。これらフィルタ部19a,19bは、光ファイバ温度分布測定装置1の温度分解能を向上させるために設けられる。尚、フィルタ部19a,19bの詳細については後述する。
【0025】
演算部20は、温度センサ13bの測定結果を参照しつつ、フィルタ部19aでフィルタ処理されたストークス光STについてのサンプルデータD21と、フィルタ部19bでフィルタ処理された反ストークス光ASについてのサンプルデータD22とを用いて、サンプルポイント(測定点)毎の強度比を求める演算を行う。かかる演算によってサンプルポイント毎の温度が求められ、これにより光ファイバFBの長さ方向における温度分布が得られる。温度補正部21は、光ファイバFBの温度を測定する温度センサ(図示省略)の測定結果に基づいて、演算部20で得られた光ファイバFBの長さ方向における温度分布を補正する。
【0026】
次に、フィルタ部19a,19bの内部構成について説明する。
図2は、本発明の第1実施形態による光ファイバ温度分布測定装置が備えるフィルタ部の内部構成を示すブロック図である。
図2に示す通り、フィルタ部19a,19bは、閾値設定回路31、ローパスフィルタ32(フィルタ)、遅延回路33、判定回路34、及び合成回路35を有するフィルタ回路30を備える。
【0027】
フィルタ部19aのフィルタ回路30は、平均化回路18から出力されるサンプルデータD11に対するフィルタ処理を行って、ノイズを除去したサンプルデータD21を出力する。フィルタ部19bのフィルタ回路30は、平均化回路18から出力されるサンプルデータD12に対するフィルタ処理を行って、ノイズを除去したサンプルデータD22を出力する。尚、以下では、重複した説明を避けるために、フィルタ部19aのフィルタ回路30について詳細に説明し、フィルタ部19bのフィルタ回路30については説明を省略する。
【0028】
閾値設定回路31は、フィルタ回路30で行われるフィルタ処理で用いられる閾値TH1を設定する。具体的に、閾値設定回路31は、サンプルデータD11に重畳されているノイズの変化量に応じた閾値TH1を設定する。いま、サンプルデータD11のうちの第i番目のデータをX(i)と表すと、閾値設定回路31は、連続する(N+1)個のデータを用いて、以下の(1)式から設定すべき閾値TH1を算出する。尚、以下の(1)式中のαは任意の定数(例えば「2」)である。
【0030】
つまり、閾値設定回路31は、隣り合うデータの差分(N個の差分)の絶対値の平均値に定数αを乗じて得られる値を閾値TH1として算出する。ここで、サンプルデータD11は、ストークス光STに起因する成分とノイズに起因する成分とが含まれるデータである。光ファイバFBの温度が一定であれば、隣接するサンプルポイントで得られるデータ(隣り合うデータ)に含まれるストークス光STに起因する成分はほぼ同じである。このため、隣り合うデータの差分を求めればノイズの変化量が得られることになり、上記(1)式を用いて算出される閾値TH1はノイズの変化量に応じた閾値ということができる。
【0031】
また、閾値設定回路31は、光ファイバFBを複数の区間に区分し、区分した区間毎に上記の閾値TH1を設定する。例えば、閾値設定回路31は、光ファイバFBを、長さが100[m]に設定された複数の区間に区分する。ここで、光ファイバFBの長手方向に1[m]の間隔でサンプルポイントが設定されているとすると、区分した100[m]の区間の各々には、区間両端におけるサンプルポイントを含めると、101個のサンプルポイントが含まれることになる。このため、閾値設定回路31は、各々の区間について、101個のサンプルポイントで得られる連続する101個のデータ(N=100)を用いて、上記の(1)式から閾値TH1を算出する。
【0032】
このように、光ファイバFBを複数の区間に区分して区間毎に閾値TH1を設定するのは、ノイズの分布特性を考慮したからである。また、光ファイバFBの個体差や使用環境によってノイズの変化量が大きく異なるからである。
図3は、ノイズの分布特性の概要を示す図である。尚、
図3においては、光ファイバFBの長手方向における距離(光ファイバ温度分布測定装置1からの距離)を横軸にとり、ノイズのレベルを縦軸にとっている。
図3に示す通り、ノイズの分布特性は、光ファイバ温度分布測定装置1の近傍ではレベル及びその変化量が大きく、光ファイバ温度分布測定装置1から離れるに従ってレベル及びその変化量が徐々に小さくなる特性である。このように、光ファイバFBの位置に応じてノイズの変化量が大きく異なるため、区分した区間毎に閾値TH1を設定することとしている。
【0033】
ローパスフィルタ32は、サンプルデータD11に対して予め規定されたカットオフ周波数(第1周波数)以上の周波数成分を除去する処理を行う。このローパスフィルタ32は、光ファイバFBの長手方向における空間周波数が高いノイズの成分を除去するために設けられる。尚、ローパスフィルタ32のカットオフ周波数は、必要となる温度分解能に応じて適宜設定される。
【0034】
遅延回路33は、入力されるサンプルデータD11を所定時間だけ遅延させる。具体的に、遅延回路33は、ローパスフィルタ32で行われる処理に要する時間だけサンプルデータD11を遅延させる。この遅延回路33は、ローパスフィルタ32で処理されたデータQ1が合成回路35に入力されるタイミングと、ローパスフィルタ32で処理されていないデータQ2(サンプルデータD11)が合成回路35に入力されるタイミングとを調整するために設けられる。尚、このようなタイミング調整が不要であれば、遅延回路33を省略することは可能である。
