(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
一般に、油圧緩衝器として、車体側と車軸側の一方に取付けられるシリンダの油室に、車体側と車軸側の他方に取付けられるピストンロッドを挿入し、ピストンロッドの先端部に設けたピストンにより、シリンダの油室をピストン側油室とロッド側油室に区画し、シリンダの油室に進退するピストンロッドの容積を補償する油溜室をシリンダの油室に連通してなるものがある。
【0003】
そして、特許文献1に記載の油圧緩衝器は、ピストン側油室と油溜室とを隔壁部材により区画し、隔壁部材に設けたピストン側油室と油溜室を連絡する油路に圧側減衰力発生装置を備えるとともに、隔壁部材にピストン側油室と油溜室を連通する連通路を設け、ピストンロッドが一定ストローク圧縮した後に上記連通路に嵌合するニードルをピストンロッドに設けている。
【0004】
これにより、特許文献1に記載の油圧緩衝器にあっては、圧側行程で、ピストンロッドがシリンダの油室の奥側へ進入し、ピストンロッドに設けたニードルが隔壁部材の連通路に嵌合するに至ると、ピストンロッドと油溜室との上記連通路による連通が次第に遮断される。これにより、ピストンにより加圧される油が隔壁部材に設けた圧側減衰力発生装置を次第に多量に通り、圧側減衰力発生装置が次第に大きな減衰力を発生するものになる。即ち、圧側行程のストロークに応じて減衰力が変化し、圧側減衰力の位置依存性を示す。
【0005】
また、特許文献2に記載の油圧緩衝器は、ピストン側油室と油溜室とを隔壁部材により区画し、隔壁部材に設けたピストン側油室と油溜室を連絡する油路に圧側と伸側の減衰力発生装置を備える。また、シリンダの側壁の軸方向の複数位置に、シリンダのピストン側油室をシリンダの周囲に設けたバイパス油路経由でシリンダのロッド側油室に連通する通孔を設けている。ピストンロッドが一定ストローク伸縮する度に各通孔をピストンが開閉するものになる。
【0006】
これにより、特許文献2に記載の油圧緩衝器にあっては、圧側行程で、ピストンロッドがシリンダの油室の奥側へ進入し、ピストンロッドに設けたピストンがシリンダの側壁の軸方向に設けてある各通孔を通過するに従い、ピストン側油室をバイパス油路に直に連通する通孔が少なくなり、ピストンがピストン側油室に及ぼす加圧により、ピストン側油室から該油室に連通している通孔を介してバイパス油路、ロッド側油室へ流出する油量が次第に少なく、換言すれば隔壁部材の圧側減衰力発生装置を通る油量が次第に多くなり、圧側減衰力発生装置が大きな減衰力を発生するものになる。
【0007】
他方、特許文献2に記載の油圧緩衝器における伸側行程では、ピストンロッドがシリンダの油室の奥側から退出し、ピストンロッドに設けたピストンがシリンダの側壁の軸方向に設けてある各通孔を通過するに従い、ピストンがロッド側油室に及ぼす加圧により、ロッド側油室の油がバイパス油路からピストン側油室に連通するに至った通孔を介して該ピストン側油室へ次第に多量に流入し、換言すれば隔壁部材の伸側減衰力発生装置を通る油量が次第に少なくなり、伸側減衰力発生装置が発生する減衰力は小さくなる。
【0008】
従って、特許文献2に記載の油圧緩衝器では、圧側行程と伸側行程のいずれでも、それらのストロークに応じて減衰力が変化し、減衰力の位置依存性を示す。
【発明の概要】
【発明が解決しようとする課題】
【0010】
特許文献1に記載の油圧緩衝器では、圧側行程のストロークに応じて、隔壁部材に設けた圧側減衰力発生装置が発生する減衰力は、隔壁部材に設けた圧側減衰力発生装置を通過する油量に基づく。そして、隔壁部材に設けた圧側減衰力発生装置を通過する油量は、シリンダに進入するピストンロッドの断面積から、隔壁部材に設けた連通路に嵌合するニードルの断面積を差し引いた環状面積に依存し、極めて小さい。従って、隔壁部材に設けた圧側減衰力発生装置が発生する減衰力は小さく、この圧側減衰力発生装置によりストロークに応じた大きな減衰力の変化を得ることはできない。
【0011】
特許文献2に記載の油圧緩衝器では、圧側行程と伸側行程のストロークに応じて、隔壁部材に設けた圧側減衰力発生装置と伸側減衰力発生装置が発生する減衰力は、隔壁部材に設けた圧側減衰力発生装置と伸側減衰力発生装置を通過する油量に基づく。隔壁部材に設けた圧側減衰力発生装置と伸側減衰力発生装置を通過する油量は、シリンダに進入/退出するピストンロッドの断面積に依存し、小さい。従って、隔壁部材に設けた圧側減衰力発生装置と伸側減衰力発生装置が発生する減衰力は小さく、これらの圧側減衰力発生装置と伸側減衰力発生装置によりストロークに応じた大きな減衰力の変化を得ることはできない。
【0012】
尚、特許文献1、2に記載の油圧緩衝器において、隔壁部材に設けた圧側減衰力発生装置又は伸側減衰力発生装置が発生する減衰力を大きくし、その減衰力の圧側又は伸側のストロークに応じた減衰力の変化を大きくするためには、圧側減衰力発生装置を構成する圧側減衰バルブ又は伸側減衰力発生装置を構成する伸側減衰バルブの抵抗を大きくする必要がある。ところが、この場合には、シリンダに高いシール性を付与する必要があるし、ピストン速度に対する減衰力のばらつきも大きくなるという不都合がある。
【0013】
本発明の課題は、油圧緩衝器において、減衰力発生装置の圧側減衰バルブ又は伸側減衰バルブが発生する減衰力に位置依存性を付与するとともに、簡易に、それらの圧側減衰バルブ又は伸側減衰バルブが発生する減衰力を安定的に大きくし、その減衰力の圧側又は伸側のストロークに応じた減衰力の変化も大きくすることにある。
【課題を解決するための手段】
【0014】
