特許第5748797号(P5748797)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 阿閉 豊次の特許一覧 ▶ 頭本 頼数の特許一覧

<>
  • 特許5748797-漏洩電流検出装置及び方法 図000002
  • 特許5748797-漏洩電流検出装置及び方法 図000003
  • 特許5748797-漏洩電流検出装置及び方法 図000004
  • 特許5748797-漏洩電流検出装置及び方法 図000005
  • 特許5748797-漏洩電流検出装置及び方法 図000006
  • 特許5748797-漏洩電流検出装置及び方法 図000007
  • 特許5748797-漏洩電流検出装置及び方法 図000008
  • 特許5748797-漏洩電流検出装置及び方法 図000009
  • 特許5748797-漏洩電流検出装置及び方法 図000010
  • 特許5748797-漏洩電流検出装置及び方法 図000011
  • 特許5748797-漏洩電流検出装置及び方法 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5748797
(24)【登録日】2015年5月22日
(45)【発行日】2015年7月15日
(54)【発明の名称】漏洩電流検出装置及び方法
(51)【国際特許分類】
   G01R 31/02 20060101AFI20150625BHJP
   G01R 27/18 20060101ALN20150625BHJP
【FI】
   G01R31/02
   !G01R27/18
【請求項の数】4
【全頁数】17
(21)【出願番号】特願2013-97762(P2013-97762)
(22)【出願日】2013年5月7日
(62)【分割の表示】特願2010-91731(P2010-91731)の分割
【原出願日】2005年1月31日
(65)【公開番号】特開2013-174613(P2013-174613A)
(43)【公開日】2013年9月5日
【審査請求日】2013年5月7日
【前置審査】
(73)【特許権者】
【識別番号】303060608
【氏名又は名称】阿閉 豊次
(73)【特許権者】
【識別番号】306032305
【氏名又は名称】頭本 頼数
(74)【代理人】
【識別番号】100106002
【弁理士】
【氏名又は名称】正林 真之
(74)【代理人】
【識別番号】100120891
【弁理士】
【氏名又は名称】林 一好
(72)【発明者】
【氏名】阿閉 豊次
(72)【発明者】
【氏名】宮澤 清
【審査官】 藤原 伸二
(56)【参考文献】
【文献】 特開2004−012147(JP,A)
【文献】 特開平10−221397(JP,A)
【文献】 特開平01−212366(JP,A)
【文献】 特開昭51−000635(JP,A)
【文献】 特開2001−215247(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 31/02−31/06
G01R 27/00−27/32
(57)【特許請求の範囲】
【請求項1】
電気方式が単相の被測定電線路に流れている漏洩電流を検出する漏洩電流検出装置において、
前記被測定電線路をクランプして漏洩電流を検出する漏洩電流検出部と、
前記被測定電線路に印加されている電圧を検出する電圧検出部と、
前記電圧検出部によって検出された電圧の信号波形と、前記漏洩電流検出部により検出された漏洩電流の信号波形との位相差を検出する位相差検出部と、
前記電圧検出部によって検出された電圧の信号波形に基づいて、前記被測定電線路に印加されている電源周波数を測定する周波数測定部と、
前記位相差検出部により検出された位相差と、前記周波数測定部により測定された電源周波数に基づき、前記被測定電線路に流れている漏洩電流の位相角度を算出する位相角度算出部と、
前記漏洩電流検出部により検出された漏洩電流と、前記位相角度算出部により算出された位相角度に基づいて、前記漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵抗漏洩電流成分算出部と、を備える漏洩電流検出装置。
