特許第5746013号(P5746013)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社豊田中央研究所の特許一覧 ▶ 株式会社デンソーの特許一覧 ▶ 昭和電工株式会社の特許一覧 ▶ トヨタ自動車株式会社の特許一覧

<>
  • 特許5746013-単結晶製造装置、及び単結晶の製造方法 図000002
  • 特許5746013-単結晶製造装置、及び単結晶の製造方法 図000003
  • 特許5746013-単結晶製造装置、及び単結晶の製造方法 図000004
  • 特許5746013-単結晶製造装置、及び単結晶の製造方法 図000005
  • 特許5746013-単結晶製造装置、及び単結晶の製造方法 図000006
  • 特許5746013-単結晶製造装置、及び単結晶の製造方法 図000007
  • 特許5746013-単結晶製造装置、及び単結晶の製造方法 図000008
  • 特許5746013-単結晶製造装置、及び単結晶の製造方法 図000009
  • 特許5746013-単結晶製造装置、及び単結晶の製造方法 図000010
  • 特許5746013-単結晶製造装置、及び単結晶の製造方法 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5746013
(24)【登録日】2015年5月15日
(45)【発行日】2015年7月8日
(54)【発明の名称】単結晶製造装置、及び単結晶の製造方法
(51)【国際特許分類】
   C30B 23/06 20060101AFI20150618BHJP
   C30B 29/36 20060101ALI20150618BHJP
   C30B 29/38 20060101ALI20150618BHJP
【FI】
   C30B23/06
   C30B29/36 A
   C30B29/38 C
   C30B29/38 D
【請求項の数】13
【全頁数】25
(21)【出願番号】特願2011-289966(P2011-289966)
(22)【出願日】2011年12月28日
(65)【公開番号】特開2013-139347(P2013-139347A)
(43)【公開日】2013年7月18日
【審査請求日】2014年4月7日
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成22年度、経済産業省「低炭素社会を実現する新材料パワー半導体プロジェクト」委託研究、および平成23年度、独立行政法人新エネルギー・産業技術総合開発機構「低炭素社会を実現する新材料パワー半導体プロジェクト」委託研究、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】000003609
【氏名又は名称】株式会社豊田中央研究所
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(73)【特許権者】
【識別番号】000002004
【氏名又は名称】昭和電工株式会社
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】100110227
【弁理士】
【氏名又は名称】畠山 文夫
(74)【代理人】
【識別番号】100123537
【弁理士】
【氏名又は名称】小林 かおる
(72)【発明者】
【氏名】郡司島 造
(72)【発明者】
【氏名】山田 正徳
(72)【発明者】
【氏名】小林 正和
(72)【発明者】
【氏名】安達 歩
【審査官】 田中 則充
(56)【参考文献】
【文献】 特開2007−290880(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C30B1/00−35/00
(57)【特許請求の範囲】
【請求項1】
以下の構成を備えた単結晶製造装置。
(1)前記単結晶製造装置は、
種結晶又はその上に成長させる単結晶の周囲に配置された温度勾配制御部材と、
前記種結晶又は前記単結晶と前記温度勾配制御部材との間に配置された局所的温度勾配緩和部材と
を備えている。
(2)前記温度勾配制御部材は、少なくとも前記単結晶の成長開始時から成長終了時までの間の一定期間において、前記単結晶の成長面側近傍では前記単結晶の外側から内側に向かって熱が流入し、かつ、前記単結晶の前記種結晶側近傍では前記単結晶の内側から外側に向かって熱が放出する温度勾配が生ずるように、前記種結晶又は前記単結晶の周囲に配置されている。
(3)前記局所的温度勾配緩和部材は、前記種結晶の上に成長する単結晶の内、前記種結晶の成長軸方向直上の領域中に発生する温度勾配の極大値を緩和する機能を有する部材からなる。
【請求項2】
前記種結晶の成長面以外の少なくとも1つの面を取り囲むためのガイド部材をさらに備え、
前記局所的温度勾配緩和部材は、前記ガイド部材の一部を前記ガイド部材と別材質にしたもの、又は、前記ガイド部材を変形させたものからなる請求項1に記載の単結晶製造装置。
【請求項3】
前記局所的温度勾配緩和部材は、その表面が前記種結晶の成長面とほぼ同一平面上又は成長軸方向に対して後退する位置に来るように前記種結晶の周囲に配置され、かつ、前記種結晶と同一材料からなるダミー種結晶である請求項2に記載の単結晶製造装置。
【請求項4】
前記ガイド部材は、前記種結晶の側面と前記単結晶の成長空間とを取り囲むためのものからなり、
前記局所的温度勾配緩和部材は、前記ガイド部材の側面であって、前記温度勾配制御部材に近接した部分に形成された厚肉部であり、
前記厚肉部の厚さ(成長軸方向の長さ)は、5mm以上であり、
前記厚肉部の幅は、前記種結晶の成長軸方向に対して垂直方向の最小長さの0.05倍以上0.5倍以下である
請求項2に記載の単結晶製造装置。
【請求項5】
前記局所的温度勾配緩和部材は、その表面が前記種結晶の成長面とほぼ同一平面上又は成長軸方向に対して後退する位置に来るように前記種結晶の周囲に配置された、前記温度勾配制御部材より高い熱伝導率を有する材料からなる高熱伝導率部材である請求項2に記載の単結晶製造装置。
【請求項6】
前記局所的温度勾配緩和部材は、前記温度勾配制御部材の一部を前記温度勾配制御部材と別材質にしたもの、又は、前記温度勾配制御部材を変形させたものからなる請求項1に記載の単結晶製造装置。
【請求項7】
前記局所的温度勾配緩和部材は、前記温度勾配制御部材の先端部に形成された厚肉部であり、
前記厚肉部の厚さ(成長軸方向の長さ)は、5mm以上であり、
前記厚肉部の幅は、前記種結晶の成長軸方向に対して垂直方向の最小長さの0.05倍以上0.5倍以下である
請求項6に記載の単結晶製造装置。
【請求項8】
前記温度勾配制御部材は、前記単結晶の成長軸方向に沿って上下に二分割されており、
前記厚肉部は、二分割された前記温度勾配制御部材の先端部に形成されている
請求項7に記載の単結晶製造装置。
【請求項9】
前記局所的温度勾配緩和部材は、前記温度勾配制御部材の先端部に形成された、前記温度勾配制御部材より高い熱伝導率を有する材料からなる高熱伝導率部材である請求項6に記載の単結晶製造装置。
【請求項10】
前記種結晶の側面と前記単結晶の成長空間とを取り囲むためのガイド部材と、
前記単結晶の成長過程を通じて前記温度勾配が維持されるように、前記ガイド部材と前記温度勾配制御部材の相対位置を調節する位置調節手段と
をさらに備えた請求項6から9までのいずれか1項に記載の単結晶製造装置。
【請求項11】
請求項1から10までのいずれか1項に記載の単結晶製造装置を用いて、前記種結晶の表面に前記単結晶を成長させる単結晶の製造方法。
【請求項12】
前記種結晶として、SiCからなり、かつ、その成長面がc面に略垂直な面からなるものを用いて、前記成長面上にSiC単結晶を成長させる請求項11に記載の単結晶の製造方法。
【請求項13】
前記種結晶は、厚さが20mm以上である請求項11又は12に記載の単結晶の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、単結晶製造装置、及び単結晶の製造方法に関し、さらに詳しくは、気相成長法を用いて長尺で欠陥の少ない単結晶(例えば、SiC単結晶)を製造可能な単結晶製造装置及びこれを用いた単結晶の製造方法に関する。
【背景技術】
【0002】
一般に、半導体用材料としてはSi単結晶が用いられるが、各種用途においてSiに代わる多くの半導体単結晶の製造が試みられている。
例えば、SiC(炭化ケイ素)は、六方晶系の結晶構造を持つ高温型(α型)と、立方晶系の結晶構造を持つ低温型(β型)が知られている。SiCは、Siに比べて、耐熱性が高いだけでなく、広いバンドギャップを持ち、絶縁破壊電界強度が大きいという特徴がある。そのため、SiC単結晶からなる半導体は、Si半導体に代わる次世代パワーデバイスの候補材料として期待されている。特に、α型SiCは、β型SiCよりバンドギャップが広いので、超低電力損失パワーデバイスの半導体材料として注目されている。
【0003】
α型SiCは、その主要な結晶面として{0001}面(以下、これを「c面」ともいう)と、{0001}面に垂直な{1−100}面及び{11−20}面(以下、これらを総称して「a面」ともいう)とを有している。