請求項1に係る発明は、車体側と車軸側の一方に取付けられるシリンダの油室に、車体側と車軸側の他方に取付けられるピストンロッドを挿入し、ピストンロッドの先端部に設けたピストンにより、シリンダの油室をピストン側油室とロッド側油室に区画し、シリンダの油室に進退するピストンロッドの容積を補償する油溜室をシリンダの油室に連通する油圧緩衝器において、シリンダのピストン側油室と、ロッド側油室の間に減衰力発生装置を設け、圧側行程で、シリンダのピストン側油室の油をシリンダの外側流路からロッド側油室に向けて流す圧側流路が減衰力発生装置に設けられ、この圧側流路の上流側に圧側減衰バルブを、下流側に圧側チェックバルブを設け、この圧側流路における圧側減衰バルブと圧側チェックバルブの中間部を油溜室に連通し、伸側行程で、シリンダのロッド側油室の油をシリンダの外側流路からピストン側油室に向けて流す伸側流路が減衰力発生装置に設けられ、この伸側流路の上流側に伸側減衰バルブを、下流側に伸側チェックバルブを設け、この伸側流路における伸側減衰バルブと伸側チェックバルブの中間部を油溜室に連通してなり、減衰力発生装置に、シリンダのピストン側油室を
油溜室に連絡する通孔が設けられ
、通孔が相連通する縦孔と横孔からなり、縦孔は一端開口かつ他端閉塞状をなしてピストン側油室に開口し、横孔は縦孔に連通して油流室に連絡するとともに、ピストンロッドの先端部に上記減衰力発生装置の通孔に
おける縦孔に出入し得るニードルが設けられ、シリンダの油室に対するピストンロッドの進退位置に応じてそのニードルにより上記通孔
における縦孔の開度を可変に
し、前記減衰力発生装置が、第1と第2のベースピストンをボルトまわりに固定的に設け、第1のベースピストンに、圧側減衰バルブにより開閉される圧側流路と、伸側チェックバルブにより開閉される伸側流路を設け、第2のベースピストンに、圧側チェックバルブにより開閉される圧側流路と、伸側減衰バルブにより開閉される伸側流路を設け、上記ボルトに前記通孔の縦孔と横孔を設けてなるようにしたものである。
【発明の効果】
【0018】
(請求項1)
(a)油圧緩衝器において、シリンダのピストン側油室と、ロッド側油室の間に減衰力発生装置を設け、圧側行程で、シリンダのピストン側油室の油をシリンダの外側流路からロッド側油室に向けて流す圧側流路が減衰力発生装置に設けられ、この圧側流路の上流側に圧側減衰バルブを、下流側に圧側チェックバルブを設け、この圧側流路における圧側減衰バルブと圧側チェックバルブの中間部を油溜室に連通し、伸側行程で、シリンダのロッド側油室の油をシリンダの外側流路からピストン側油室に向けて流す伸側流路が減衰力発生装置に設けられ、この伸側流路の上流側に伸側減衰バルブを、下流側に伸側チェックバルブを設け、この伸側流路における伸側減衰バルブと伸側チェックバルブの中間部を油溜室に連通させた。
【0019】
圧側行程では、ピストンロッドのピストンの全面積により加圧され、ピストン側油室の昇圧した油が減衰力発生装置の圧側流路の上流側の圧側減衰バルブを通って圧側減衰力を発生する。この圧側減衰バルブから流出する油のうちの一方の油の流れが圧側チェックバルブからシリンダの外側流路を通ってロッド側油室に流入する。また、この圧側減衰バルブから流出する油のうちの他方の油の流れである、ピストンロッドの進入容積分の油の流れが油溜室に流入する。
【0020】
伸側行程では、ロッド側油室の昇圧した油がシリンダの外側流路から減衰力発生装置の伸側流路の上流側の伸側減衰バルブを通って伸側減衰力を発生する。この伸側減衰バルブから流出する油は、油溜室から補給されるピストンロッドの退出容積分の油と合流した後、伸側チェックバルブを通ってピストン側油室に流入する。
【0021】
しかるに、圧側行程で、ピストンロッドがシリンダの油室の奥側へ進入し、ピストンロッドに設けたニードルが減衰力発生装置の通孔に嵌合するに至ると、ピストン側油室と外側流路、ロッド側油室との上記通孔による連絡が次第に遮断される。これにより、ピストンにより加圧されるピストン側油室の油が減衰力発生装置に設けた圧側減衰バルブを次第に多量に通り、次第に大きな減衰力を発生するものになる。即ち、圧側行程のストロークに応じて減衰力が変化し、圧側減衰力の位置依存性を示す。
【0022】
このとき、圧側行程のストロークに応じて、減衰力発生装置に設けた圧側減衰バルブが発生する減衰力は、圧側減衰バルブを通過する油量に基づく。そして、圧側減衰バルブを通過する油量は、シリンダに進入してピストン側油室を加圧するピストンの全面積に依存し、極めて大きい。従って、簡易に、減衰力発生装置に設けた圧側減衰バルブが発生する減衰力を大きくでき、この圧側減衰バルブによりストロークに応じた大きな減衰力の変化を得ることができる。
【0023】
(b)前記減衰力発生装置が、第1と第2のベースピストンをボルトまわりに固定的に設け、第1のベースピストンに、圧側減衰バルブにより開閉される圧側流路と、伸側チェックバルブにより開閉される伸側流路を設け、第2のベースピストンに、圧側チェックバルブにより開閉される圧側流路と、伸側減衰バルブにより開閉される伸側流路を設け、上記ボルトに前記通孔を設けた。これにより、ピストンロッドの先端部に設けたニードルが出入し、シリンダのピストン側油室を油溜室に連絡する通孔を、簡易に設けることができる。
【発明を実施するための形態】
【0036】
(
実施例)(
図1〜
図5)
油圧緩衝器10は、
図1〜
図3に示す如く、車軸側に取付けられるダンパケース11がダンパチューブ12を有し、ダンパチューブ12の内部にダンパシリンダ13を挿嵌している。そして、油圧緩衝器10は、車体側に取付けられるピストンロッド14をダンパケース11のダンパチューブ12、シリンダ13の中心部に摺動自在に挿入し、ダンパケース11とピストンロッド14の外側部に懸架スプリング15を介装している。
【0037】
ダンパケース11はダンパチューブ12のボトムキャップ12Aの外面中央部に車軸側取付部材16を備え、ピストンロッド14は車体側取付部材17を備える。ダンパケース11におけるダンパチューブ12の外周部にはばね受18を備え、ピストンロッド14における車体側取付部材17の外周部にはばね受19を備える。懸架スプリング15は、ばね受18とばね受19の間に介装され、懸架スプリング15のばね力によって車両が路面から受ける衝撃力を吸収する。