【請求項2】
前記漏洩電流検出部により検出された漏洩電流の実効値Iを算出する実効値算出部をさらに備え、
上記位相角度算出部は、前記位相差検出部により検出された位相差(W)と前記周波数測定部により測定された電源周波数(F)とから、前記漏洩電流検出部により検出された漏洩電流の位相角度(θ)を
θ=360×W×Fにより算出し、
前記対地絶縁抵抗漏洩電流成分算出部は、前記実効値算出部により算出された実効値Iと、前記位相角度算出部により算出された位相角度θに基づいて、前記漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分Igrを
Igr=I×cosθ
により算出する請求項1記載の漏洩電流検出装置。
【請求項3】
電気方式が単相の被測定電線路に流れている漏洩電流を検出する漏洩電流検出方法において、
前記被測定電線路をクランプして漏洩電流を検出する漏洩電流検出工程と、
前記被測定電線路に印加されている電圧を検出する電圧検出工程と、
前記電圧検出工程によって検出された電圧の信号波形と、前記漏洩電流検出工程により検出された漏洩電流の信号波形との位相差を検出する位相差検出工程と、
前記電圧検出工程によって検出された電圧の信号波形に基づいて、前記被測定電線路に印加されている電源周波数を測定する周波数測定工程と、
前記位相差検出工程により検出された位相差と、前記周波数測定工程により測定された電源周波数に基づき、前記被測定電線路に流れている漏洩電流の位相角度を算出する位相角度算出工程と、
前記漏洩電流検出工程により検出された漏洩電流と、前記位相角度算出工程により算出された位相角度に基づいて、前記漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵抗漏洩電流成分算出工程と、を備える漏洩電流検出方法。
【請求項4】
前記漏洩電流検出工程により検出された漏洩電流の実効値Iを算出する実効値算出工程をさらに備え、
上記位相角度算出工程は、前記位相差検出工程により検出された位相差(W)と前記周波数測定工程により測定された電源周波数(F)とから、前記漏洩電流検出工程により検出された漏洩電流の位相角度(θ)を
θ=360×W×Fにより算出し、
前記対地絶縁抵抗漏洩電流成分算出工程は、前記実効値算出工程により算出された実効値Iと、前記位相角度算出工程により算出された位相角度θに基づいて、前記漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分Igrを
Igr=I×cosθ
により算出する請求項3記載の漏洩電流検出方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、漏洩電流を算出する漏洩電流検出装置及び方法に関する。
【背景技術】
【0002】
日常生活の中で、電気の存在を意識することはあまりないが、周知のように、エネルギー源として、また、情報や通信を初めとする様々な分野に利用され、我々の社会にとって、なくてはならない存在となっている。
【0003】
一方で、電気の利用は、便利な反面、適切な管理や使用を誤れば、大変危険な側面も兼ね備えており、電気火災や感電事故等の重大な事故を引き起こす可能性も少なくない。
【0004】
例えば、その重大事故の原因の一つとして、電路や機器の絶縁不良に深く関係しているのが漏洩電流である。しかし、この漏洩電流を調べるには、大変な時間を要するうえに、停電させて絶縁不良だけの数値を絶縁抵抗計により測定する必要がある。
【0005】
しかしながら、現在の社会状況では、コンピュータが社会の各方面に利用され、インテリジェントビルの普及拡大及び工場のFA(ファクトリー・オートメーション)化により、24時間連続稼働するシステムが構築されており、漏洩電流を計測するために、一時的に停電状態にすることができない状況となっている。
【0006】
したがって、現在では、このような高度情報化による社会の無停電化の要請から、電路及び機器の絶縁不良管理が停電を伴う絶縁抵抗計による方法から、電気を切ることなく測定できる漏洩電流測定方法に移ってきており、漏洩電流遮断器や漏洩電流火災警報機等により漏洩電流を測定して絶縁状態を管理する通電中の予防策は種々提案されている(例えば、特許文献1及び特許文献2参照)。