【0035】
判定回路34は、サンプルデータD11の各々が、閾値設定回路31で設定された閾値TH1を超えているか否かを判定し、その判定結果Jを合成回路35に出力する。合成回路35は、判定回路34の判定結果Jに応じて、ローパスフィルタ32で処理されたデータQ1と、ローパスフィルタ32で処理されていないデータQ2との何れか一方を選択して合成する。具体的に、合成回路35は、判定回路34からの判定結果Jが、閾値TH1を超えていない旨を示すものである場合にはローパスフィルタ32で処理されたデータQ1を選択して合成し、閾値TH1を超えている旨を示すものである場合にはローパスフィルタ32で処理されていないデータQ2を選択して合成する。
【0036】
ここで、サンプルデータD11のうちの第i番目のデータX(i)に対する判定回路34の判定結果をJ(i)とし、この判定結果J(i)に基づいて合成回路35で選択されて合成されるデータをY(i)とし、ローパスフィルタ32の伝達関数をH(z)とすると、
図2に示すフィルタ回路30は、以下の(2)式で表される。尚、判定結果J(i)は、X(i)が閾値TH1を超えている場合にはJ(i)=1となり、超えていない場合にはJ(i)=0となる。以下の(2)式からフィルタ回路30はεフィルタであることが分かる。
【0038】
また、合成回路35は、サンプルデータD11が閾値TH1を超えている旨を示す判定結果Jが連続して得られた場合には、予め規定された期間の間、判定結果Jに拘わらずローパスフィルタ32で処理されていないデータQ2を選択して合成する。具体的には、前後する3つのデータについては、ローパスフィルタ32で処理されていないデータQ2を選択して合成する。これは、光ファイバFBに急激な温度変化がある場合に生じ得る空間分解能の悪化を防止するためである。尚、合成回路35はデータQ2等を一時的に記憶するメモリを備えており、このメモリに記憶されたデータを適宜読み出すことで、上述の処理を実現している。
【0039】
図4は、本発明の第1実施形態による光ファイバ温度分布測定装置が備えるフィルタ部の判定回路で行われる処理を説明するための図である。光ファイバFBに急激な温度変化がある場合には、平均化回路18から出力されるサンプルデータD11(合成回路35に入力されるデータQ2)は、
図4(a)に示す通り、温度低下に合わせて信号レベルが急激に低下して閾値TH1を下回るものとなる。このようなサンプルデータD11をローパスフィルタ32で処理して得られるデータ(合成回路35に入力されるデータQ1)は、
図4(a)に示す通り、信号レベルの変化がデータQ2よりも緩やかなものになる。
【0040】
前述の通り、サンプルデータD11の各々が閾値TH1を超えているか否かのみに基づいてデータQ1,Q2を選択してしまうと、サンプルデータD11が閾値TH1を下回るまではデータQ2が選択され、サンプルデータD11が閾値TH1を下回ってからはデータQ1が選択される。すると、
図4(b)に示す通り、合成回路35で合成されたデータ(サンプルデータD21)は、不連続な部分(符号Z1が付された円で囲われている部分)が生じて信号波形が劣化したものになり、これによって空間分解能が悪化する可能性がある。
【0041】
これに対し、閾値TH1を超えている旨を示す判定結果Jが連続して得られた場合に、データQ1,Q2の選択方法を上述した通り変更することによって、
図4(c)に示す通り、サンプルデータD11が閾値TH1を下回った後もデータQ1が選択されることになる(符号Z2が付された矢印の部分)。すると、
図4(c)に示す通り、合成回路35で合成されたデータ(サンプルデータD21)の連続性が保たれて信号波形の劣化が生じないため、空間分解能の悪化を防止することができる。
【0042】
次に、本実施形態の光ファイバ温度分布測定装置1の動作について説明する。尚、以下では、理解を容易にするために、サンプルポイントが、光ファイバFBの長手方向に1[m]の間隔で設定されており、フィルタ部19a,19bの処理において、光ファイバFBは、長さが100[m]に設定された複数の区間に区分されているものとする。
【0043】
動作が開始されると、パルス発生部10からパルス信号が出力され、このパルス信号に基づいて光源11からパルス状のレーザ光が射出される。このレーザ光は、方向性結合器12、温度基準部13、及びコネクタCNを順に介して光ファイバFBに入射し、光ファイバFB中を伝播する。レーザ光が光ファイバFB中を進むと、後方ラマン散乱光(ストークス光ST及び反ストークス光AS)を含む後方散乱光が発生する。この後方散乱光は、光ファイバFB中をレーザ光の進行方向とは逆方向に進み、コネクタCN、温度基準部13、及び方向性結合器12を順に介して光フィルタ14に入射する。そして、光フィルタ14において、ストークス光STと反ストークス光ASとが抽出されて分離される。
【0044】