【0038】
ダンパケース11のダンパチューブ12は、ピストンロッド14が貫通するロッドガイド21をその開口部に備える。ロッドガイド21は、頭部21Aの大外径部をダンパチューブ12に液密に挿着され、オイルシール22、ブッシュ23を備える内径部に、ピストンロッド14を液密に摺動自在に挿入している。
【0039】
油圧緩衝器10は、ダンパケース11がダンパチューブ12の内部にシリンダ13を挿嵌し、シリンダ13が外筒13Aと内筒13Bからなるものにし、ダンパケース11はカップ状ボトムキャップ12Aの外周にダンパチューブ12の下端内周を嵌合して溶接等により固定している。
【0040】
ボトムキャップ12Aのカップ内周には、鋼板プレス製のカップ状ボトムプレート24の胴部24Aの外周が隙間嵌めされてセンタリング配置され(ボトムプレート24の底部24Bはボトムキャップ12Aのカップ底面との間に一定の隙間を介する)、ボトムキャップ12Aのカップ上端面に載るボトムプレート24のフランジ24Cの外周から立上がる嵌合筒部24Dの内周には、後述する第2のベースピストン60の外周の大外径部が圧入されてセンタリング配置されている。第2のベースピストン60の下端面はボトムプレート24のフランジ24Cの上面に載る。そして、第2のベースピストン60の外周の中外径部と小外径部のそれぞれにシリンダ13の外筒13Aと内筒13Bの各下端内周が圧入等されて固定されている。
【0041】
他方、シリンダ13の外筒13Aと内筒13Bの各上端内周はロッドガイド21の頭部21Aの下に設けた中外径部と小外径部のそれぞれに圧入等して固定されている。そして、ダンパチューブ12はロッドガイド21の頭部21Aを挿着され、頭部21Aの上のオイルシール22、オイルシール22の上面に設けたワッシャ22Aよりも上方に突出し、その突出端を加締部12Bとする。ダンパチューブ12は、ボトムキャップ12Aと加締部12Bの間に、ロッドガイド21、オイルシール22、ワッシャ22A、ボトムプレート24、第2のベースピストン60を介して、シリンダ13の外筒13A、内筒13Bを軸方向で挟み込み固定するものになる。
【0042】
油圧緩衝器10は、以上により、ダンパケース11の全体をダンパチューブ12と、シリンダ13の外筒13A、内筒13Bとが同軸配置された三重管としている。そして、内筒13Bの内部にピストン側油室27Aとロッド側油室27Bからなる油室27を形成し、外筒13Aと内筒13Bの間の環状間隙によりピストン側油室27Aとロッド側油室27Bを連通する外側流路13Cを形成し、ダンパチューブ12と外筒13Aの間の環状間隙をエア室31と油溜室32とする。
【0043】
即ち、油圧緩衝器10は、ピストンロッド14をダンパケース11のダンパチューブ12、シリンダ13の中心部に挿入するとき、ピストンロッド14の先端部に挿着したピストン25をナット26で固定し、内筒13Bの内周に摺動可能に挿入されたピストン25により、シリンダ13の油室27をピストン側油室27Aとロッド側油室27Bに区画する。28はリバウンドスプリング、29はバンプラバーである。
【0044】
そして、油圧緩衝器10は、ダンパチューブ12と外筒13Aの環状間隙の上下にエア室31と油溜室32のそれぞれを設け、油溜室32をシリンダ13の油室27に連通するように設け、この油溜室32によりシリンダ13の油室27に進退するピストンロッド14の容積(油の温度膨張分の容積を含む)を補償する。
【0045】
油圧緩衝器10は、シリンダ13のピストン側油室27Aとロッド側油室27Bの間に減衰力発生装置40を設ける。
【0046】
減衰力発生装置40は、シリンダ13の軸方向に沿う2位置に固定されて並置される第1と第2のベースピストン50、60を有する。
【0047】
減衰力発生装置40は、第1と第2のベースピストン50、60をボルト70まわりに固定的に設けたバルブユニット40Aの状態で、シリンダ13の外筒13Aと内筒13Bの各下端内周に挿着されて内蔵される。
【0048】
減衰力発生装置40のバルブユニット40Aは、ボルト70の頭部71Aの側から順に、その棒状ねじ部71Bの外周に串刺し状に装填される、圧側チェックバルブ52(バルブスプリング52A)、第2のベースピストン60、伸側減衰バルブ61、バルブストッパ72、圧側減衰バルブ51、第1のベースピストン50、伸側チェックバルブ62、バルブストッパ73を有し、これらを棒状ねじ部71Bに螺着されるナット71Cにより固定化する。
【0049】
減衰力発生装置40のバルブユニット40Aは、ボトムキャップ12Aに隙間嵌めされるボトムプレート24のフランジ24C、嵌合筒部24Dに対し第2のベースピストン60の外周の大外径部を前述の如くに組付け、この第2のベースピストン60の外周の中外径部と小外径部のそれぞれにシリンダ13の外筒13Aと内筒13Bの各下端内周を前述の如くに組付ける。第1のベースピストン50は外周に設けたOリングを介してシリンダ13の内筒13Bの内周に液密に挿着される。これにより、バルブユニット40Aの第2のベースピストン60をシリンダ13の一端側の底部に固定化し、バルブユニット40Aの第1のベースピストン50をシリンダ13の内周に固定化する。
【0050】
減衰力発生装置40は、内筒13Bの内部における第1のベースピストン50と第2のベースピストン60に挟まれる環状スペースを伸圧共用流路41とする。内筒13Bの内部における第1のベースピストン50の上側スペースをピストン側油室27Aとする。内筒13Bの内部における第2のベースピストン60の下側スペースは、第2のベースピストン60に穿設される孔状流路60C、シリンダ13の外筒13Aと内筒13Bの間の外側流路13Cを介してロッド側油室27Bに連通する伸圧共用流路42とされる。内筒13Bの上端側、本実施例ではロッドガイド21の小外径部には、ロッド側油室27Bを外側流路13Cに連通する伸圧共用流路43が切欠形成される。