従来より、α型SiC単結晶を得る方法として、c面成長法及びa面成長法が知られている。ここで、「c面成長法」とは、c面又はc面に対するオフセット角が所定の範囲にある面を成長面として露出させたSiC単結晶を種結晶に用いて、昇華再析出法などの方法により成長面上にSiC単結晶を成長させる方法をいう。また、「a面成長法」とは、a面又はa面に対するオフセット角が所定の範囲にある面を成長面として露出させたSiC単結晶を種結晶に用いて、成長面上にSiC単結晶を成長させる方法をいう。
【0004】
SiC単結晶成長法には、昇華再析出法、高温CVD法、溶液法などがある。昇華再析出法では、SiC単結晶の成長は、黒鉛坩堝等からなる成長容器内で行われる。この成長容器は、一般に、SiC原料粉末が供給される本体部と、SiC種結晶を保持するための台座が一体的に形成された上蓋とを有する。このような成長容器内において、SiC種結晶は、SiC単結晶を成長させるための成長面をSiC原料粉末側に向けた状態で台座に固定される。そして、この状態でSiC原料粉末を加熱して昇華させると、低温側のSiC種結晶上にSiCが堆積し、SiC単結晶を得ることができる。
【0005】
従来より、SiC単結晶ウェハを効率的かつ低コストに得るために、より長尺な単結晶を成長可能な成長法が望まれている。ところが、SiC単結晶の成長において、長尺な単結晶をを得ることは容易ではない。これは、SiC単結晶の成長方法が気相成長法であることに起因していると考えられる。具体的な現象として、SiC種結晶上へSiCの堆積を続けると、(1)成長速度の低下、(2)結晶品質の低下、(3)結晶口径の縮小、の少なくとも1つが起きる。そのため、従来の方法では、長尺、高品質、口径維持の3条件を満たした結晶を得ることは難しい。
【0006】
そこでこの問題を解決するために、従来から種々の提案がなされている。
例えば、特許文献1には、
(1)SiC原料が供給される本体部と、その上部に配置される上蓋とを有する成長容器であって、上蓋に成長容器の外側に向けて凹んだ種収容部を形成したものを用い、
(2)成長方向に20mm以上の厚さを有するSiC種結晶を、その成長面とSiC原料とが対向するように種収容部に埋め込み、
(3)成長面と反対側の裏面を上蓋の内表面からSiC原料と離れる方向に後退させて配置し、
(4)SiC種結晶の成長面上にバルク状のSiC単結晶を成長させ、
(5)成長したSiC単結晶を種結晶に用いて、成長面上にSiC単結晶をさらに成長させる
SiC単結晶の製造方法が開示されている。
【0007】
特許文献1に記載の方法を用いると、口径を縮小させることなく、長尺の単結晶を製造することができる。しかしながら、同文献に記載の方法では、種結晶と成長結晶の境界線近傍に発生する温度勾配の極大値が増大する。その結果、単結晶の成長軸方向の長さが長くなると、成長温度から室温に冷却した際に、成長結晶側面近傍に発生する引張応力が局所的に増大し、成長結晶中にクラックが発生しやすくなる。
一方、単結晶中の平均的な温度勾配を小さくすれば、種結晶と成長結晶の境界線近傍に発生する温度勾配の極大値及びこれに起因する引張応力をある程度小さくすることができる。しかしながら、この方法では、温度勾配の極大値を小さくする効果が十分ではない。また、原料や種結晶の温度変動に対するマージンが小さくなり、単結晶表面が炭化するおそれが高くなる。さらに、成長速度を維持しながら温度勾配を小さくするためには、成長温度(原料と種結晶の温度)を上昇させる必要があり、炉体の消耗が激しくなる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2005−179155号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明が解決しようとする課題は、加工コストや加工時間を増大させることなく、欠陥や割れの少ない長尺な単結晶を製造可能な単結晶製造装置及びこれを用いた単結晶の製造方法を提供することにある。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本発明に係る単結晶製造装置は、以下の構成を備えていることを要旨とする。
(1)前記単結晶製造装置は、
種結晶又はその上に成長させる単結晶の周囲に配置された温度勾配制御部材と、
前記種結晶又は前記単結晶と前記温度勾配制御部材との間に配置された局所的温度勾配緩和部材と
を備えている。
(2)前記温度勾配制御部材は、少なくとも前記単結晶の成長開始時から成長終了時までの間の一定期間において、前記単結晶の成長面側近傍では前記単結晶の外側から内側に向かって熱が流入し、かつ、前記単結晶の前記種結晶側近傍では前記単結晶の内側から外側に向かって熱が放出する温度勾配が生ずるように、前記種結晶又は前記単結晶の周囲に配置されている。
(3)前記局所的温度勾配緩和部材は、前記種結晶の上に成長する単結晶の内、前記種結晶の成長軸方向直上の領域中に発生する温度勾配の極大値を緩和する機能を有する部材からなる。
【0011】
本発明に係る単結晶の製造方法は、本発明に係る単結晶製造装置を用いて、前記種結晶の表面に前記単結晶を成長させることを要旨とする。
【発明の効果】
【0012】
種結晶又はその上に成長させる単結晶の周囲に温度勾配制御部材を設けると、少なくとも単結晶の成長開始時から成長終了時までの間の一定期間において、単結晶の成長面側近傍では単結晶の外側から内側に向かって熱が流入し、かつ、単結晶の種結晶側近傍では単結晶の内側から外側に向かって熱が放出する温度勾配を生じさせることができる。しかしながら、温度勾配制御部材により単結晶の側面部において発生する温度勾配は、単結晶部の中心軸付近の平均的温度勾配に比べて急峻となり、極大化するため、室温に冷却した際に熱収縮の大きさが、狭い領域で大きく変化する。その結果、温度勾配制御部材の近傍の成長結晶側に、単結晶の側面に平行方向かつ成長軸方向に対して垂直方向に強い引張応力が発生しやすい。そのため、成長結晶の側面近傍にクラックが発生し、クラックが成長結晶内部に伝搬する場合がある。
これに対し、温度勾配制御部材と種結晶又は単結晶の間に局所的温度勾配緩和部材を介在させると、種結晶の直上に成長する単結晶中に発生する温度勾配の極大値が小さくなる。そのため、種結晶の直上に成長する成長結晶内でのクラック発生及び伝搬を抑制することができる。
【図面の簡単な説明】
【0013】
図1】昇華再析出法を用いた従来のSiC単結晶の製造方法を示す模式図である。
図2】温度勾配制御部材を用いたSiC単結晶の製造方法及びその問題点を説明するための模式図である。
図3】本発明の第1の実施の形態に係る単結晶製造装置、及び、これを用いた単結晶の製造方法を示す工程図である。
図4】従来の方法及び本発明に係る方法により得られる単結晶中に発生する温度勾配及び応力を示す図である。
図5】本発明の第2の実施の形態に係る単結晶製造装置、及び、これを用いた単結晶の製造方法を示す工程図である。
【0014】
図6】本発明の第3の実施の形態に係る単結晶製造装置、及び、これを用いた単結晶の製造方法を示す工程図である。
図7】本発明の第4の実施の形態に係る単結晶製造装置、及び、これを用いた単結晶の製造方法を示す工程図である。
図8】本発明の第5の実施の形態に係る単結晶製造装置、及び、これを用いた単結晶の製造方法を示す工程図である。
図9】本発明の第6の実施の形態に係る単結晶製造装置、及び、これを用いた単結晶の製造方法を示す工程図である。
図10】本発明の第7の実施の形態に係る単結晶製造装置、及び、これを用いた単結晶の製造方法を示す工程図である。
【発明を実施するための形態】
【0015】
以下に、本発明の一実施の形態について詳細に説明する。
[1. 適用対象]
以下の説明においては、SiC単結晶の成長について説明するが、本発明は、昇華再析出法などの気相成長法を用いて製造可能な他の単結晶(例えば、GaN単結晶、AlN単結晶など)にも適用することができる。
また、以下の説明においては、昇華再析出法について主に説明するが、本発明は、外部から成長容器内に原料ガスを導入して種結晶表面に単結晶を気相成長させる方法(CVD法)などの他の気相成長法についても適用することができる。
【0016】
[2. 成長結晶の長尺化]
[2.1. 長尺化の問題点]
図1に、昇華再析出法を用いた従来のSiC単結晶の製造方法の模式図を示す。
図1において、成長容器22は、上部が開口した本体部22aと、本体部22aの開口部を覆うための上蓋22bとを備えている。本体部22aの内部には、原料(SiC粉末)2が充填されている。上蓋22bの内面には、種結晶台座22cが一体的に形成されており、種結晶台座22cには、SiC種結晶4が固定されている。SiC種結晶4は、SiC単結晶6を成長させるための成長面を原料2側に向けた状態で種結晶台座22cに固定される。この状態で、原料2を加熱して昇華させると、低温側のSiC種結晶4上にSiCが堆積し、SiC単結晶6を得ることができる。
【0017】
しかしながら、SiC単結晶6の成長を続けると、成長初期のSiC単結晶6a、成長中期のSiC単結晶6b、及び成長後期のSiC単結晶6cでそれぞれ成長速度が異なり、成長後期に近づくほど成長速度が低下する。また、SiC種結晶4の表面にSiC単結晶6が成長すると同時に、SiC単結晶6の周囲には多結晶(周辺多結晶)8が析出する。さらに、SiC単結晶6は、成長初期にはSiC種結晶4より口径が若干拡大するが、成長後期には口径が縮小し、表面が凹面化する。