【0007】
ところで、漏洩電流Iには、対地静電容量に起因する漏洩電流(Igc)と、絶縁抵抗に直接関与している対地絶縁抵抗に起因する漏洩電流(Igr)とが含まれている。上述した漏電火災等を引き起こす原因は、絶縁抵抗の存在であり、この絶縁抵抗に起因する漏洩電流(Igr)のみを正確に検出することができれば、回路の絶縁状態をチェックすることができ、漏電火災等の大惨事を避けることができる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2001−215247号公報
【特許文献2】特開2002−98729号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、工場等で使用される電気機器は、機器同士を結線する際に電線路の長さが長大になることがあり、この電線路の長大化により、対地静電容量が増大化し、それに伴って対地静電容量に起因する漏洩電流(Igc)が大きくなってしまう。
【0010】
また、これらの電気機器は、電力用半導体素子を応用したインバータを搭載している。電気機器では、この搭載しているインバータを高速の電子スイッチとして使用しているため、必然的に、商用電源の基本周波数である50Hz若しくは60Hzの整数倍の正弦波である高調波歪み電流が発生する。高調波歪み電流には、高い周波数成分が含まれているため、電線路に自然分布している対地静電容量を通過し、電線路に流れてしまい、電線路に流れた高調波歪み電流により漏洩電流Iの値が大きくなってしまう。
【0011】
したがって、絶縁の良否に直接関係する対地絶縁抵抗に起因する漏洩電流(Igr)が電線路の長大化及びインバータ等による高調波歪み電流の影響を受けてしまい、正確に検出することが困難となる。
【0012】
また、部品が高密度に実装された機器、例えば、電話機、ファクシミリ、プリンター及び複合機等では、絶縁箇所を調べるために、絶縁抵抗計等により計測を行った場合、注入する測定電圧により電子回路が影響を受けてしまう恐れがある。したがって、このような機器では、機能破壊を招く恐れがあることから、絶縁抵抗の測定自体ができない機器も多数存在する。
【0013】
そこで、本願発明では、上述した問題に鑑みて案出されたものであり、漏洩電流を計測し、検出のために電路及び機械設備等を停電状態にすることなく、かつ、被測定電線路に接続されている機器の機能を破壊することなく、外部から簡単かつ安全に絶縁の良否に直接関係する対地絶縁抵抗に起因する漏洩電流(Igr)のみを検出する漏洩電流検出装置及び方法を提供する。
【課題を解決するための手段】
【0014】
本発明に係る漏洩電流検出装置は、電気方式が単相の被測定電線路に流れている漏洩電流を検出する漏洩電流検出装置において、前記被測定電線路をクランプして漏洩電流を検出する漏洩電流検出部と、前記被測定電線路に印加されている電圧を検出する電圧検出部と、前記電圧検出部によって検出された電圧の信号波形と、前記漏洩電流検出部により検出された漏洩電流の信号波形との位相差を検出する位相差検出部と、前記電圧検出部によって検出された電圧の信号波形に基づいて、前記被測定電線路に印加されている電源周波数を測定する周波数測定部と、前記位相差検出部により検出された位相差と、前記周波数測定部で算出された電源周波数に基づき、前記被測定電線路に流れている漏洩電流の位相角度を算出する位相角度算出部と、前記漏洩電流検出部により検出された漏洩電流と、前記位相角度算出部により算出された位相角度に基づいて、前記漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵抗漏洩電流成分算出部と、を備える構成である。
【0015】
また、前記漏洩電流検出装置では、前記漏洩電流検出部により検出された漏洩電流の実効値Iを算出する実効値算出部を備え、前記対地絶縁抵抗漏洩電流成分算出部は、前記実効値算出部により算出された実効値Iと、前記位相角度算出部により算出された位相角度θに基づいて、前記漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分IgrをIgr=I×cosθにより算出する構成でもよい。