【0051】
減衰力発生装置40は、第1のベースピストン50に圧側減衰バルブ51により開閉される圧側流路50Aと伸側チェックバルブ62により開閉される伸側流路50Bを設けるとともに、第2のベースピストン60に圧側チェックバルブ52により開閉される圧側流路60Bと伸側減衰バルブ61により開閉される伸側流路60Aを設ける。減衰力発生装置40は、伸圧共用流路41、42、43と、第1のベースピストン50に設けた圧側流路50A、伸側流路50Bと、第2のベースピストン60に設けた圧側流路60B、伸側流路60A、孔状流路60Cと、シリンダ13の外筒13Aと内筒13Bの環状間隙に設けられる外側流路13Cを介して、シリンダ13のピストン側油室27Aとロッド側油室27Bを連通する(ピストン25はピストン側油室27Aとロッド側油室27Bを連通する流路を備えない)。
【0052】
減衰力発生装置40は、第1のベースピストン50と第2のベースピストン60の各圧側流路50A、60Bに設けた圧側減衰バルブ51と圧側チェックバルブ52の中間部(伸圧共用流路41に連通する部分)を油溜室32に連通するとともに、第1のベースピストン50と第2のベースピストン60の各伸側流路50B、60Aに設けた伸側減衰バルブ61と伸側チェックバルブ62の中間部(伸圧共用流路41に連通する部分)を油溜室32に連通する連絡路44を第2のベースピストン60に設けた。
【0053】
第2のベースピストン60は、ダンパケース11のダンパチューブ12、シリンダ13に前述の如くに組込まれたとき、ボトムプレート24の嵌合筒部24Dに圧入される大外径部の外周の一部を油溜室32に臨ませる。そして、第2のベースピストン60は、
図5に示す如く、大外径部の上述の外周の一部から半径方向に向けて圧側流路60Bの中間部に達する横孔を穿設され、この横孔を連絡路44とする。
【0054】
従って、油圧緩衝器10の減衰力発生装置40にあっては、圧側行程で、シリンダ13のピストン側油室27Aの油を、シリンダ13の外側流路13Cからロッド側油室27Bに向けて流す圧側流路(伸圧共用流路41、42、43、圧側流路50A、60B、孔状流路60C)を用い、この圧側流路(伸圧共用流路41、42、43、圧側流路50A、60B、孔状流路60C)の上流側に圧側減衰バルブ51を、下流側に圧側チェックバルブ52を設け、この圧側流路(伸圧共用流路41、42、43、圧側流路50A、60B、孔状流路60C)における圧側減衰バルブ51と圧側チェックバルブ52の中間部を、連絡路44を介して油溜室32に連通するものになる。
【0055】
また、伸側行程で、シリンダ13のロッド側油室27Bの油を、シリンダ13の外側流路13Cからピストン側油室27Aに向けて流す伸側流路(伸圧共用流路41、42、43、伸側流路50B、60A、孔状流路60C)を用い、この伸側流路(伸圧共用流路41、42、43、伸側流路50B、60A、孔状流路60C)の上流側に伸側減衰バルブ61を、下流側に伸側チェックバルブ62を設け、この伸側流路(伸圧共用流路41、42、43、伸側流路50B、60A、孔状流路60C)における伸側減衰バルブ61と伸側チェックバルブ62の中間部を、連絡路44を介して油溜室32に連通するものになる。
【0056】
しかるに、油圧緩衝器10にあっては、減衰力発生装置40の圧側減衰バルブ51が発生する減衰力に位置依存性を付与するとともに、簡易に、圧側減衰バルブ51が発生する減衰力を大きくし、その減衰力のストロークに応じた変化(位置依存性)も大きくするため、以下の構成を具備する。
【0057】
即ち、油圧緩衝器10の減衰力発生装置40は、シリンダ13のピストン側油室27Aを外側流路13C経由でロッド側油室27Bに連絡する通孔80(後述するように、ボルト70に設けた縦孔81、横孔82、バルブストッパ72に設けた環状溝83、放射孔84からなる)を設ける。そして、ピストンロッド14の先端部に上記減衰力発生装置40の通孔80(縦孔81)に出入し得るニードル90を設ける。シリンダ13の油室27に対するピストンロッド14の進退位置に応じてそのニードル90により上記通孔80(縦孔81)の開度を可変にするものである。
【0058】
本実施例において、通孔80は、減衰力発生装置40のバルブユニット40Aを構成しているボルト70に設けられ、ボルト70の棒状ねじ部71Bの中心軸上に頭部71Aの反対側から穿設した一端開口、他端閉塞状の縦孔81と、ボルト70の棒状ねじ部71Bにおいて縦孔81から半径方向に穿設した横孔82と、ボルト70の棒状ねじ部71Bまわりに嵌合するバルブストッパ72の内周に設けられて横孔82に連通する環状溝83と、バルブストッパ72において環状溝83から半径方向に穿設した放射孔84とからなる。シリンダ13のピストン側油室27Aの油は、上述の通孔80から伸圧共用流路41、第2のベースピストン60の圧側流路60Bを通り、圧側チェックバルブ52を開いて伸圧共用流路42に達し、更に第2のベースピストン60の伸側流路60Aを経て外側流路13Cに達し、伸圧共用流路43からロッド側油室27Bに連絡するものになる。
【0059】
ニードル90は、ピストンロッド14の中心軸上をその先端側に向けて次第に縮径するテーパ状をなすように突き出て、ピストンロッド14が圧側行程でシリンダ13の油室27の奥側へ進入するに従い、通孔80の縦孔81に入り、先端テーパ部91が縦孔81との間に形成する環状流路面積の変化により、通孔80の開度を可変にする。
【0060】
従って、油圧緩衝器10は以下の如くに減衰作用を行なう。
(圧側行程)(
図4(A)の実線矢印の流れ)