SiC単結晶6の成長中に、周辺多結晶8の析出、口径の縮小、あるいは、表面の凹面化が生じると、SiC単結晶6中に、欠陥10や異種多形12が生成しやすくなり、結晶品質が低下する。
【0018】
[2.2. 温度勾配制御部材を用いたSiC単結晶の製造]
このような(1)成長速度の低下、(2)結晶品質の低下、及び(3)結晶口径の縮小を回避する方法として、温度勾配制御部材を用いる方法がある。
「温度勾配制御部材」とは、少なくとも単結晶の成長開始時から成長終了時までの間の一定期間において、単結晶の成長面側近傍では単結晶の外側から内側に向かって熱が流入し、かつ、単結晶の前記種結晶側近傍では単結晶の内側から外側に向かって熱が放出する温度勾配が生ずるように、種結晶又は単結晶の周囲に配置されている部材をいう。このような温度勾配制御部材は、このような温度勾配を成長過程の全期間において生じさせるものでも良く、あるいは成長過程の一部分において生じさせるものでも良い。
【0019】
図2に、温度勾配制御部材を用いたSiC単結晶の製造方法の模式図を示す。
図2(a)に、温度勾配制御部材を用いた成長方法の第1の具体例を示す。まず、図2(a)の左図に示すように、ブロック状の種結晶4の側面をガイド部材24で囲む。ガイド部材24は、さらに種結晶4の底面を保護するものであっても良い。ここで、「ガイド部材」とは、種結晶の成長面以外の少なくとも1つの面を取り囲むための部材をいう。ガイド部材24の高さは、種結晶4の成長面4aが僅かに突出する高さになっている。ガイド部材24は、必ずしも必要ではないが、種結晶4の成長面4a以外の面をガイド部材24で覆うと、成長面4a以外の面からの昇華を抑制することができる。
次いで、種結晶4の成長面4a近傍に、温度勾配制御部材26を配置する。温度勾配制御部材26は、SiC原料が充填された成長容器の本体部(図示せず)の上蓋を兼ねていても良く、あるいは、上蓋とは別個に設けられたものでも良い。
【0020】
図2(a)の左図の状態で成長面4aを成長容器の本体部(図示せず)に充填されたSiC原料に対向させ、成長容器を加熱すると、図2(a)の中央図に示すように、種結晶4の成長面4a上に単結晶6が成長する。
坩堝を加熱する方法としては、通電加熱ヒータを用い輻射熱により坩堝を加熱する方法、誘導コイルを用いて坩堝自体を発熱させる方法、および両者の複合である誘導コイルを用いてヒータを発熱させてからヒータの輻射熱で坩堝を加熱する方法がある。
また、坩堝の上下方向に温度勾配を形成するには、前述のヒータあるいは誘導コイルを坩堝外周の上下に配置するとともに中間部に断熱材を配置し、上下のヒータあるいは誘導コイルの出力を独立に調節する方法がある。また、断熱材で全部または一部を覆われた坩堝を、単一のヒータあるいは誘導コイルの内側に配置し、坩堝とヒータあるいは誘導コイルとの位置関係を調節する方法がある。
本発明は、前述のいくつかの加熱方法、および上下方向の温度勾配形成方法の何れの場合にも適用可能であるが、図2の中央に模式図を示すように、坩堝の周囲に上下に別個にヒータを配置し、それぞれを独立に制御することで、上下方向の温度勾配の制御性は格段に向上する。
温度勾配制御部材26は、種結晶4及び単結晶6を成長軸方向に沿って断熱する作用があるので、等温線(図2中、一点鎖線で表示)は、温度勾配制御部材26より下方側(SiC原料側)では下に凸の曲線となり、温度勾配制御部材26より上方側では上に凸の曲線となる。また、温度勾配制御部材26より下方側では、単結晶6の側面から内部に向かって熱が流入し、温度勾配制御部材26より上方側では、種結晶4の内部から側面に向かって熱が流出し、放熱が促進される。そのため、図2(a)に示す方法を用いると、成長の進行に伴う成長速度の低下や口径の縮小や表面の凹面化を防ぐことができる。
【0021】
図2(a)の方法では、さらに成長高さを増すには、成長結晶の拡大部を加工により平坦化し、再度、側面を保護する必要がある。また、図2(a)の右図に示すように、単結晶6を成長させた後、室温まで冷却する際に、種結晶4の近傍に成長した単結晶6内(領域a)において、強い引張応力が発生する。そのため、領域aにおいてクラックが発生し、領域aの下方に成長した領域b(間隔の狭いハッチング領域)にクラックが伝搬しやすくなるという問題がある。
【0022】
図2(b)に、温度勾配制御部材を用いた成長方法の第2の具体例の模式図を示す。まず、図2(b)の左図に示すように、ブロック状の種結晶4の側面(及び、必要に応じて底面)をガイド部材24’で保護する。ガイド部材24’の高さは、種結晶4の側面だけでなく、単結晶6の成長空間を取り囲むことも可能な高さになっている。この点が、第1の具体例と異なる。
次いで、種結晶4の成長面4aの近傍に、温度勾配制御部材26を配置する。
【0023】
図2(b)の左図の状態で成長面4aを成長容器の本体部(図示せず)に充填されたSiC原料に対向させ、成長容器を加熱すると、図2(b)の中央図に示すように、種結晶4の成長面4a上に単結晶6が成長する。温度勾配制御部材26は、種結晶4及び単結晶6を成長軸方向に沿って断熱する作用があるので、等温線(図2中、一点鎖線で表示)は、温度勾配制御部材26より下方側(SiC原料側)では下に凸の曲線となり、温度勾配制御部材26より上方側では上に凸の曲線となる。また、温度勾配制御部材26より下方側では、単結晶6の側面から内部に向かって熱が流入し、温度勾配制御部材26より上方側では、種結晶4の内部から側面に向かって熱が流出し、放熱が促進される。さらに、単結晶6の成長空間は、成長過程を通じてガイド部材24’により囲まれている。そのため、図2(b)に示す方法を用いると、成長速度を維持しつつ口径の縮小や表面の凹面化を防ぐことができる。また、さらに成長高さを増す際に、単結晶側面部の平坦化加工や保護の処理をする必要がない。さらに、ガイド部材24’と温度勾配制御部材26の相対位置を調節するだけで、成長を継続することができる。
【0024】
しかしながら、図2(b)の方法を用いた場合であっても、図2(b)の右図に示すように、単結晶6を成長させた後、室温まで冷却する際に、種結晶4の近傍に成長した単結晶6内(領域a)において、強い引張応力が発生する。そのため、領域aにおいてクラックが発生し、領域b(間隔の狭いハッチング領域)にクラックが伝搬しやすくなるという問題がある。
【0025】
[2.3. 局所的温度勾配緩和部材を用いたSiC単結晶の製造]
図2に示す例において、領域aに強い引張応力が発生するのは、温度勾配制御部材26を境として、等温線が下に凸の曲線から上に凸の曲線に変化するため、すなわち、温度勾配制御部材26の近傍において、温度勾配が極大となるためである。温度勾配の極大値が大きくなるほど、引張応力の極大値も増大するので、クラックが発生しやすくなる。
ここで、「温度勾配の極大値」とは、単結晶6の成長軸方向に対して平行に、種結晶4及び単結晶6内の温度勾配を測定することにより得られる温度勾配曲線の極大値をいう。
また、「応力の極大値」とは、単結晶6の成長軸方向に対して平行に、種結晶4及び単結晶6内の引張応力を測定することにより得られる応力曲線の極大値をいう。引張応力は、単結晶の側面に平行方向かつ成長軸方向に対して垂直方向に発生する。
【0026】
本発明は、温度勾配の極大値の増大及びこれに伴う引張応力の極大値の増大に起因するクラックの発生を抑制するために、種結晶又は単結晶と温度勾配制御部材との間に局所的温度勾配緩和部材を配置したことを特徴とする。
すなわち、本発明に係る単結晶製造装置は、
種結晶又はその上に成長させる単結晶の周囲に配置された温度勾配制御部材と、
前記種結晶又は前記単結晶と前記温度勾配制御部材との間に配置された局所的温度勾配緩和部材とを備えていることを特徴とする。
ここで、「局所的温度勾配緩和部材」とは、種結晶の上に成長する単結晶の内、前記種結晶の成長軸方向直上の領域中に発生する温度勾配の極大値を緩和する(小さくする)機能を有する部材をいう。
【0027】
局所的温度勾配緩和部材は、機能の観点では、
(1)種結晶より外径が大きい単結晶を成長させた時に、単結晶の最外周部には強い引張応力が発生するが、種結晶の直上領域には、強い引張応力を発生させない部材と、
(2)種結晶と外径がほぼ等しい単結晶を成長させた時に、単結晶の外周部(すなわち、種結晶の直上領域)に強い引張応力をさせない部材、
に大別される。
【0028】
また、局所的温度勾配緩和部材は、設置場所の観点では、
(1)温度勾配制御部材に接合又は一体的に形成された部材(すなわち、温度勾配制御部材の一部を温度勾配制御部材と別材質にしたもの、又は、温度勾配制御部材を変形させたもの)と、
(2)種結晶又はその周囲を保護するガイド部材に接触、接合又は一体的に形成された部材(すなわち、ガイド部材の一部をガイド部材と別材質にしたもの、又は、ガイド部材を変形させたもの)、
に大別される。
【0029】
さらに、種結晶の側面と単結晶の成長空間とを取り囲むためのガイド部材を備えた単結晶製造装置において、局所的温度勾配緩和部材が温度勾配制御部材に接合又は一体的に形成されているときには、成長結晶の干渉を受けることなく、温度勾配制御部材+局所的温度勾配緩和部材を成長軸方向に移動させることができる。
そのため、このような場合には、単結晶の成長過程を通じて、上述した温度勾配(単結晶の成長面側近傍では単結晶の外側から内側に向かって熱が流入し、かつ、単結晶の種結晶側近傍では単結晶の内側から外側に向かって熱が放出する温度勾配)が維持されるように、ガイド部材と温度勾配制御部材の相対位置を調節する位置調節手段をさらに備えていても良い。