ストークス光ST及び反ストークス光ASは、光電変換回路15a,15bでそれぞれ光電変換されて、それらの光電変換信号が増幅回路16a,16bでそれぞれ増幅される。増幅回路16a,16bで増幅された光電変換信号は、A/D変換回路17a,17bにおいてそれぞれサンプリングされる。これらA/D変換回路17a,17bでサンプリングされたサンプルデータは平均化回路18に出力され、光ファイバFBの長手方向に設定されたサンプルポイント数分のサンプルデータがそれぞれ蓄えられる。
【0045】
光ファイバFBにパルス状のレーザ光が入射される度に以上の処理が繰り返し行われ、A/D変換回路17a,17bから順次サンプルポイント数分のサンプルデータがそれぞれ出力される。そして、A/D変換回路17aから順次出力されるストークス光STについてのサンプルデータが平均化回路18でサンプルポイント毎に平均化されるとともに、A/D変換回路17baから順次出力される反ストークス光ASについてのサンプルデータが平均化回路18でサンプルポイント毎に平均化される。
【0046】
平均化回路18における平均化処理が終了すると、平均化されたサンプルデータに含まれるノイズを除去するフィルタ処理がフィルタ部19a,19bで行われる。尚、このフィルタ処理は、光ファイバFBに設定された複数の区間毎に行われる。フィルタ部19a,19bのフィルタ処理が開始されると、まず光ファイバFBに設定された複数の区間のうちの最初の区間(光ファイバ温度分布測定装置1に最も近い区間)に含まれる101個のサンプルポイント(区間両端におけるサンプルポイントを含む)のサンプルデータがフィルタ部19a,19bにそれぞれ読み出されて閾値TH1を設定する処理が行われる。
【0047】
具体的には、平均化回路18で平均化されたストークス光STについてのサンプルデータ(サンプルデータD11)のうちの最初の101個のデータがフィルタ部19aに読み出されるとともに、平均化回路18で平均化された反ストークス光ASについてのサンプルデータ(サンプルデータD12)のうちの最初の101個のデータがフィルタ部19bに読み出される。そして、フィルタ部19a,19bの各々に設けられたフィルタ回路30の閾値設定回路31で、前述した(1)式を用いて閾値TH1を算出し、算出した閾値TH1を設定する処理がそれぞれ行われる。
【0048】
次に、上記の最初の区間に含まれる100個のサンプルポイントのサンプルデータが1つずつ順にフィルタ部19a,19bに読み出され、これらのサンプルデータに含まれるノイズを除去する処理が行われる。具体的には、サンプルデータD11のうちの最初の100個のデータが1つずつ順にフィルタ部19aに読み出されるとともに、サンプルデータD12のうちの最初の100個のデータが1つずつ順にフィルタ部19bに読み出される。そして、フィルタ部19a,19bにおいて、これらのデータに含まれるノイズを除去する処理が行われる。尚、フィルタ部19a,19bで行われる処理は同様の処理であるため、以下ではフィルタ部19aで行われる処理について説明する。
【0049】
フィルタ部19aに読み出されたデータは、フィルタ部19aに設けられたフィルタ回路30のローパスフィルタ32、遅延回路33、及び判定回路34に入力される。すると、ローパスフィルタ32で高周波成分を除去する処理が行われるとともに、遅延回路33で所定時間だけ遅延させる処理が行われ、ローパスフィルタ32及び遅延回路33から合成回路35に対してデータQ1,Q2がそれぞれ出力される。また、判定回路34において、入力されたデータが閾値設定回路31で設定された閾値を超えているか否かが判定され、その判定結果Jが合成回路35に出力される。
【0050】
合成回路35は、判定回路34からの判定結果Jに応じて、ローパスフィルタ32で処理されたデータQ1と、ローパスフィルタ32で処理されていないデータQ2との何れか一方を選択して合成してサンプルデータD21として出力する処理を行う。
図5は、本発明の第1実施形態による光ファイバ温度分布測定装置が備えるフィルタ部の合成回路で行われる処理の詳細を示すフローチャートである。尚、
図5のフローチャートは、光ファイバFBに設定された複数の区間毎のフィルタ処理が開始される度に開始される。
【0051】
処理が開始されると、まず変数iを初期化する処理(値を「1」に設定する処理)が行われる(ステップS11)。この変数iは、フィルタ部19aに1つずつ順に読み出される100個のデータを区別するための変数である。変数iの初期化が終了すると、第i番目のデータについての判定結果J(i)が、値設定回路31で設定された閾値を超えている旨を示すもの(J(i)=1)であるか否かを判断する処理が行われる(ステップS12)。
【0052】
J(i)=0である場合には、ステップS12の判断結果が「NO」になり、第i番目のデータについてはローパスフィルタ32で処理されたデータQ1を選択し、サンプルデータD21の第i番目のデータとして合成する処理が行われる(ステップS13)。以上の処理が終了すると、変数iをインクリメントして(ステップS14)、残りのデータの有無を判断する処理が行われる(ステップS15)。前述した最初の区間に含まれる100個のサンプルポイントのサンプルデータの全ての読み出しが行われていない場合には、ステップS15の判断結果が「NO」になり、処理はステップS12に戻る。
【0053】