ピストン側油室27Aの油が昇圧すると、ピストン側油室27Aの油の一部分が減衰力発生装置40のボルト70、バルブストッパ72に設けた通孔80を通って伸圧共用流路41に流出する。ピストン側油室27Aの油の他の部分は減衰力発生装置40の第1のベースピストン50の圧側流路50Aの圧側減衰バルブ51を押し開いて圧側減衰力を発生した後、伸圧共用流路41に流出する。このようにして伸圧共用流路41に流出した油は、第2のベースピストン60の圧側流路60Bにおいて2分し、一方の油は第2のベースピストン60の圧側流路60Bの圧側チェックバルブ52から伸圧共用流路42、第2のベースピストン60の孔状流路60C、シリンダ13の外側流路13C、伸圧共用流路43を通ってロッド側油室27Bに流出し、他方の油は第2のベースピストン60の連絡路44から油溜室32に排出される。この油溜室32に排出される他方の油は、ピストンロッド14の進入容積分の油を補償する。
【0061】
この圧側行程で、ピストンロッド14がシリンダ13の油室27の奥側へ進入し、ピストンロッド14に設けたニードル90が減衰力発生装置40の通孔80に入ってその通孔80の開度を次第に狭くするに従い、ピストン側油室27Aと外側流路13C、ロッド側油室27Bとの上記通孔80による連絡が次第に遮断される。これにより、ピストン25により加圧されるピストン側油室27Aの油が減衰力発生装置40に設けた圧側減衰バルブ51を次第に多量に通り、次第に大きな減衰力を発生するものになる。即ち、圧側行程のストロークに応じて減衰力が変化し、圧側減衰力の位置依存性を示すものになる。ニードル90の先端テーパ部91の形状の選定により、その位置依存性がセッティングされる。
【0062】
(伸側行程)(
図4(B)の実線矢印の流れ)
ロッド側油室27Bの油が昇圧し、伸圧共用流路43、シリンダ13の外側流路13Cを通って減衰力発生装置40の第2のベースピストン60の孔状流路60C、伸圧共用流路42に流入し、第2のベースピストン60の伸側流路60Aの伸側減衰バルブ61を押し開いて伸側減衰力を発生する。この伸側減衰バルブ61から伸圧共用流路41に流出する油は、油溜室32から第2のベースピストン60の連絡路44、圧側流路60Bを介して補給される油と合流した後、第1のベースピストン50の伸側流路50Bの伸側チェックバルブ62を通ってピストン側油室27Aに流出する。油溜室32から補給される油はピストンロッド14の退出容積分の油を補償する。
【0063】
従って、本実施例によれば以下の如くの作用効果を奏する。
(a)油圧緩衝器10において、シリンダ13のピストン側油室27Aと、ロッド側油室27Bの間に減衰力発生装置40を設け、圧側行程で、シリンダ13のピストン側油室27Aの油をシリンダ13の外側流路13Cからロッド側油室27Bに向けて流す圧側流路(伸圧共用流路41、42、43、圧側流路50A、60B、孔状流路60C)が減衰力発生装置40に設けられ、この圧側流路(伸圧共用流路41、42、43、圧側流路50A、60B、孔状流路60C)の上流側に圧側減衰バルブ51を、下流側に圧側チェックバルブ52を設け、この圧側流路(伸圧共用流路41、42、43、圧側流路50A、60B、孔状流路60C)における圧側減衰バルブ51と圧側チェックバルブ52の中間部を油溜室32に連通し、伸側行程で、シリンダ13のロッド側油室27Bの油をシリンダ13の外側流路13Cからピストン側油室27Aに向けて流す伸側流路(伸圧共用流路41、42、43、伸側流路50B、60A、孔状流路60C)が減衰力発生装置40に設けられ、この伸側流路(伸圧共用流路41、42、43、伸側流路50B、60A、孔状流路60C)の上流側に伸側減衰バルブ61を、下流側に伸側チェックバルブ62を設け、この伸側流路(伸圧共用流路41、42、43、伸側流路50B、60A、孔状流路60C)における伸側減衰バルブ61と伸側チェックバルブ62の中間部を油溜室32に連通させた。
【0064】
圧側行程では、ピストンロッド14のピストン25の全面積により加圧され、ピストン側油室27Aの昇圧した油が減衰力発生装置40の圧側流路(伸圧共用流路41、42、43、圧側流路50A、60B、孔状流路60C)の上流側の圧側減衰バルブ51を通って圧側減衰力を発生する。この圧側減衰バルブ51から流出する油のうちの一方の油の流れが圧側チェックバルブ52からシリンダ13の外側流路13Cを通ってロッド側油室27Bに流入する。また、この圧側減衰バルブ51から流出する油のうちの他方の油の流れである、ピストンロッド14の進入容積分の油の流れが油溜室32に流入する。このとき、ロッド側油室27Bの圧力は(圧側減衰バルブ51の下流側の圧側チェックバルブ52〜シリンダ13の外側流路13Cの流路抵抗が小さいので)エア室31の圧力だけにほぼ依存し、圧側減衰バルブ51の流路抵抗の設定によって変動しない。従って、伸側反転時の減衰力のさぼりを回避できる。
【0065】
伸側行程では、ロッド側油室27Bの昇圧した油がシリンダ13の外側流路13Cから減衰力発生装置40の伸側流路(伸圧共用流路41、42、43、伸側流路50B、60A、孔状流路60C)の上流側の伸側減衰バルブ61を通って伸側減衰力を発生する。この伸側減衰バルブ61から流出する油は、油溜室32から補給されるピストンロッド14の退出容積分の油と合流した後、伸側チェックバルブ62を通ってピストン側油室27Aに流入する。
【0066】
尚、油溜室32を加圧するエア室31の圧力を高圧に設定することにより、圧側行程ではロッド側油室27Bの圧力を大きく正圧にして伸側反転時の減衰応答性を向上できる。
【0067】
しかるに、圧側行程で、ピストンロッド14がシリンダ13の油室27の奥側へ進入し、ピストンロッド14に設けたニードル90が減衰力発生装置40の通孔80に嵌合するに至ると、ピストン側油室27Aと外側流路13C、ロッド側油室27Bとの上記通孔80による連絡が次第に遮断される。これにより、ピストン25により加圧されるピストン側油室27Aの油が減衰力発生装置40に設けた圧側減衰バルブ51を次第に多量に通り、次第に大きな減衰力を発生するものになる。即ち、圧側行程のストロークに応じて減衰力が変化し、圧側減衰力の位置依存性を示す。