以下に、局所的温度勾配緩和部材を備えた単結晶製造装置の具体例について説明する。
【0030】
[3. 単結晶製造装置及び単結晶の製造方法]
[3.1. 具体例(1)]
[3.1.1. 単結晶製造装置(1)]
図3(a)に、本発明の第1の実施の形態に係る単結晶製造装置の断面図を示す。図3(a)において、単結晶製造装置20aは、ガイド部材24aと、温度勾配制御部材26aと、ダミー種結晶(局所的温度勾配緩和部材)28aとを備えている。
【0031】
ガイド部材24aは、種結晶4の側面及び底面を取り囲み、種結晶4の側面及び底面を保護するための部材である。図3において、ガイド部材24aの高さ(成長軸方向の長さ)は、種結晶4の高さより低くなっている。種結晶4は、成長面4aが成長容器の本体部(図示せず)に充填されたSiC原料に対向するように、成長容器(図示せず)に設置されている。
【0032】
本実施の形態において、種結晶4には、種々の方法により製造された単結晶から切り出されたブロック状の種結晶が用いられる。種結晶4は、薄板状の種結晶であっても良い。しかしながら、ブロック状の種結晶を用いると、最終的に得られる単結晶が長尺になるという利点がある。このような効果を得るためには、ブロック状の種結晶の厚さ(成長軸方向の長さ)は、20mm以上が好ましい。
種結晶4の成長面4aを構成する結晶面は、種結晶の材料や目的に応じて最適な結晶面を選択する。例えば、SiC種結晶の場合、成長面4aは、c面に略垂直な面(a面又はa面から僅かに傾いた面)、又は、c面(又はc面から僅かに傾いた面)が好ましい。c面に略垂直な面を成長面4aとして用いると、螺旋転位の少ない単結晶が得られる。また、c面(又はc面から僅かに傾いた面)を成長面4aとして用いると、積層欠陥の少ない単結晶が得られる。
【0033】
ガイド部材24aで保護された種結晶4の周囲には、温度勾配制御部材26aが配置されている。温度勾配制御部材26aは、中空板状になっており、中央の貫通孔に種結晶4の先端が挿入されている。本実施の形態において、温度勾配制御部材26aは、種結晶4の成長面4aの近傍に配置されており、温度勾配制御部材26aの位置を調節するための位置調節手段を備えていない。温度勾配制御部材26aは、成長容器の本体部(図示せず)の上蓋を兼ねていても良く、あるいは、上蓋とは別個に設けられた部材であっても良い。
【0034】
ダミー種結晶28aは、種結晶4の上に成長する単結晶6の内、種結晶4の成長軸方向直上の領域中に発生する温度勾配の極大値を緩和する機能を有する局所的温度勾配緩和部材である。ダミー種結晶28aは、その表面が種結晶4の成長面4aとほぼ同一平面上又は成長軸方向に対して後退する位置に来るように(すなわち、ダミー結晶28aの表面よりも種結晶4の成長面4aの方が原料側に突き出すように)、種結晶4の周囲に配置されている。これにより、種結晶4とダミー種結晶28aの接合部上の界面が種結晶4直上に成長する結晶中に進入しにくくなるため、種結晶4直上の単結晶の品質低下を抑制できる。ダミー種結晶28aは、種結晶4と同一材料からなる。ダミー種結晶28aの結晶方位は特に限定されないが、欠陥の少ない単結晶を製造するためには、ダミー種結晶28aの結晶方位は、種結晶4の結晶方位と同一であるのが好ましい。
【0035】
ダミー種結晶28aの厚さ(成長軸方向の長さ)h及び幅(成長軸方向に対して垂直方向の長さ)tは、種結晶4の直上に成長する単結晶の品質に影響する。
ダミー種結晶28aの厚さhが薄すぎると、ダミー種結晶28aが昇華して消失するおそれがある。また、ダミー種結晶28a上に成長する単結晶6の品質が著しく悪くなり、クラック発生の起点となる応力集中源が生じやすくなるおそれがある。一方、ダミー種結晶28aの厚さhを必要以上に厚くしても、実益がない。従って、ダミー種結晶28aの厚さhは、0.3mm以上10mm以下が好ましい。
また、ダミー種結晶28aの幅tが小さすぎると、単結晶6の最外周部から種結晶4の直上に成長した単結晶の外周部までの距離が小さくなり、温度勾配の極大値を緩和する効果が小さくなる。また、ダミー種結晶28a及びその上に成長した単結晶を切り離すのが難しくなる。一方、ダミー種結晶28aの幅tを必要以上に大きくしても、効果に差が無く、実益がない。さらに、ダミー種結晶28aの上への単結晶の成長に原料ガスが使われることで、単結晶6の成長高さが小さくなったり、あるいは大きな坩堝が必要となるなどの問題が生じる。ダミー種結晶28aの幅tは、具体的には、3mm〜20mmが好ましい。
【0036】
[3.1.2. 単結晶の製造方法(1)]
次に、図3に示す単結晶製造装置20aを用いた単結晶の製造方法について説明する。まず、ブロック状の種結晶4の側面及び底面をガイド部材24aで保護する。次いで、種結晶4の周囲にダミー種結晶28aを配置する。ダミー種結晶28aは、その表面が種結晶4の成長面4aとほぼ同一平面上又は成長軸方向に対して後退する位置に来るように、種結晶4の周囲に配置されている。そのため、ダミー種結晶28aは、種結晶4の成長面4a近傍の側面を保護するためのガイド部材としても機能している。さらに、ダミー種結晶28aの周囲に、温度勾配制御部材26aを配置する。
【0037】
図3(a)の状態で種結晶4の成長面4a及びダミー種結晶28aの表面を成長容器の本体部(図示せず)に充填されたSiC原料に対向させ、成長容器を加熱すると、図3(b)に示すように、種結晶4の成長面4a上及びダミー種結晶28aの表面上に単結晶6が成長する。
【0038】
成長終了後、種結晶4及び単結晶6を冷却すると、図3(c)に示すように、単結晶6の上方の領域aにおいて強い引張応力が発生する。しかしながら、種結晶4の周囲に所定の大きさを有するダミー種結晶28aが配置され、種結晶4の成長面4aだけでなく、ダミー種結晶28aの表面にも単結晶が成長するので、単結晶6の外径は、種結晶4の大きさ+ダミー種結晶28aの大きさ以上となる。そのため、領域aにおいてクラックが発生した場合であっても、発生したクラックは、単結晶6の外周部(領域b、間隔の狭いハッチング領域)に伝搬するだけであり、種結晶4の直上領域にクラックが伝搬することはない。
【0039】
種結晶4及び単結晶6を室温まで冷却した後、これらを成長容器(図示せず)から取り外し、さらにガイド部材24aを取り外す(図3(d))。ダミー種結晶28aの上に成長した単結晶6の領域bには、クラックが発生している可能性が高いので、ダミー種結晶28a及びその上に成長した単結晶を、放電加工、ダイシング等の方法を用いて切り離す。また、クラックが発生していない場合であっても、単結晶6の外周部には強い引張応力が働いているので、放電加工、ダイシングなどでダミー種結晶28aの上に成長した単結晶を切り落とすことにより、その後の平坦化のための研削加工時におけるクラック発生の危険性を回避することができる。その結果、図3(e)に示すように、クラックのない高品質な長尺の単結晶6’が得られる。
得られた単結晶6’は、そのまま各種の用途に用いても良く、あるいは、これを種結晶として用いて、再度、その成長面上に単結晶を成長させても良い。
【0040】
[3.1.3. 効果(1)]
図4の左図に、従来の方法により得られた単結晶、並びに、この単結晶中に発生する温度勾配及び応力を示す。また、図4の右図に、ダミー種結晶法により得られた単結晶、並びに、この単結晶中に発生する温度勾配及び応力を示す。
図4の左上図に示すように、種結晶4の成長面4aの近傍に温度勾配制御部材26を配置した状態で単結晶6を成長させると、等温線(図4中、一点鎖線で表示)は、温度勾配制御部材26より下方側(SiC原料側)では下に凸の曲線となり、温度勾配制御部材26より上方側では上に凸の曲線となる。そのため、種結晶4の外周部近傍であって、単結晶6の成長軸方向に対して平行に温度勾配を測定すると、図4の左中央図のような温度勾配曲線が得られる。すなわち、種結晶4の外周部近傍を通る直線上においては、B点(温度勾配制御部材26の近傍)において温度勾配は極大となる。また、系全体の中で最大の温度勾配が発生する地点は、温度勾配制御部材26の先端近傍の領域c内にある。B点は、領域c内にあるか、あるいは、領域cに近接していると考えられる。
【0041】
また、図4の左下図に示すように、B点より上では圧縮応力が作用し、B点より下では引張応力が発生する。すなわち、引張応力の極大値は、B点から少し下がった位置(種結晶4の直下に成長した単結晶6の外周部近傍)に発生する。単結晶6と種結晶4の大きさの差は、あまり大きくないので、単結晶6の外周部においてクラックが発生すると、発生したクラックが単結晶6の内部に向かって伝搬しやすくなる。
【0042】
これに対し、図4の右上図に示すように、種結晶4の成長面4aの近傍に温度勾配制御部材26aを配置し、かつ、種結晶4の周囲にダミー種結晶28aを配置した状態で単結晶6を成長させた場合であっても、等温線は、温度勾配制御部材26aを境に上に凸の曲線から下に凸の曲線に変化する。そのため、系全体の中で最大の温度勾配が発生する地点は、温度勾配制御部材26aの先端近傍(領域c)となる。
【0043】