これに対し、J(i)=1である場合には、ステップS12の判断結果が「YES」になり、第i+1番目のデータについての判定結果J(i+1)が、値設定回路31で設定された閾値を超えている旨を示すもの(J(i+1)=1)であるか否かを判断する処理が行われる(ステップS16)。J(i+1)=0である場合には、ステップS16の判断結果が「NO」になり、第i番目のデータについてはローパスフィルタ32で処理されていないデータQ2を選択し、サンプルデータD21の第i番目のデータとして合成する処理が行われる(ステップS17)。
【0054】
他方、J(i+1)=1である場合には、ステップS16の判断結果が「YES」になり、第i−3〜i+3番目のデータについては、判定回路34の判定結果に拘わらず、ローパスフィルタ32で処理されていないデータQ2を選択し、サンプルデータD21の第i−3〜i+3番目のデータとして合成する処理が行われる(ステップS18)。以上のステップS17又はステップS18の処理が終了すると、変数iをインクリメントして(ステップS14)、残りのデータの有無を判断する処理が行われる(ステップS15)。
【0055】
前述した最初の区間に含まれる100個のサンプルポイントのサンプルデータの全ての読み出しが行われていない場合には、ステップS15の判断結果が「NO」になって処理はステップS12に戻る。これに対し、前述した最初の区間に含まれる100個のサンプルポイントのサンプルデータの全ての読み出しが行われた場合には、ステップS15の判断結果が「YES」になって、
図5に示す一連の所定が終了する。
【0056】
以上の処理が終了すると、光ファイバFBに設定された複数の区間のうちの2番目の区間(光ファイバ温度分布測定装置1に2番目に近い区間)に含まれる101個のサンプルポイント(区間両端におけるサンプルポイントを含む)のサンプルデータがフィルタ部19a,19bにそれぞれ読み出されて閾値TH1を設定する処理が行われる。そして、上記の2番目の区間に含まれる100個のサンプルポイントのサンプルデータが1つずつ順にフィルタ部19a,19bに読み出され、これらのサンプルデータに含まれるノイズを除去する処理が行われる。以下、光ファイバFBに設定された複数の区間の各々について、閾値TH1を設定する処理及びノイズを除去する処理が同様に行われる。
【0057】
フィルタ部19a,19bにおける処理が終了すると、演算部20において、フィルタ部19aからのサンプルデータD21と、フィルタ部19bからのサンプルデータD22とを用いて、サンプルポイント(測定点)毎の強度比が求められ、これによりサンプルポイント毎の温度が求められる。これらサンプルポイント毎の温度は、温度補正部21に出力され、不図示の温度センサ(光ファイバFBの温度を測定する温度センサ)の測定結果に基づいて補正される。このようにして、光ファイバFBの長さ方向における温度分布が求められる。
【0058】
以上の通り、本実施形態では、フィルタ部19a,19bにおいて、平均化回路18で平均化されたサンプルデータ(ストークス光ST及び反ストークス光ASについてのサンプルデータ)に重畳されているノイズの変化量に応じた閾値を設定し、サンプルデータが閾値を超えているか否かに応じて、ローパスフィルタ32によって処理されたサンプルデータとローパスフィルタ32によって処理されていないサンプルデータとの何れか一方を選択して合成するようにしている。これにより、ストークス光ST及び反ストークス光ASについてのサンプルデータの波形劣化を招くことなく空間周波数が高いノイズ成分を効果的に低減することができるため、温度分解能を向上させることができる。
【0059】
〔第2実施形態〕
図6は、本発明の第2実施形態による光ファイバ温度分布測定装置が備えるフィルタ部の内部構成を示すブロック図である。尚、本実施形態の光ファイバ温度分布測定装置は、第1実施形態の光ファイバ温度分布測定装置1とは、フィルタ部19a,19bの内部構成が相違するのみであり、フィルタ部19a,19b以外の構成は同様である。このため、以下では、主にフィルタ部19a,19bについて説明する。
【0060】
図6に示す通り、本実施形態の光ファイバ温度分布測定装置が備えるフィルタ部19a,19bは、第1実施形態で説明したフィルタ回路30に加えて、予備フィルタ回路40、遅延回路50、演算回路60(第1演算回路)、及び演算回路70(第2演算回路)を備える。かかる構成のフィルタ部19a,19bは、サンプルデータD11,D12から大きな温度変化を除いた上で、前述したフィルタ回路30のフィルタ処理を行うことで、光ファイバFBの長さ方向における温度分布がほぼ一定でない場合であっても、空間周波数が高いノイズ成分を効果的に低減するものである。
【0061】
つまり、前述した第1実施形態におけるフィルタ部19a,19bは、光ファイバFBの長さ方向における温度分布がほぼ一定である(大きな温度変化が生じていない)ことを前提として、フィルタ回路30で用いられる閾値を算出するものであった。このため、光ファイバFBの長さ方向における温度分布がほぼ一定でない場合には、閾値を正しく算出することはできず、空間周波数が高いノイズ成分を効果的に低減することはできないと考えられる。
【0062】