【0068】
このとき、圧側行程のストロークに応じて、減衰力発生装置40に設けた圧側減衰バルブ51が発生する減衰力は、圧側減衰バルブ51を通過する油量に基づく。そして、圧側減衰バルブ51を通過する油量は、シリンダ13に進入してピストン側油室27Aを加圧するピストン25の全面積に依存し、極めて大きい。従って、簡易に、減衰力発生装置40に設けた圧側減衰バルブ51が発生する減衰力を大きくでき、その圧側減衰バルブ51によりストロークに応じた大きな減衰力の変化を得ることができる。
【0069】
(b)前記減衰力発生装置40が、第1と第2のベースピストン50、60をボルト70まわりに固定的に設け、第1のベースピストン50に、圧側減衰バルブ51により開閉される圧側流路50Aと、伸側チェックバルブ62により開閉される伸側流路50Bを設け、第2のベースピストン60に、圧側チェックバルブ52により開閉される圧側流路60Bと、伸側減衰バルブ61により開閉される伸側流路60Aを設け、上記ボルト70に前記通孔80を設けた。これにより、ピストンロッド14の先端部に設けたニードル90が出入し、シリンダ13のピストン側油室27Aを油溜室32に連絡する通孔80を、簡易に設けることができる。
【0070】
尚、本実施例の油圧緩衝器10においては、以下の作用効果も奏する。
(c)第1と第2のベースピストン50、60の各圧側流路50A、60Bのそれぞれに設けた圧側減衰バルブ51と圧側チェックバルブ52の中間部を油溜室32に連通するとともに、第1と第2のベースピストン50、60の各伸側流路50B、60Aのそれぞれに設けた伸側減衰バルブ61と伸側チェックバルブ62の中間部を油溜室32に連通する連絡路44を、第2のベースピストン60に設けた。これにより、圧側行程で、ピストン側油室27Aから減衰力発生装置40を通って油溜室32に流出する上述(a)の油の流路と、伸側行程で、油溜室32から減衰力発生装置40を通ってピストン側油室27Aへ流出する上述(a)の油の流路を、第2のベースピストン60に設けた連絡路44により形成するものになる。連絡路44は、単純な横孔等の流路であり、シリンダ13の油室27〜油溜室32の流路面積を容易に確保し、エア室31の圧力をスムースにロッド側油室27Bに印加できるから、伸側反転時の減衰力のさぼりを一層確実に回避できる。また、連絡路44は、その流路長を短く、その流路抵抗を小さく設定でき、その設定の自由度を向上できる。また、連絡路44は、第2のベースピストン60に孔加工するだけで形成でき、部品点数を多くすることなく、コスト低減できる。
【0071】
(d)油圧緩衝器10において、ダンパケース11におけるシリンダ13の油室27の周囲に、ピストン側油室27Aとロッド側油室27Bを連通する外側流路13Cを設け、ダンパケース11におけるシリンダ13の油室27及び外側流路13Cの周囲に、油溜室32を設けた。従って、ダンパケース11におけるシリンダ13の中心部に油室27を設け、油室27の外側に外側流路13Cを設け、外側流路13Cの更に外側に油溜室32を設けるものになる。これにより、油圧緩衝器10において、ダンパケース11を長大化することなく、全長の短いダンパケース11の内部にシリンダ13の油室27、外側流路13C及び油溜室32を併せ設けることができ、これが搭載される車両におけるレイアウト上の自由度を向上できる。
【0072】
(e)ダンパケース11がダンパチューブ12の内部にシリンダ13を挿嵌し、シリンダ13が外筒13Aと内筒13Bからなり、内筒13Bの内部に前記油室27を形成し、外筒13Aと内筒13Bの間に前記外側流路13Cを形成し、ダンパチューブ12と外筒13Aの間に前記油溜室32を形成する。ダンパチューブ12とシリンダ13の外筒13A及び内筒13Bとからなる三重管構造により、コンパクトに上述(c)を実現できる。
【0073】
(f)第1と第2のベースピストン50、60をボルト70まわりに固定的に設け、第2のベースピストン60をシリンダ13の一端側の底部に固定化してなる。従って、第1と第2のベースピストン50、60をシリンダ13の軸方向に沿う2位置に簡易に組込みできる。
【0074】
尚、減衰力発生装置40は、圧側流路(伸圧共用流路41、42、43、圧側流路50A、60B、孔状流路60C)の下流側に設けられる圧側チェックバルブ52に圧側減衰力発生手段を付帯させても良い。この圧側減衰力発生手段は圧側チェックバルブ52を積層板バルブとし、及び/又は圧側チェックバルブ52が設けられる圧側流路60Bを絞り流路とする等により構成できる。
【0075】
これによれば、圧側行程で、上流側の圧側減衰バルブ51から流出する油のうちの一方の油の流れは、圧側チェックバルブ52からシリンダ13の外側流路13Cを通ってロッド側油室27Bに流入するものの、圧側チェックバルブ52がチェック機能とともに圧側減衰力発生機能を果たす。圧側チェックバルブ52はピストン速度に依存する減衰力ΔFを発生し、ロッド側油室27Bの圧力Prは油溜室32を加圧するエア室31の圧力PaからΔFを減じた値、換言すればピストン速度に依存して制御される値になる。
【0076】
このように圧側行程でロッド側油室27Bの圧力Prがピストン速度に依存して制御されることは、伸側反転時の減衰力の立上り特性をピストン速度に依存して制御できることを意味する。ピストン速度が高速のときには、圧側チェックバルブ52の絞りによってΔFが大きくなり、Prが小さくなるから、伸側反転時の減衰力の立上りは緩やかになって乗心地を良くする。ピストン速度が低速のときには、圧側チェックバルブ52の絞りによるΔFが小さくなり、Prが大きくなるから伸側反転時の減衰力の立上りは急になって車体のフラフラ感を抑えて走行安定性を良くする。