しかしながら、種結晶4の周囲にダミー種結晶28aが配置されているので、単結晶6の大きさは、種結晶4の大きさ+ダミー種結晶28aの大きさ以上となる。そのため、種結晶4の外周部近傍であって、単結晶6の成長軸方向に対して平行に温度勾配を測定すると、図5の右中央図のような温度勾配曲線が得られる。すなわち、種結晶4の外周部近傍を通る直線上においては、B点(温度勾配制御部材26aの近傍)において温度勾配は極大となるが、B点は、領域cから離れた位置にある。そのため、B点における温度勾配の極大値は、領域cにおいて発生する温度勾配の極大値より小さくなる。また、これに応じて、B点近傍において発生する引張応力の極大値は、領域c近傍において発生する引張応力の極大値よりも小さくなる。
その結果、単結晶6の外周部近傍においてクラックが発生したとしても、種結晶4の直上に成長している単結晶中にクラックが発生又は伝搬する確率は低くなる。
【0044】
さらに、温度勾配制御部材26aは、種結晶4及び単結晶6を成長軸方向に沿って断熱する作用がある。すなわち、温度勾配制御部材26aより下方側では、単結晶6の側面から内部に向かって熱が流入し、温度勾配制御部材26aより上方側では、種結晶4の内部から側面に向かって熱が流出し、放熱が促進される。そのため、図3(a)に示す方法を用いると、成長の進行に伴う成長速度の低下や口径の縮小や表面の凹面化を防ぐことができる。
【0045】
[3.2. 具体例(2)]
[3.2.1. 単結晶製造装置(2)]
図5(a)に、本発明の第2の実施の形態に係る単結晶製造装置の断面図を示す。図5(a)において、単結晶製造装置20bは、ガイド部材24bと、温度勾配制御部材26bと、ダミー種結晶(局所的温度勾配緩和部材)28bとを備えている。
【0046】
図5(a)に示す単結晶製造装置20bは、
(1)種結晶4’として、ブロック状の種結晶に代えて薄板状の種結晶を用いている点、及び、
(2)種結晶4’の側面は、ダミー種結晶28bで囲まれており、ガイド部材24bは、種結晶4’の底面のみを保護している点、
以外は、第1の実施の形態に係る単結晶製造装置20aと同様の構成を備えている。
その他の点については、第1の実施の形態と同様であるので、説明を省略する。
【0047】
[3.2.1. 単結晶の製造方法(2)]
次に、図5に示す単結晶製造装置20bを用いた単結晶の製造方法について説明する。まず、薄板状の種結晶4’の底面をガイド部材24bで保護する。次いで、種結晶4’の周囲にダミー種結晶28bを配置する。ダミー種結晶28bは、その表面が種結晶4’の成長面4a’とほぼ同一平面上又は成長軸方向に対して後退する位置に来るように、種結晶4’の周囲に配置されている。そのため、ダミー種結晶28bは、種結晶4’の成長面近傍の側面を保護するためのガイド部材としても機能している。さらに、ダミー種結晶28bの周囲に、温度勾配制御部材26bを配置する。
【0048】
図5(a)の状態で種結晶4’の成長面4a’及びダミー種結晶28bの表面を成長容器の本体部(図示せず)に充填されたSiC原料に対向させ、成長容器を加熱すると、図5(b)に示すように、種結晶4’の成長面4a’上及びダミー種結晶28bの表面上に単結晶6が成長する。
【0049】
成長終了後、種結晶4’及び単結晶6を冷却すると、図5(c)に示すように、単結晶6の上方の領域aにおいて強い引張応力が発生する。しかしながら、種結晶4’の周囲に所定の大きさを有するダミー種結晶28bが配置され、種結晶4’の成長面4aだけでなく、ダミー種結晶28bの表面にも単結晶が成長するので、単結晶6の外径は、種結晶4’の大きさ+ダミー種結晶28bの大きさ以上となる。そのため、領域aにおいてクラックが発生した場合であっても、発生したクラックは、単結晶6の外周部(領域b、間隔の狭いハッチング領域)に伝搬するだけであり、種結晶4’の直上領域にクラックが伝搬することはない。
【0050】
種結晶4’及び単結晶6を室温まで冷却した後、これらを成長容器(図示せず)から取り外し、さらにガイド部材24bを取り外す(図5(d))。ダミー種結晶28bの上に成長した領域bには、クラックが発生している可能性が高いので、ダミー種結晶28b及びその上に成長した単結晶を、放電加工、ダイシング等の方法を用いて切り離す。その結果、図5(e)に示すように、長尺の単結晶6”が得られる。
得られた単結晶6”は、そのまま各種の用途に用いても良く、あるいは、これを種結晶として用いて、再度、その成長面上に単結晶を成長させても良い。
【0051】
[3.2.3. 効果(2)]
図5(a)に示すように、種結晶4’の成長面4a’の近傍に温度勾配制御部材26bを配置し、かつ、種結晶4’の周囲にダミー種結晶28bを配置した状態で単結晶6を成長させると、等温線は、温度勾配制御部材26bを境に上に凸の曲線から下に凸の曲線に変化する。そのため、温度勾配制御部材26bの先端近傍(領域c)において、温度勾配は最大となる。
【0052】
しかしながら、種結晶4’の周囲にダミー種結晶28bが配置されているので、単結晶6の大きさは、種結晶4’の大きさ+ダミー種結晶28bの大きさ以上となる。そのため、種結晶4’の外周部近傍であって、単結晶6の成長軸方向に対して平行に温度勾配を測定すると、温度勾配制御部材26bの近傍(B点)において温度勾配は極大となるが、B点における温度勾配の極大値は、領域cにおいて発生する温度勾配の極大値より小さくなる。また、これに応じて、B点近傍において発生する引張応力の極大値は、領域cの近傍において発生する引張応力の極大値よりも小さくなる。
その結果、単結晶6の外周部近傍においてクラックが発生したとしても、種結晶4の直上に成長している単結晶中にクラックが発生又は伝搬する確率は低くなる。
【0053】
さらに、温度勾配制御部材26bは、種結晶4’及び単結晶6を成長軸方向に沿って断熱する作用がある。すなわち、温度勾配制御部材26bより下方側では、単結晶6の側面から内部に向かって熱が流入し、温度勾配制御部材26bより上方側では、種結晶4’の内部から側面に向かって熱が流出し、放熱が促進される。そのため、図5(a)に示す方法を用いると、成長速度の低下や口径の縮小や表面の凹面化を防ぐことができる。
【0054】
[3.3. 具体例(3)]
[3.3.1. 単結晶製造装置(3)]
図6(a)に、本発明の第3の実施の形態に係る単結晶製造装置の断面図を示す。図6(a)において、単結晶製造装置20cは、ガイド部材24cと、温度勾配制御部材26cと、厚肉部(局所的温度勾配緩和部材)28cとを備えている。
【0055】
ガイド部材24cは、種結晶4の側面及び単結晶6の成長空間を取り囲み、成長する単結晶の口径や形状を制御するため、並びに、種結晶4の側面及び底面を保護するための部材である。そのため、図6において、ガイド部材24cの高さ(成長軸方向の長さ)は、種結晶4の高さより高くなっている。種結晶4は、成長面4aが成長容器の本体部(図示せず)に充填されたSiC原料に対向するように、成長容器(図示せず)に設置されている。本実施の形態において、種結晶4には、種々の方法により製造された単結晶から切り出されたブロック状の種結晶が用いられているが、種結晶4の厚さは、特に限定されない。
【0056】
ガイド部材24cで保護された種結晶4の周囲には、温度勾配制御部材26cが配置されている。温度勾配制御部材26cは、中空板状になっており、中央の貫通孔に種結晶4+ガイド部材24cが挿入されている。本実施の形態において、温度勾配制御部材26cは、種結晶4の成長面4aの近傍に配置されており、温度勾配制御部材26cの位置を調節するための位置調節手段を備えていない。温度勾配制御部材26cは、成長容器の本体部(図示せず)の上蓋を兼ねていても良く、あるいは、上蓋とは別個に設けられた部材であっても良い。
【0057】
ガイド部材24cの側面のほぼ中央には、ガイド部材24cの厚さを局所的又は全体的に厚くした厚肉部28cが一体的に設けられている。厚肉部28cは、種結晶4の上に成長する単結晶6の内、種結晶4の成長軸方向直上の領域中に発生する温度勾配の極大値を緩和する機能を有する局所的温度勾配緩和部材である。厚肉部28cは、ガイド部材24cの側面であって、少なくとも温度勾配制御部材26cに近接している部分(すなわち、種結晶4の成長面4aの近傍)に形成されている。
【0058】
厚肉部28cの厚さ(成長軸方向の長さ)h及び幅tは、温度勾配の極大値の緩和量に影響を与える。
一般に、厚肉部28cの厚さhが短すぎると、温度勾配の極大値の緩和が不十分となる。厚肉部28cの厚さhは、具体的には、5mm以上が好ましい。ガイド部材24は、側面全体がこのような厚肉部からなっていても良い。
また、一般に、厚肉部28cの幅tが小さすぎると、温度勾配の極大値の緩和が不十分となる。一方、厚肉部28cの幅tを必要以上に大きくしても、実益がない。また、温度勾配制御部材26cが単結晶6から大きく離れてしまうので、単結晶6の成長面側では下に凸、裏面側では上に凸の等温線で構成される温度分布を付けにくくなる。厚肉部28cの幅tは、具体的には、種結晶4の最小長さの0.05倍以上0.5倍以下が好ましい。ここで、「種結晶4の最小長さ」とは、種結晶4の成長軸方向に対して垂直方向の断面(垂直断面)が円であるときは円の直径を表し、垂直断面が四角形であるときは各辺の長さの最小値を表し、垂直断面が5角形以上の多角形であるときは対向する辺間距離又は対向する辺と頂点の距離の最小値を表す。
【0059】
[3.3.2. 単結晶の製造方法(3)]