本実施形態のフィルタ部19a,19bは、サンプルデータD11,D12から大きな温度変化を予め除いた上で前述したフィルタ回路30のフィルタ処理を行うことによって、光ファイバFBの長さ方向における温度分布がほぼ一定でない場合であっても、空間周波数が高いノイズ成分を効果的に低減することを可能としている。尚、以下では、重複した説明を避けるために、フィルタ部19aについて詳細に説明し、フィルタ部19bについては説明を省略する。
【0063】
予備フィルタ回路40は、第1実施形態で説明したフィルタ回路30と似た構成であり、平均化回路18から出力されるサンプルデータD11に対するフィルタ処理を行って、サンプルデータD11の概形(測定信号の概形)を抽出する。具体的に、予備フィルタ回路40は、閾値設定回路41(予備閾値設定回路)、ローパスフィルタ42(予備フィルタ)、遅延回路43、判定回路44(予備判定回路)、合成回路45(予備合成回路)、及び遅延回路46を備える。
【0064】
閾値設定回路41は、予備フィルタ回路40で行われるフィルタ処理で用いられる閾値TH2(予備閾値)を設定する。具体的に、閾値設定回路41は、ローパスフィルタ42によって処理されたサンプルデータ(データQ11)とローパスフィルタ42によって処理されていないサンプルデータ(サンプルデータD11)との差分の絶対値の平均値に応じた閾値TH2を設定する。
図7は、本発明の第2実施形態による光ファイバ温度分布測定装置が備えるフィルタ部の予備フィルタ回路で設定される閾値を説明するための図である。
【0065】
図7(a)に例示するサンプルデータD11は、符号A1で指し示す部分において急激にレベルが上昇し、且つ符号A2で指し示す部分において急激にレベルが低下し、且つ全体に亘って細かなレベル変動があるデータである。このようなサンプルデータD11をローパスフィルタ42で処理して得られるデータ(合成回路45に入力されるデータQ11)は、
図7(a)に示す通り、符号A1,A2で指し示す部分において信号レベルが緩やかに変化し、且つ細かなレベル変動が除かれたものになる。
【0066】
閾値設定回路41は、まずローパスフィルタ42によって処理されたサンプルデータ(
図7(a)中のデータQ11)と、ローパスフィルタ42によって処理されていないサンプルデータ(
図7(a)中のサンプルデータD11)との差分の絶対値をサンプルポイント毎に求める。そして、
図7(b)に示す通り、各サンプルポイントで得られた差分の絶対値の平均値を算出し、算出した平均値の2倍程度の値を閾値TH2として設定する。
【0067】
この閾値設定回路41は、フィルタ回路30に設けられる閾値設定回路31と同様に、光ファイバFBを複数の区間に区分し、区分した区間毎に上記の閾値TH2を設定する。例えば、閾値設定回路41は、光ファイバFBを、長さが1[km]に設定された複数の区間に区分する。ここで、光ファイバFBの長手方向に1[m]の間隔でサンプルポイントが設定されているとすると、区分した1[km]の区間の各々には、1000個のサンプルポイントが含まれることになる。このため、閾値設定回路41は、各々の区間について、1000個のサンプルポイントで得られる連続する1000個のデータを用いて閾値TH2を算出する。尚、以下では、閾値設定回路31で区分される区間と閾値設定回路41で区分される区間とを区別するために、閾値設定回路31で区分される区間を「小区間」といい、閾値設定回路41で区分される区間を「大区間」という。
【0068】
ローパスフィルタ42は、サンプルデータD11に対して予め規定されたカットオフ周波数(第2周波数)以上の周波数成分を除去する処理を行う。このローパスフィルタ42は、サンプルデータD11の概形(測定信号の概形)を抽出するために設けられる。尚、ローパスフィルタ42のカットオフ周波数は、抽出すべきサンプルデータD11の概形に応じて適宜設定される。
【0069】
遅延回路43は、入力されるサンプルデータD11を所定時間だけ遅延させる。具体的に、遅延回路43は、ローパスフィルタ42で行われる処理に要する時間だけサンプルデータD11を遅延させる。この遅延回路43は、ローパスフィルタ42で処理されたデータQ11が合成回路45に入力されるタイミングと、ローパスフィルタ42で処理されていないデータQ12(サンプルデータD11)が合成回路45に入力されるタイミングとを調整するために設けられる。尚、このようなタイミング調整が不要であれば、遅延回路43を省略することは可能である。
【0070】
判定回路44は、サンプルデータD11の各々が、閾値設定回路41で設定された閾値TH2を超えているか否かを判定し、その判定結果を合成回路45に出力する。合成回路45は、判定回路44の判定結果に応じて、ローパスフィルタ42で処理されたデータQ11と、ローパスフィルタ42で処理されていないデータQ12との何れか一方を選択して合成する。具体的に、合成回路45は、判定回路44からの判定結果が、閾値TH2を超えていない旨を示すものである場合にはローパスフィルタ42で処理されたデータQ11を選択して合成し、閾値TH2を超えている旨を示すものである場合にはローパスフィルタ42で処理されていないデータQ12を選択して合成する。
【0071】
遅延回路46は、遅延回路43と同様に、入力されるサンプルデータD11を所定時間だけ遅延させる。但し、遅延回路46は、ローパスフィルタ42で行われる処理に要する時間と合成回路45で行われる処理に要する時間とを加えた時間だけサンプルデータD11を遅延させる。この遅延回路46は、合成回路45で合成されたサンプルデータW1が演算回路60に入力されるタイミングと、サンプルデータD11が演算回路60に入力されるタイミングとを調整するために設けられる。