【0077】
このとき、圧側減衰力の総量は、圧側減衰バルブ51の減衰力と、圧側チェックバルブ52の減衰力の総和になるが、通常のセッティングでは、圧側減衰バルブ51の減衰力をより大きくする。圧側減衰力の総量は、概ね圧側減衰バルブ51の減衰力に依存する。
【0078】
また、減衰力発生装置40は、伸側流路(伸圧共用流路41、42、43、伸側流路50B、60A、孔状流路60C)の下流側に設けられる伸側チェックバルブ62に伸側減衰力発生手段を付帯させても良い。この伸側減衰力発生手段は伸側チェックバルブ62を積層板バルブとし、及び/又は伸側チェックバルブ62が設けられる伸側流路50Bを絞り流路とする等により構成できる。
【0079】
これによれば、伸側行程で、上流側の伸側減衰バルブ61から流出する油のうちの一方の油の流れは、伸側チェックバルブ62からシリンダ13の外側流路13Cを通ってピストン側油室27Aに流入するものの、伸側チェックバルブ62がチェック機能とともに伸側減衰力発生機能を果たす。伸側チェックバルブ62はピストン速度に依存する減衰力ΔFを発生し、ピストン側油室27Aの圧力Ppは油溜室32を加圧するエア室31の圧力PaからΔFを減じた値、換言すればピストン速度に依存して制御される値になる。
【0080】
このように伸側行程でピストン側油室27Aの圧力Ppがピストン速度に依存して制御されることは、圧側反転時の減衰力の立上り特性をピストン速度に依存して制御できることを意味する。ピストン速度が高速のときには、伸側チェックバルブ62の絞りによってΔFが大きくなり、Ppが小さくなるから、圧側反転時の減衰力の立上りは緩やかになって乗心地を良くする。ピストン速度が低速のときには、伸側チェックバルブ62の絞りによるΔFが小さくなり、Ppが大きくなるから圧側反転時の減衰力の立上りは急になって車体のフラフラ感を抑えて走行安定性を良くする。
【0081】
このとき、伸側減衰力の総量は、伸側減衰バルブ61の減衰力と、伸側チェックバルブ62の減衰力の総和になるが、通常のセッティングでは、伸側減衰バルブ61の減衰力をより大きくする。伸側減衰力の総量は、概ね伸側減衰バルブ61の減衰力に依存する。
【0082】
(
参考例)(
図6〜
図9)
参考例の油圧緩衝器10にあっては、減衰力発生装置40の圧側減衰バルブ51と伸側減衰バルブ61が発生する減衰力に位置依存性を付与するとともに、簡易に、圧側減衰バルブ51と伸側減衰バルブ61が発生する減衰力を大きくし、それらの減衰力のストロークに応じた変化(位置依存性)も大きくするため、以下の構成を具備する。
【0083】
即ち、油圧緩衝器10の減衰力発生装置40は、シリンダ13の内筒13Bの側壁に、シリンダ13のピストン側油室27Aを外側流路13C経由でロッド側油室27Bに連絡する通孔100を設ける。そして、シリンダ13の油室27に対するピストンロッド14の進退位置に応じて、そのピストン25の外周部により上記通孔100を開閉可能にする。
【0084】
本
参考例において、シリンダ13の内筒13Bの側壁に設けられる通孔100は、シリンダ13の軸方向に沿う複数位置に設けられる。即ち、通孔100は、シリンダ13の軸方向で伸切端にあるピストン25により未だ閉じられていない最上部の通孔101〜圧縮端にあるピストン25により閉じられる最下部の通孔106の例えば6位置の通孔101〜106からなる。
【0085】
従って、本
参考例の油圧緩衝器10は以下の如くに減衰作用を行なう。
(圧側行程)(
図9(A)の実線矢印の流れ)
ピストン側油室27Aの油が昇圧すると、ピストン側油室27Aの油の一部分がシリンダ13の内筒13Bの側壁に設けた通孔100(101〜106)を通って外側流路13Cに流出する。ピストン側油室27Aの油の他の部分は減衰力発生装置40の第1のベースピストン50の圧側流路50Aの圧側減衰バルブ51を押し開いて圧側減衰力を発生した後、伸圧共用流路41に流出する。このようにして伸圧共用流路41に流出した油は、第2のベースピストン60の圧側流路60Bにおいて2分し、一方の油は第2のベースピストン60の圧側流路60Bの圧側チェックバルブ52から伸圧共用流路42、第2のベースピストン60の孔状流路60C、シリンダ13の外側流路13C、伸圧共用流路43を通ってロッド側油室27Bに流出し、他方の油は第2のベースピストン60の連絡路44から油溜室32に排出される。この油溜室32に排出される他方の油は、ピストンロッド14の進入容積分の油を補償する。
【0086】
この圧側行程で、ピストンロッド14がシリンダ13の油室27の奥側に進入し、ピストンロッド14に設けたピストン25がシリンダ13の内筒13Bの側壁に設けた各通孔100を通過するに従い、その通孔100によるピストン側油室27Aと外側流路13C、ロッド側油室27Bとの連絡が遮断される結果、ピストン側油室27Aを外側流路13Cに直に連絡する通孔100が少なくなる。これにより、ピストン25がピストン側油室27Aに及ぼす加圧により、ピストン側油室27Aから該油室27Aに未だ連通している通孔100を通って外側流路13C、ロッド側油室27Bへ流出する油量が次第に少なく、換言すれば減衰力発生装置40の圧側減衰バルブ51を通る油が次第に多量になり、圧側減衰バルブ51が大きな減衰力を発生するものになる。
【0087】
(伸側行程)(
図9(B)の実線矢印の流れ)