次に、図6に示す単結晶製造装置20cを用いた単結晶の製造方法について説明する。まず、種結晶4の側面及び底面をガイド部材24cで保護する。この時、ガイド部材24cの側面に形成された厚肉部28cが種結晶4の成長面4a近傍に来るように、種結晶4の厚さ又は厚肉部28cの形成位置を設定する。さらに、厚肉部28cの周囲に、温度勾配制御部材26cを配置する。
【0060】
図6(a)の状態で種結晶4の成長面4aを成長容器の本体部(図示せず)に充填されたSiC原料に対向させ、成長容器を加熱すると、図6(b)に示すように、種結晶4の成長面4a上に単結晶6が成長する。しかも、単結晶6の成長空間を取り囲むようにガイド部材24cが配置されているので、種結晶4とほぼ同等の大きさを有する単結晶6が得られる。
【0061】
成長終了後、種結晶4及び単結晶6を冷却する(図6(c))。次いで、これらを成長容器(図示せず)から取り外し、さらにガイド部材24cを取り外す。
得られた単結晶は、そのまま各種の用途に用いても良く、あるいは、これを種結晶として用いて、再度、その成長面上に単結晶を成長させても良い。
【0062】
[3.3.3. 効果(3)]
図6(a)に示すように、種結晶4の成長面4aの近傍に温度勾配制御部材26cを配置し、かつ、種結晶4の周囲に厚肉部28cを配置した状態で単結晶6を成長させると、等温線は、温度勾配制御部材26cを境に上に凸の曲線から下に凸の曲線に変化する。そのため、種結晶4の外周部近傍であって、単結晶6の成長軸方向に対して平行に温度勾配を測定すると、温度勾配制御部材26cの近傍(B点)において温度勾配は極大となる。
【0063】
しかしながら、種結晶4の周囲に厚肉部28cが配置されているので、最大の温度勾配が発生する地点は、厚肉部28cの最外周部(領域c)となる。その結果、B点における温度勾配の極大値は、領域cにおいて発生する温度勾配の極大値より小さくなる。また、これに応じて、B点近傍において発生する引張応力の極大値は、領域cに単結晶が存在していたならば領域c近傍において発生したであろう引張応力の極大値よりも小さくなる。その結果、種結晶4の直上に成長している単結晶6中にクラックが発生又は伝搬する確率は低くなる。
【0064】
さらに、温度勾配制御部材26cは、種結晶4及び単結晶6を成長軸方向に沿って断熱する作用がある。すなわち、温度勾配制御部材26cより下方側では、単結晶6の側面から内部に向かって熱が流入し、温度勾配制御部材26cより上方側では、種結晶4’の内部から側面に向かって熱が流出し、放熱が促進される。そのため、図6(a)に示す方法を用いると、成長速度を維持しながら口径の縮小や表面の凹面化を防ぐことができる。さらに、単結晶6の成長空間がガイド部材24cによって囲まれているので、さらに成長高さを増す際に、単結晶側面部の平坦化加工や保護の処理をする必要がない。
【0065】
[3.4. 具体例(4)]
[3.4.1. 単結晶製造装置(4)]
図7(a)に、本発明の第4の実施の形態に係る単結晶製造装置の断面図を示す。図7(a)において、単結晶製造装置20dは、ガイド部材24dと、温度勾配制御部材26dと、高熱伝導率部材(局所的温度勾配緩和部材)28dとを備えている。
【0066】
図7(a)に示す単結晶製造装置20dは、局所的温度勾配緩和部材として、ダミー種結晶28aに代えて、高熱伝導率部材28dを用いている点以外は、第1の実施の形態に係る単結晶製造装置20aと同様の構成を備えている。種結晶4は、ブロック状の種結晶であっても良く、あるいは、薄板状の種結晶であっても良い。また、種結晶4として薄板状の種結晶を用いる場合、ガイド部材24dは、薄板状の種結晶の底面のみを保護し、薄板状の種結晶の側面は、高熱伝導率部材28dで保護しても良い。
【0067】
高熱伝導率部材28dは、その表面が種結晶4aの成長面とほぼ同一平面上又は成長軸方向に対して後退する位置に来るように種結晶4の周囲に配置されている。ここで、「高熱伝導率部材」とは、温度勾配制御部材26dより高い熱伝導率を有する材料からなる部材をいう。
例えば、温度勾配制御部材26dとして、等方性黒鉛を用いる場合、高熱伝導率部材28dとして、例えば、熱伝導率に異方性がある黒鉛などを用いるのが好ましい。
【0068】
高熱伝導率部材28dの厚さ(成長軸方向の長さ)h及び幅tは、種結晶4の直上に成長する単結晶の品質に影響する。
高熱伝導率部材28dの厚さhが薄すぎると、温度勾配の極大値の緩和が不十分となる。一方、高熱伝導率部材28dの厚さhを必要以上に厚くしても、実益がない。従って、高熱伝導率部材28dの厚さhは、3mm以上10mm以下が好ましい。
また、高熱伝導率部材28dの幅tが小さすぎると、温度勾配の極大値を緩和する効果が小さくなる。一方、高熱伝導率部材28dの幅tを必要以上に大きくしても、効果に差が無く、実益がない。また、温度勾配制御部材26dが単結晶6から大きく離れてしまうので、単結晶6の成長面側では下に凸、裏面側では上に凸の等温線で構成される温度分布を付けにくくなる。高熱伝導率部材28dの幅tは、具体的には、3mm〜20mmが好ましい。
その他の点については、第1〜3の実施の形態と同様であるので、説明を省略する。
【0069】
[3.4.2. 単結晶の製造方法(4)]
次に、図7に示す単結晶製造装置20dを用いた単結晶の製造方法について説明する。まず、ブロック状の種結晶4の側面及び底面をガイド部材24dで保護する。次いで、種結晶4の周囲に高熱伝導率部材28dを配置する。高熱伝導率部材28dは、その表面が種結晶4の成長面4aとほぼ同一平面上又は成長軸方向に対して後退する位置に来るように、種結晶4の周囲に配置されている。これにより、種結晶4と高熱伝導率部材28dの接合部上の界面が種結晶4直上に成長する結晶中に進入しにくくなるため、種結晶4直上の単結晶の品質低下を抑制できる。また、高熱伝導率部材28dは、種結晶4の成長面4a近傍の側面を保護するためのガイド部材としても機能している。さらに、高熱伝導率部材28dの周囲に、温度勾配制御部材26dを配置する。
【0070】
図7(a)の状態で種結晶4の成長面4aを成長容器の本体部(図示せず)に充填されたSiC原料に対向させ、成長容器を加熱すると、図7(b)に示すように、種結晶4の成長面4a上に単結晶6が成長する。
種結晶4及び単結晶6を室温まで冷却した後、これらを成長容器(図示せず)から取り外し、さらにガイド部材24dを取り外す。さらに、得られた単結晶の外周部を必要に応じて、放電加工、ダイシング等の方法を用いて整える。
得られた単結晶は、そのまま各種の用途に用いても良く、あるいは、これを種結晶として用いて、再度、その成長面上に単結晶を成長させても良い。
【0071】
[3.4.3. 効果(4)]
図7(a)に示すように、種結晶4の成長面4aの近傍に温度勾配制御部材26dを配置し、かつ、種結晶4の周囲に高熱伝導率部材28dを配置した状態で単結晶6を成長させると、等温線は、温度勾配制御部材26dを境に上に凸の曲線から下に凸の曲線に変化する。そのため、種結晶4の外周部近傍であって、単結晶6の成長軸方向に対して平行に温度勾配を測定すると、温度勾配制御部材26dの近傍(B点)において温度勾配は極大となる。
【0072】
しかしながら、種結晶4の周囲に高熱伝導率部材28dが配置されているので、B点における温度勾配の極大値は、高熱伝導率部材28dの最外周部近傍(領域c)において発生する温度勾配の極大値より小さくなる。また、これに応じて、B点近傍において発生する引張応力の極大値は、領域cに単結晶が存在していたならば領域c近傍において発生したであろう引張応力の極大値よりも小さくなる。その結果、種結晶4の直上に成長している単結晶6中にクラックが発生又は伝搬する確率は低くなる。
【0073】
さらに、温度勾配制御部材26dは、種結晶4及び単結晶6を成長軸方向に沿って断熱する作用がある。すなわち、温度勾配制御部材26cより下方側では、単結晶6の側面から内部に向かって熱が流入し、温度勾配制御部材26cより上方側では、種結晶4の内部から側面に向かって熱が流出し、放熱が促進される。そのため、図7(a)に示す方法を用いると、成長速度を維持しつつ口径の縮小や表面の凹面化を防ぐことができる。
【0074】
[3.5. 具体例(5)]
[3.5.1. 単結晶製造装置(5)]
図8(a)に、本発明の第5の実施の形態に係る単結晶製造装置の断面図を示す。図8(a)において、単結晶製造装置20eは、ガイド部材24eと、温度勾配制御部材26eと、厚肉部(局所的温度勾配緩和部材)28eとを備えている。
【0075】
図8(a)に示す単結晶製造装置20dは、
(1)厚肉部28eをガイド部材24eに一体的に形成することに代えて、温度勾配制御部材26eの先端に一体的に形成されている点、及び、
(2)位置調節手段を備えていても良い点
以外は、第3の実施の形態に係る単結晶製造装置20cと同様の構成を備えている。
【0076】
図8(a)において、ガイド部材24eは、種結晶4の側面及び単結晶の成長空間を取り囲むことができる長さを有しているが、ガイド部材24eは、種結晶4の高さと同等であっても良い。
厚肉部28eの厚さ(成長軸方向の長さ)h及び幅tは、温度勾配の極大値の緩和量に影響を与える。厚肉部28eの厚さh及び幅tについては、第3の実施の形態と同様であるので、説明を省略する。
【0077】
また、ガイド部材24eが種結晶4の側面及び単結晶の成長空間を取り囲むことができる長さを有している場合、位置調節手段をさらに備えていても良い。