【0072】
遅延回路50は、予備フィルタ回路40の合成回路45から出力されるサンプルデータW1を所定時間だけ遅延させる。具体的に、遅延回路50は、フィルタ回路30で行われる処理に要する時間だけサンプルデータW1を遅延させる。演算回路60は、予備フィルタ回路40の遅延回路46から出力されるサンプルデータD11から、サンプルデータW1(予備フィルタ回路40の合成回路45から出力されるサンプルデータ)を減算したサンプルデータW2をフィルタ回路30に出力する。つまり、演算回路60は、サンプルデータD11からサンプルデータD11の概形(大きな温度変化)を除いたサンプルデータW2をフィルタ回路30に出力する。
【0073】
演算回路70は、遅延回路50から出力されるサンプルデータ(サンプルデータW1)と、フィルタ回路30から出力されるサンプルデータW3とを加算して、サンプルデータD21として出力する。ここで、フィルタ回路30は、基本的には第1実施形態で説明したものと同じものであるが、本実施形態においては、ローパスフィルタ32と合成回路35との間にローパスフィルタ32から出力されるデータQ1のレベルを低減する低減回路36が設けられている。この低減回路36は、空間周波数が高いノイズ成分を効果的に低減するために設けられた回路であり、例えばデータQ1のレベルを0.3〜0.5倍程度に低減する。
【0074】
図8は、本発明の第2実施形態による光ファイバ温度分布測定装置における低減回路の効果を説明するための図である。尚、以下では、光ファイバFBの長手方向における温度がなだらかに上昇している場合を例に挙げて説明する。低減回路36が省略されているとすると、光ファイバ温度分布測定装置で測定される温度分布は、
図8(a)に示す通り、細かな温度変化を生じつつ温度が距離と共になだらかに上昇するものとなる。
【0075】
これに対し、低減回路36を設けることによって、
図8(b),(c)に示す温度分布が得られる。尚、
図8(b)に示す温度分布は、低減回路36の低減率を「0.375」に設定したときに得られる温度分布であり、
図8(c)に示す温度分布は、低減回路36の低減率を「0.05」に設定したときに得られる温度分布である。まず、
図8(b)に示す温度分布は、細かな温度変化が若干残っているものの自然なものになっているのが分かる。また、実際の僅かな温度変化がフィルタによって平滑化された場合も、温度誤差を少なくすることができる。これに対し、
図8(c)に示す温度分布は、温度変化の大きな箇所以外は直線状になっており不自然なものになっているのが分かる。このため、低減回路36の低減率は、上述の通り、0.3〜0.5程度に設定するのが望ましい。
【0076】
ここで、サンプルデータD11のうちの第i番目のデータX(i)に対する判定回路44の判定結果をJ1(i)とし、サンプルデータW1のうちの第i番目のデータW1(i)に対する判定回路34の判定結果をJ2(i)とし、これら判定結果J1(i),J2(i)に基づいて合成されるデータ(サンプリングデータD21)をY(i)とする。また、ローパスフィルタ42の伝達関数をH1(z)とし、ローパスフィルタ32の伝達関数をH2(z)とし、低減回路36の低減率をaとする。すると、
図6に示すフィルタ部19aは、以下の(3)式で表される。
【0078】
但し、判定結果J1(i)は、X(i)が閾値TH2を超えている場合にはJ1(i)=1となり、超えていない場合にはJ1(i)=0となる。また、判定結果J2(i)は、W1(i)が閾値TH1を超えている場合にはJ2(i)=1となり、超えていない場合にはJ2(i)=0となる。ここで、温度分解能の測定において、周囲温度が一定であるとすると、J1(i)=0,J2(i)=0と考えられるため、上記(3)式は以下の(4)式となる。
【0080】
上記(4)式において、右辺第1項が信号成分を表しており、右辺第2項がノイズ成分を示している。いま、簡単のために、フィルタ回路30に設けられたローパスフィルタ32が殆どの信号成分を通過させるとすると、温度分解能は、上記(4)式中の低減率aに依存する。このため、低減率aを0.3〜0.5程度に設定することによって、温度分解能を2〜3倍程度改善することができる。
【0081】
次に、本実施形態の光ファイバ温度分布測定装置の動作について説明する。尚、光源11からパルス状のレーザ光が順次射出されて、ストークス光STについてのサンプルデータの平均値(サンプルデータD11)と、反ストークス光ASについてのサンプルデータの平均値(サンプルデータD12)とが平均化回路18で得られるまでの動作は第1実施形態と同様であるため省略する。
【0082】
平均化回路18における平均化処理が終了すると、平均化されたサンプルデータに含まれるノイズを除去するフィルタ処理がフィルタ部19a,19bで行われる。尚、このフィルタ処理は、光ファイバFBに設定された複数の大区間毎に行われる。具体的には、まず光ファイバFBに設定された複数の大区間のうちの最初の大区間(光ファイバ温度分布測定装置1に最も近い大区間)に含まれる1000個のサンプルポイントのサンプルデータがフィルタ部19a,19bの予備フィルタ回路40にそれぞれ読み出されて閾値TH2を設定する処理が行われる。