ロッド側油室27Bの油が昇圧すると、ロッド側油室27Bの油の一部分が伸圧共用流路43、シリンダ13の外側流路13Cからシリンダ13の内筒13Bの側壁に設けた通孔100(101〜106)を通ってピストン側油室27Aに流入する。ロッド側油室27Bの油の他の部分は伸圧共用流路43、シリンダ13の外側流路13Cを通って減衰力発生装置40の第2のベースピストン60の孔状流路60C、伸圧共用流路42に流入し、第2のベースピストン60の伸側流路60Aの伸側減衰バルブ61を押し開いて伸側減衰力を発生する。この伸側減衰バルブ61から伸圧共用流路41に流出する油は、油溜室32から第2のベースピストン60の連絡路44、圧側流路60Bを介して補給される油と合流した後、第1のベースピストン50の伸側流路50Bの伸側チェックバルブ62を通ってピストン側油室27Aに流出する。油溜室32から補給される油はピストンロッド14の退出容積分の油を補償する。
【0088】
この伸側行程で、ピストンロッド14がシリンダ13の油室27の奥側から退出し、ピストンロッド14に設けたピストン25がシリンダ13の内筒13Bの側壁に設けた各通孔100を通過するに従い、その通孔100によってピストン側油室27Aと外側流路13C、ロッド側油室27Bとが連絡される結果、ピストン側油室27Aを外側流路13Cに直に連絡する通孔100が多くなる。これにより、ピストン25により加圧されるロッド側油室27Bの油の一部が外側流路13Cから減衰力発生装置40の伸側減衰バルブ61を通らずにそれらの通孔100を通ってピストン側油室27Aに流入してしまい、減衰力発生装置40の伸側減衰バルブ61を通る油量が次第に少なくなり、伸側減衰バルブ61が発生する減衰力は小さくなる。
【0089】
従って、圧側行程と伸側行程のいずれでも、それらのストロークに応じて減衰力が変化し、減衰力の位置依存性を示す。
【0090】
油圧緩衝器10における上述の圧側減衰力と伸側減衰力の位置依存性は各通孔100の位置、孔径、孔数の選定によりセッティングされる。
【0091】
従って、本
参考例によれば以下の作用効果を奏する。
(a)圧側行程で、ピストンロッド14がシリンダ13の油室27の奥側へ進入し、ピストンロッド14に設けたピストン25がシリンダ13の側壁に設けてある通孔100を通過するに従い、その通孔100によるピストン側油室27Aと外側流路13C、ロッド側油室27Bとの連絡が遮断される。これにより、ピストン25がピストン側油室27Aに及ぼす加圧により、減衰力発生装置40の圧側減衰バルブ51を通る油が多量になり、圧側減衰バルブ51が大きな減衰力を発生するものになる。
【0092】
他方、伸側行程では、ピストンロッド14がシリンダ13の油室27の奥側から退出し、ピストンロッド14に設けたピストン25がシリンダ13の側壁に設けてある通孔100を通過するに従い、その通孔100によってピストン側油室27Aと外側流路13C、ロッド側油室27Bとが連通される。これにより、ピストン25により加圧されるロッド側油室27Bの油の一部が外側流路13Cから減衰力発生装置40の圧側減衰バルブ51を通らずに上記通孔100を通ってピストン側油室27Aに流入してしまい、減衰力発生装置40の伸側減衰バルブ61を通る油量が少なくなり、伸側減衰バルブ61が発生する減衰力は小さくなる。
【0093】
従って、圧側行程と伸側行程のいずれでも、それらのストロークに応じて減衰力が変化し、減衰力の位置依存性を示す。
【0094】
このとき、圧側行程と伸側行程のストロークに応じて、減衰力発生装置40の圧側減衰バルブ51と伸側減衰バルブ61が発生する減衰力は、圧側減衰バルブ51と伸側減衰バルブ61を通過する油量に基づく。圧側減衰バルブ51と伸側減衰バルブ61を通過する油量は、シリンダ13に進入/退出してピストン側油室27A/ロッド側油室27Bを加圧するピストン25の全面積に依存し、極めて大きい。従って、簡易に、減衰力発生装置40に設けた圧側減衰バルブ51と伸側減衰バルブ61が発生する減衰力を大きくでき、この圧側減衰バルブ51と伸側減衰バルブ61によりストロークに応じた大きな減衰力の変化を得ることができる。
【0095】
(b)前記シリンダ13の側壁に設けられる通孔100が、シリンダ13の軸方向に沿う複数位置に設けられる。
【0096】
従って、圧側行程で、ピストンロッド14がシリンダ13の油室27の奥側へ進入し、ピストンロッド14に設けたピストン25がシリンダ13の側壁に設けてある各通孔100を通過するに従い、その通孔100によるピストン側油室27Aと外側流路13C、ロッド側油室27Bとの連絡が遮断される結果、ピストン側油室27Aを外側流路13Cに直に連絡する通孔100が少なくなる。これにより、ピストン25がピストン側油室27Aに及ぼす加圧により、ピストン側油室27Aから該油室に未だ連通している通孔100を通って外側流路13C、ロッド側油室27Bへ流出する油量が次第に少なく、換言すれば減衰力発生装置40の圧側減衰バルブ51を通る油が次第に多量になり、圧側減衰バルブ51が大きな減衰力を発生するものになる。
【0097】
また、伸側行程では、ピストンロッド14がシリンダ13の油室27の奥側から退出し、ピストンロッド14に設けたピストン25がシリンダ13の側壁に設けてある各通孔100を通過するに従い、その通孔100によってピストン側油室27Aと外側流路13C、ロッド側油室27Bとが連絡される結果、ピストン側油室27Aを外側流路13Cに直に連絡する通孔100が多くなる。これにより、ピストン25により加圧されるロッド側油室27Bの油の一部が外側流路13Cから減衰力発生装置40の伸側減衰バルブ61を通らずにそれらの通孔100を通ってピストン側油室27Aに流入してしまい、減衰力発生装置40の伸側減衰バルブ61を通る油量が次第に少なくなり、伸側減衰バルブ61が発生する減衰力は小さくなる。
【0098】
従って、圧側行程と伸側行程のいずれでも、それらのストロークに応じて減衰力が次第に滑らかに変化し、減衰力の位置依存性を示す。
【0099】
尚、
本参考例の油圧緩衝器10にあって、シリンダ13の内筒13Bの側壁に設ける通孔100は、シリンダ13の軸方向に沿う単一位置に設けられるものでも良い。
【0100】
以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。