位置調節手段とは、単結晶6の成長過程を通じて所定の温度勾配が維持されるように、ガイド部材24eと温度勾配制御部材26eの相対位置を調節する手段をいう。本実施の形態において、厚肉部28eは、温度勾配制御部材26eの先端に一体的に形成されている。そのため、単結晶6の成長面の移動に伴って温度勾配制御部材26eを移動させると、単結晶6の成長面近傍における温度勾配を常に最適に維持することができる。
【0078】
温度勾配制御部材26eの位置を調節する方法としては、具体的には、
(1)温度勾配制御部材26eを成長容器に対して固定し、ガイド部材24eを単結晶6の成長に伴って、段階的又は連続的に上方に引き上げる方法、
(2)ガイド部材24eを成長容器に対して固定し、温度勾配制御部材26eを単結晶の成長に伴って、段階的又は連続的に下方に移動させる方法、
(3)(1)と(2)の組み合わせ、
などがある。
単結晶製造装置20eのその他の点については、第1〜4の実施の形態と同様であるので、説明を省略する。
【0079】
[3.5.2. 単結晶の製造方法(5)]
次に、図8に示す単結晶製造装置20eを用いた単結晶の製造方法について説明する。まず、種結晶4の側面及び底面をガイド部材24eで保護する。次いで、厚肉部28eが種結晶4の成長面4a近傍に来るように、種結晶4の周囲に温度勾配制御部材26eを配置する。
【0080】
図8(a)の状態で種結晶4の成長面4aを成長容器の本体部(図示せず)に充填されたSiC原料に対向させ、成長容器を加熱すると、図8(b)に示すように、種結晶4の成長面4a上に単結晶6が成長する。しかも、単結晶6の成長空間を取り囲むようにガイド部材24eが配置されているので、種結晶4とほぼ同等の大きさを有する単結晶6が得られる。また、位置調節手段をさらに備えている場合には、成長過程を通じて最適な温度勾配が維持されるように、単結晶6の成長高さに応じて、温度勾配制御部材26eの相対位置を調節する。
【0081】
成長終了後、種結晶4及び単結晶6を冷却する(図8(c))。次いで、これらを成長容器(図示せず)から取り外し、さらにガイド部材24eを取り外す。
得られた単結晶は、そのまま各種の用途に用いても良く、あるいは、これを種結晶として用いて、再度、その成長面上に単結晶を成長させても良い。
【0082】
[3.5.3. 効果(5)]
図8(a)に示すように、種結晶4の成長面4aの近傍に温度勾配制御部材26eを配置し、かつ、種結晶4の周囲に厚肉部28eを配置した状態で単結晶6を成長させると、等温線は、温度勾配制御部材26eを境に上に凸の曲線から下に凸の曲線に変化する。そのため、種結晶4の外周部近傍であって、単結晶6の成長軸方向に対して平行に温度勾配を測定すると、温度勾配制御部材26eの近傍(B点)において温度勾配は極大となる。
【0083】
しかしながら、種結晶4の周囲に厚肉部28eが配置されているので、最大の温度勾配が発生する地点は、温度勾配制御部材26eの厚さが変化する部分、すなわち、厚肉部28eの最外周部近傍(領域c)となる。その結果、B点における温度勾配の極大値は、領域cにおいて発生する温度勾配の極大値より小さくなる。また、これに応じて、B点近傍において発生する引張応力の極大値は、領域cに単結晶が存在していたならば領域cの近傍において発生したであろう引張応力の極大値よりも小さくなる。その結果、種結晶4の直上に成長している単結晶中にクラックが発生又は伝搬する確率は低くなる。
【0084】
さらに、温度勾配制御部材26eは、種結晶4及び単結晶6を成長軸方向に沿って断熱する作用がある。すなわち、温度勾配制御部材26eより下方側では、単結晶6の側面から内部に向かって熱が流入し、温度勾配制御部材26eより上方側では、種結晶4の内部から側面に向かって熱が流出し、放熱が促進される。そのため、図8(a)に示す方法を用いると、成長速度を維持しつつ口径の縮小や表面の凹面化を防ぐことができる。さらに、単結晶6の成長空間がガイド部材24eによって囲まれている場合には、さらに成長高さを増す際に、単結晶側面部の平坦化加工や保護の処理をする必要がない。また、ガイド部材24eと温度勾配制御部材26eの相対位置を調節するだけで、成長を継続することができる。
【0085】
[3.6. 具体例(6)]
[3.6.1. 単結晶製造装置(6)]
図9(a)及び図9(b)に、本発明の第6の実施の形態に係る単結晶製造装置の断面図を示す。図9(a)(又は、図9(b))において、単結晶製造装置20f(又は、20f’)は、ガイド部材24f(又は、24f’)と、温度勾配制御部材26fと、厚肉部(局所的温度勾配緩和部材)28fとを備えている。
【0086】
図9に示す単結晶製造装置20f(又は、20f’)は、温度勾配制御部材26fが単結晶6の成長軸方向に沿って上下に二分割されており、厚肉部28fが二分割された温度勾配制御部材27fの先端に形成されている点以外は、第5の実施の形態に係る単結晶製造装置20eと同様の構成を備えている。
温度勾配制御部材26fを上下に二分割し、両者の間に空間を設けると、単結晶6の成長軸方向に沿った断熱性が向上する。そのため、成長速度を維持しつつ口径の縮小や表面の凹面化を防ぐことがさらに容易化する。
【0087】
ガイド部材24fは、図9(a)に示すように、種結晶4の側面のみを取り囲むことができる長さであっても良い。あるいは、ガイド部材24f’は、図9(b)に示すように、種結晶4の側面及び単結晶6の成長空間を取り囲むことができる長さであっても良い。
厚肉部28fの厚さ(成長軸方向の長さ)h及び幅tは、温度勾配の極大値の緩和量に影響を与える。厚肉部28fの厚さh及び幅tの詳細については、第3の実施の形態と同様であるので、説明を省略する。
【0088】
また、ガイド部材24f’が種結晶4の側面及び単結晶の成長空間を取り囲むことができる長さを有している場合、位置調節手段をさらに備えていても良い。位置調節手段の詳細については、第5の実施の形態と同様であるので、説明を省略する。
その他の点については、第1〜5の実施の形態と同様であるので、説明を省略する。
【0089】
[3.6.2. 単結晶の製造方法(6)]
次に、図9に示す単結晶製造装置20f(又は、20f’)を用いた単結晶の製造方法について説明する。まず、種結晶4の側面及び底面をガイド部材24f(又は、24f’)で保護する。次いで、厚肉部28fが種結晶4の成長面4a近傍に来るように、種結晶4の周囲に温度勾配制御部材26fを配置する。
【0090】
この状態で種結晶4の成長面4aを成長容器の本体部(図示せず)に充填されたSiC原料に対向させ、成長容器を加熱すると、図9(a)(又は、図9(b))に示すように、種結晶4の成長面4a上に単結晶6が成長する。
また、図9(b)に示すように、単結晶6の成長空間を取り囲むようにガイド部材24f’が配置されている場合には、種結晶4とほぼ同等の大きさを有する単結晶6が得られる。また、位置調節手段をさらに備えている場合には、成長過程を通じて最適な温度勾配が維持されるように、単結晶6の成長高さに応じて、温度勾配制御部材26eの相対位置を調節する。
【0091】
成長終了後、種結晶4及び単結晶6を冷却する。次いで、これらを成長容器(図示せず)から取り外し、さらにガイド部材24f(又は、24f’)を取り外す。
得られた単結晶は、そのまま各種の用途に用いても良く、あるいは、これを種結晶として用いて、再度、その成長面上に単結晶を成長させても良い。
【0092】
[3.6.3. 効果(6)]
図9(a)に示すように、種結晶4の成長面4aの近傍に温度勾配制御部材26fを配置し、かつ、種結晶4の周囲に厚肉部28fを配置した状態で単結晶6を成長させると、等温線は、温度勾配制御部材26fを境に上に凸の曲線から下に凸の曲線に変化する。そのため、種結晶4の外周部近傍であって、単結晶6の成長軸方向に対して平行に温度勾配を測定すると、温度勾配制御部材26fの近傍(B点)において温度勾配は極大となる。
【0093】
しかしながら、種結晶4の周囲に厚肉部28fが配置されているので、最大の温度勾配が発生する地点は、温度勾配制御部材26fの厚さが変化する部分、すなわち、厚肉部28fの最外周部近傍(領域c)となる。その結果、B点における温度勾配の極大値は、領域cにおいて発生する温度勾配の極大値より小さくなる。また、これに応じて、B点近傍において発生する引張応力の極大値は、領域cに単結晶が存在していたならば領域cの近傍において発生したであろう引張応力の極大値よりも小さくなる。その結果、種結晶4の直上に成長している単結晶中にクラックが発生又は伝搬する確率は低くなる。
【0094】
さらに、温度勾配制御部材26fは、種結晶4及び単結晶6を成長軸方向に沿って断熱する作用がある。すなわち、温度勾配制御部材26fより下方側では、単結晶6の側面から内部に向かって熱が流入し、温度勾配制御部材26fより上方側では、種結晶4の内部から側面に向かって熱が流出し、放熱が促進される。そのため、図9(a)に示す方法を用いると、成長速度を維持しつつ口径の縮小や表面の凹面化を防ぐことができる。さらに、図9(b)に示すように、単結晶6の成長空間がガイド部材24f’によって囲まれている場合には、さらに成長高さを増す際に、単結晶側面部の平坦化加工や保護の処理をする必要がない。また、ガイド部材24f’と温度勾配制御部材26fの相対位置を調節するだけで、成長を継続することができる。
【0095】
[3.7. 具体例(7)]