【0083】
また、以上の処理と並行して、光ファイバFBに設定された複数の小区間に含まれる101個のサンプルポイント(区間両端におけるサンプルポイントを含む)のサンプルデータが順次フィルタ部19a,19bのフィルタ回路30にそれぞれ読み出されて、複数の小区間の各々についての閾値TH1を設定する処理が行われる。尚。ここでは説明を簡単にするために、1つの大区間内における複数の小区間についての閾値TH1が一度に設定される例について説明するが、第1実施形態と同様に、小区間についての閾値TH1を順次設定しても良い。
【0084】
次いで、上記の最初の大区間に含まれる1000個のサンプルポイントのサンプルデータが1つずつ順にフィルタ部19a,19bに読み出され、これらのサンプルデータに含まれるノイズを除去する処理が行われる。具体的には、サンプルデータD11のうちの最初の1000個のデータが1つずつ順にフィルタ部19aに読み出されるとともに、サンプルデータD12のうちの最初の1000個のデータが1つずつ順にフィルタ部19bに読み出される。そして、フィルタ部19a,19bにおいて、これらのデータに含まれるノイズを除去する処理が行われる。尚、フィルタ部19a,19bで行われる処理は同様の処理であるため、以下ではフィルタ部19aで行われる処理について説明する。
【0085】
フィルタ部19aに読み出されたデータは、フィルタ部19aに設けられた予備フィルタ回路40のローパスフィルタ42、遅延回路43、判定回路44、及び遅延回路46に入力される。すると、ローパスフィルタ42で高周波成分を除去する処理が行われるとともに、遅延回路43で所定時間だけ遅延させる処理が行われ、ローパスフィルタ42及び遅延回路43から合成回路45に対してデータQ11,Q12がそれぞれ出力される。また、判定回路44において、入力されたデータが閾値設定回路41で設定された閾値TH2を超えているか否かが判定され、その判定結果が合成回路45に出力される。
【0086】
合成回路45は、判定回路44からの判定結果に応じて、ローパスフィルタ42で処理されたデータQ11と、ローパスフィルタ42で処理されていないデータQ12との何れか一方を選択して合成してサンプルデータW1として出力する処理を行う。また、遅延回路46からは、サンプルデータW1が出力されるタイミング(或いは、ほぼ同じタイミング)でサンプルデータD11が出力される。
【0087】
予備フィルタ回路40から出力されたサンプルデータW1及びサンプルデータD11は演算回路60に出力され、サンプルデータD11からサンプルデータW1を減算したサンプルデータW2を求める演算が行われる。このサンプルデータW2は、フィルタ回路30に出力され、前述した小区間毎に設定された閾値TH1超えているか否かが判定され、その判定結果に応じてローパスフィルタ32で処理されたデータQ1と、ローパスフィルタ32で処理されていないデータQ2との何れか一方を選択して合成してサンプルデータW3として出力する処理が合成回路35で行われる。フィルタ回路30から出力されたサンプルデータW3は、予備フィルタ回路40から出力されて遅延回路50を介したサンプルデータW1と加算されて、サンプルデータD21として出力される。
【0088】
最初の大区間について以上の処理が終了すると、光ファイバFBに設定された複数の大区間のうちの2番目の大区間(光ファイバ温度分布測定装置1に2番目に近い大区間)に含まれる1000個のサンプルポイントのサンプルデータがフィルタ部19a,19bにそれぞれ読み出されて上述した処理と同様の処理が行われる。以下、光ファイバFBに設定された複数の大区間及び小区間の各々について、閾値TH1,TH2を設定する処理及びノイズを除去する処理が同様に行われる。
【0089】
フィルタ部19a,19bにおける処理が終了すると、演算部20において、フィルタ部19aからのサンプルデータD21と、フィルタ部19bからのサンプルデータD22とを用いて、サンプルポイント(測定点)毎の強度比が求められ、これによりサンプルポイント毎の温度が求められる。これらサンプルポイント毎の温度は、温度補正部21に出力され、不図示の温度センサ(光ファイバFBの温度を測定する温度センサ)の測定結果に基づいて補正される。このようにして、光ファイバFBの長さ方向における温度分布が求められる。
【0090】
図9は、本発明の第2実施形態による光ファイバ温度分布測定装置の測定結果の一例を示す図であって、(a)は温度分布を示す図であり、(b)は温度分解能を示す図である。
図9(a)において、符号L11を付した曲線は、本実施形態の光ファイバ温度分布測定装置で得られる温度分布の一例を示す曲線であり、符号L12を付した曲線は、フィルタ部19a,19bを備えていない従来の光ファイバ温度分布測定装置で得られる温度分布の一例を示す曲線である。また、
図9(b)において、符号L21を付した曲線は、本実施形態の光ファイバ温度分布測定装置の温度分解能を示す曲線であり、符号L22を付した曲線は、従来の光ファイバ温度分布測定装置の温度分解能を示す曲線である。
【0091】
まず、
図9(a)を参照すると、本実施形態の光ファイバ温度分布測定装置で得られる温度分布を示す曲線L11は、従来の光ファイバ温度分布測定装置で得られる温度分布を示す曲線L12よりも細かな温度変化が緩和されており、空間周波数が高いノイズ成分が効果的に低減されているのが分かる。ここで、温度が局所的に低下している部分(符号Eを付した矢印で指し示す部分)に着目すると、本実施形態の光ファイバ温度分布測定装置では、従来の光ファイバ温度分布測定装置と同様に再現されており、フィルタ部19a,19bでのフィルタ処理を行っても信号成分の波形劣化は生じていないことが分かる。
【0092】
次に、
図9(b)を参照すると、本実施形態の光ファイバ温度分布測定装置の温度分解能を示す曲線L21は、従来の光ファイバ温度分布測定装置の温度分解能を示す曲線L22よりも全体的に値が小さくなっており、温度分解能が向上していることが分かる。具体的に、
図9(b)に示す例では、本実施形態の光ファイバ温度分布測定装置の温度分解能が、従来の光ファイバ温度分布測定装置の温度分解能に比べて、2.3倍程度改善している。
【0093】
以上の通り、本実施形態では、サンプルデータD11,D12の概形(大きな温度変化)を抽出する予備フィルタ回路40をフィルタ回路30の前段に備えるフィルタ部19a,19bを用いて、サンプルデータD11,D12から大きな温度変化を除いた上で、フィルタ回路30のフィルタ処理を行うようにしている。このため、光ファイバFBの長さ方向における温度分布がほぼ一定でない場合であっても、信号成分の波形劣化を生ずることなく空間周波数が高いノイズ成分を効果的に低減することができ、これにより温度分解能を向上させることができる。
【0094】
〔第3実施形態〕
図10は、本発明の第3実施形態による光ファイバ温度分布測定装置が備えるフィルタ部の内部構成を示すブロック図である。前述した第2実施形態の光ファイバ温度分布測定装置のフィルタ部19a,19bは、予備フィルタ回路40とフィルタ回路30とを備える2段構成のものであったが、本実施形態の光ファイバ温度分布測定装置のフィルタ部19a,19bは、予備フィルタ回路40、フィルタ回路30、及びフィルタ回路80を備える3段構成のものである。
【0095】
具体的に、光ファイバ温度分布測定装置のフィルタ部19a,19bは、前述した第2実施形態の光ファイバ温度分布測定装置のフィルタ部19a,19bに、フィルタ回路80及び演算回路81,82を追加した構成である。尚、
図10において、遅延回路50の図示を省略している。フィルタ回路80は、フィルタ回路30と同様の回路である。演算回路81は、演算回路60から出力されるサンプルデータW2から、サンプルデータW3(フィルタ回路30の合成回路35から出力されるサンプルデータ)を減算したサンプルデータW4をフィルタ回路80に出力する。演算回路81は、演算回路70から出力されるサンプルデータと、フィルタ回路80から出力されるサンプルデータW5とを加算して、サンプルデータD21として出力する。
【0096】
以上の通り、予備フィルタ回路40、フィルタ回路30、及びフィルタ回路80を備える3段構成のフィルタ部19a,19bを用いることで、第2実施形態の光ファイバ温度分布測定装置よりも精度を向上させることが可能である。
【0097】
〔第4実施形態〕
図11は、本発明の第4実施形態による光ファイバ温度分布測定装置の要部構成を示すブロック図である。本実施形態の光ファイバ温度分布測定装置2は、第1〜第3実施形態の光ファイバ温度分布測定装置が備えるフィルタ部19a,19bを省略し、温度補正部21で得られる温度分布を補正するフィルタ部22を設けた構成である。このフィルタ部22は、フィルタ部19a,19bと同様の構成である。
【0098】
つまり、前述した第1〜第3実施形態の光ファイバ温度分布測定装置は、光ファイバFBの長手方向におけるストークス光ST及び反ストークス光ASの強度分布(サンプルデータD11,D12)に対してフィルタ部19a,19bによるフィルタ処理を行うものであった。これに対し、本実施形態の光ファイバ温度分布測定装置は、光ファイバFBの長手方向における温度分布(正確には、温度補正部21で温度補正がされた温度分布)に対してフィルタ部22によるフィルタ処理を行うものである。
【0099】
光ファイバFBの長手方向における温度分布は、光ファイバFBの長手方向におけるストークス光ST及び反ストークス光ASの強度分布を用いて得られるものである。このため、本実施形態においても、第1〜第3実施形態と同様に、波形劣化を招くことなく空間周波数が高いノイズ成分を効果的に低減することができ、これにより温度分解能を向上させることができる。
【0100】
以上、本発明の実施形態による光ファイバ温度分布測定装置について説明したが、本発明は上記実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば、上述した実施形態では、ストークス光STと反ストークス光ASとを光電変換回路15a,15bでそれぞれ光電変換し、これらの光電変換信号に対してA/D変換回路17a,17bでそれぞれサンプリングする構成について説明した。しかしながら、光周波数の領域でストークス光STと反ストークス光ASとを同一のタイミングでサンプリングし、サンプリングされたストークス光STと反ストークス光ASとを光電変換回路15a,15bを用いて個別に光電変換する構成であっても良い。かかる構成の場合には、A/D変換回路17a,17bは省略される。