[3.7.1. 単結晶製造装置(7)]
図10(a)及び図10(b)に、本発明の第7の実施の形態に係る単結晶製造装置の断面図を示す。図10(a)(又は、図10(b))において、単結晶製造装置20g(又は、20g’)は、ガイド部材24g(又は、24g’)と、温度勾配制御部材26gと、高熱伝導率部材(局所的温度勾配緩和部材)28gとを備えている。
【0096】
図10(a)に示す単結晶製造装置20gは、種結晶4の周囲に高熱伝導率部材を配置することに代えて、温度勾配制御部材26gの先端に高熱伝導率部材28gを接合した点以外は、第4の実施の形態に係る単結晶製造装置20dと同様の構成を備えている。
ガイド部材24gは、図10(a)に示すように、種結晶4の側面のみを取り囲むことができる長さであっても良い。あるいは、ガイド部材24g’は、図10(b)に示すように、種結晶4の側面及び単結晶6の成長空間を取り囲むことができる長さであっても良い。
【0097】
高熱伝導率部材28gの厚さ(成長軸方向の長さ)h及び幅tは、種結晶4の直上に成長する単結晶の品質に影響する。
高熱伝導率部材28gの厚さhが薄すぎると、温度勾配の極大値の緩和が不十分となる。一方、高熱伝導率部材28gの厚さhを必要以上に厚くしても、実益がない。従って、高熱伝導率部材28gの厚さhは、3mm以上10mm以下が好ましい。
また、高熱伝導率部材28gの幅tが小さすぎると、温度勾配の極大値を緩和する効果が小さくなる。一方、高熱伝導率部材28gの幅tを必要以上に大きくしても、効果に差が無く、実益がない。高熱伝導率部材28gの幅tは、具体的には、3mm〜20mmが好ましい。
【0098】
また、ガイド部材24g’が種結晶4の側面及び単結晶の成長空間を取り囲むことができる長さを有している場合、位置調節手段をさらに備えていても良い。位置調節手段の詳細については、第5の実施の形態と同様であるので、説明を省略する。
その他の点については、第1〜6の実施の形態と同様であるので、説明を省略する。
【0099】
[3.7.2. 単結晶の製造方法(7)]
次に、図10に示す単結晶製造装置20g(又は、20g’)を用いた単結晶の製造方法について説明する。まず、種結晶4の側面及び底面をガイド部材24g(又は、24g’)で保護する。次いで、高熱伝導率部材28gが種結晶4の成長面4a近傍に来るように、種結晶4の周囲に温度勾配制御部材26gを配置する。
【0100】
この状態で種結晶4の成長面4aを成長容器の本体部(図示せず)に充填されたSiC原料に対向させ、成長容器を加熱すると、図10(a)(又は、図10(b))に示すように、種結晶4の成長面4a上に単結晶6が成長する。
また、図10(b)に示すように、単結晶6の成長空間を取り囲むようにガイド部材24g’が配置されている場合には、種結晶4とほぼ同等の大きさを有する単結晶6が得られる。位置調節手段をさらに備えている場合には、成長過程を通じて最適な温度勾配が維持されるように、単結晶6の成長高さに応じて、温度勾配制御部材26gの相対位置を調節する。
【0101】
成長終了後、種結晶4及び単結晶6を冷却する。次いで、これらを成長容器(図示せず)から取り外し、さらにガイド部材24g(又は、24g’)を取り外す。
得られた単結晶は、そのまま各種の用途に用いても良く、あるいは、これを種結晶として用いて、再度、その成長面上に単結晶を成長させても良い。
【0102】
[3.7.3. 効果(7)]
図10に示すように、種結晶4の成長面4aの近傍に温度勾配制御部材26gを配置し、かつ、温度勾配制御部材26gの先端に高熱伝導率部材28gを配置した状態で単結晶6を成長させると、等温線は、温度勾配制御部材26gを境に上に凸の曲線から下に凸の曲線に変化する。そのため、種結晶4の外周部近傍であって、単結晶6の成長軸方向に対して平行に温度勾配を測定すると、温度勾配制御部材26gの近傍(B点)において温度勾配は極大となる。
【0103】
しかしながら、温度勾配制御部材26gの先端に高熱伝導率部材28gが配置されているので、最大の温度勾配が発生する地点は、温度勾配制御部材26gの熱伝導率が変化する部分、すなわち、高熱伝導率部材28gの最外周部近傍(領域c)となる。その結果、B点における温度勾配の極大値は、領域cにおいて発生する温度勾配の極大値より小さくなる。また、これに応じて、B点近傍において発生する引張応力の極大値は、領域cに単結晶が存在していたならば領域cの近傍において発生したであろう引張応力の極大値よりも小さくなる。その結果、種結晶4の直上に成長している単結晶中にクラックが発生又は伝搬する確率は低くなる。
【0104】
さらに、温度勾配制御部材26gは、種結晶4及び単結晶6を成長軸方向に沿って断熱する作用がある。すなわち、温度勾配制御部材26gより下方側では、単結晶6の側面から内部に向かって熱が流入し、温度勾配制御部材26gより上方側では、種結晶4の内部から側面に向かって熱が流出し、放熱が促進される。そのため、図10に示す方法を用いると、成長速度を維持しつつ口径の縮小や表面の凹面化を防ぐことができる。さらに、図10(b)に示すように、単結晶6の成長空間がガイド部材24g’によって囲まれている場合には、さらに成長高さを増す際に、単結晶側面部の平坦化加工や保護の処理をする必要がない。また、ガイド部材24g’と温度勾配制御部材26gの相対位置を調節するだけで、成長を継続することができる。
【0105】
[4. 単結晶]
本発明に係る単結晶は、上述した方法により製造されるので、従来の方法に比べて、単結晶の外周部に残留する引張応力が小さい。
また、種結晶の周囲に温度勾配制御部材を配置しているので、成長面の凹面化や成長速度の低下を抑制することができる。そのため、種結晶の成長面に単結晶を成長させる工程と、得られた単結晶を種結晶に用いて成長面に単結晶を成長させる工程とを複数回繰り返すことができ、繰り返し回数には、実質的に制限がない。そのため、従来の方法に比べて、長尺かつ割れのない単結晶を得ることができる。
【0106】
具体的には、製造条件を最適化することによって、単結晶の外周部の引張応力の最大値は、70MPa以下となる。製造条件をさらに最適化すると、引張応力の最大値は、50MPa以下、30MPa以下、あるいは、10MPa以下となる。
また、製造条件を最適化することによって、成長軸方向の長さが20mm以上であり、かつ割れのない単結晶が得られる。製造条件をさらに最適化すると、成長軸方向の長さが50mm以上、100mm以上、あるいは、150mm以上である単結晶が得られる。
また、製造条件を最適化することによって、成長軸方向に対して垂直方向の最大長さが100mm以上である単結晶が得られる。製造条件をさらに最適化すると、最大長さは、150mm以上、あるいは、200mm以上となる。ここで、「成長軸方向に対して垂直方向の最大長さ」とは、単結晶の成長軸方向に対して垂直方向の断面(垂直断面)が円であるときは円の直径、垂直断面が四角形であるときは各辺の長さの最大値、垂直断面が5角形以上の多角形であるときは対向する辺間距離又は対向する辺と頂点の距離の最大値を表す。
【0107】
さらに、従来の方法に比べて引張応力の最大値が小さいので、外周部にクラックのない単結晶が得られる。ここで、「クラック」とは、断面積が0.2cm2以上のものを指す。
また、単結晶の成長軸方向は、特に限定されるものではなく、例えば、c面に略垂直な方向であっても良い。
また、単結晶は、c軸に略垂直な方向に成長させた単結晶をc面に対して略平行にスライスし、これを種結晶としてc軸方向に略平行方向に成長させることにより得られるものでも良い。
さらに、単結晶の材料は、特に限定されるものではなく、例えば、SiC、GaN又はAlNのいずれであっても良い。
【0108】
[5. ウェハ]
本発明に係るウェハは、本発明に係る単結晶から切り出されたものからなる。ウェハの表面を構成する結晶面は、特に限定されるものではなく、目的に応じて任意に選択することができる。例えば、SiCウェハの場合、ウェハの表面は、c面に略垂直な面(a面又はa面から僅かに傾いた面)、又は、c面(又はc面から僅かに傾いた面)が好ましい。
【0109】
得られたウェハは、そのままの状態で、又は、表面に薄膜を形成した状態で、各種の用途に用いられる。例えば、ウェハを用いて半導体デバイスを製造する場合、ウェハ表面には、エピタキシャル膜が成膜される。エピタキシャル膜としては、具体的には、SiC、GaNなどの窒化物、などがある。
【0110】
[6. 半導体デバイス]
本発明に係る半導体デバイスは、本発明に係るウェハを用いて製造されるものからなる。半導体デバイスとしては、具体的には、
(a)LED、
(b)パワーデバイス用のダイオードやトランジスタ、
などがある。
【0111】
以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
【産業上の利用可能性】
【0112】
本発明に係る単結晶製造装置及び単結晶の製造方法は、超低電力損失パワーデバイスの半導体材料として使用することが可能なSiC単結晶の製造装置及び製造方法として用いることができる。
【符号の説明】
【0113】
20a〜20g 単結晶製造装置
24a〜24g ガイド部材
26a〜26g 温度勾配制御部材
28a〜28g 局所的温度勾配緩和部材
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10