【0016】
本発明に係る漏洩電流検出方法は、電気方式が単相の被測定電線路に流れている漏洩電流を検出する漏洩電流検出方法において、前記被測定電線路をクランプして漏洩電流を検出する漏洩電流検出工程と、前記被測定電線路に印加されている電圧を検出する電圧検出工程と、前記電圧検出工程によって検出された電圧の信号波形と、前記漏洩電流検出工程により検出された漏洩電流の信号波形との位相差を検出する位相差検出工程と、前記電圧検出工程によって検出された電圧の信号波形に基づいて、前記被測定電線路に印加されている電源周波数を測定する周波数測定工程と、前記位相差検出工程により検出された位相差と、前記周波数測定工程で算出された電源周波数に基づき、前記被測定電線路に流れている漏洩電流の位相角度を算出する位相角度算出工程と、前記漏洩電流検出工程により検出された漏洩電流と、前記位相角度算出工程により算出された位相角度に基づいて、前記漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分を算出する対地絶縁抵抗漏洩電流成分算出工程と、を備える構成である。
【0017】
また、前記漏洩電流検出方法では、前記漏洩電流検出工程により検出された漏洩電流の実効値Iを算出する実効値算出工程を備え、前記対地絶縁抵抗漏洩電流成分算出工程は、前記実効値算出工程により算出された実効値Iと、前記位相角度算出工程により算出された位相角度θに基づいて、前記漏洩電流に含まれている対地絶縁抵抗に起因する漏洩電流成分IgrをIgr=I×cosθにより算出する構成でもよい。
【発明の効果】
【0018】
本発明では、対地絶縁抵抗のみに起因する漏洩電流のみを検出することができる。
【図面の簡単な説明】
【0019】
図1】本発明に係る漏洩電流検出装置の構成を示すブロック図である。
図2】電源が単相の場合と三相の場合における対地絶縁抵抗に起因する漏洩電流Igrと対地静電容量に起因する漏洩電流Igcの位相差を示す図である。
図3】本発明に係る漏洩電流検出装置に備えられている遮断部の構成を示す図である。
図4】本発明に係る漏洩電流検出装置により行われる漏洩電流の検出する様子を波形で示した図である。
図5】本発明に係る漏洩電流検出装置により行われる漏洩電流の検出する様子をベクトルで示した図である。
図6】本発明に係る漏洩電流検出装置の動作について説明するフローチャートである。
図7】本発明に係る漏洩電流検出装置により電線路を実際に測定したときの第1のデータ例を示す図である。
図8】本発明に係る漏洩電流検出装置により電線路を実際に測定したときの第2のデータ例を示す図である。
図9】比較部に入力された変換後電圧V1と電圧V2の位相差を示す図である。
図10】Aは、比較部に入力されたときの変換後電圧V1の波形と、変換後電圧V1に基づき方形波変換したときの波形を示す図であり、Bは、比較部に入力されたときの電圧V2の波形と、電圧V2に基づき方形波変換したときの波形を示す図である。
図11図10に示した変換後電圧V1に基づき方形波変換したときの波形と、電圧V2に基づき方形波変換したときの波形に基づきEXORを実行した際に形成される波形を示す図である。
【発明を実施するための形態】
【0020】
以下、本発明の実施の形態としての漏洩電流遮断装置及び方法について説明する。
【0021】
漏洩電流遮断装置1は、図1に示すように、被測定電線路Aの全体にクランプし、被測定電線路Aに流れている漏洩電流Iを検出するカレントトランスセンサ(以下CTセンサという。)部10と、CTセンサ部10により検出された漏洩電流Iを電圧に変換し、変換後の電圧(以下「変換後電圧」という。)V1を増幅する増幅部11と、増幅後の変換後電圧V1から高調波成分を除去するローパスフィルター(以下LPFという。)12と、LPF12で高調波成分が除去された変換後電圧V1を整流する全波整流部13と、被測定電線路Aの電圧線路から電圧V2を検出する電圧検出部14と、電圧検出部14で検出された電圧V2を所定の変圧比になるように変圧する変圧器15と、変圧器15で所定の電圧値に変圧された電圧V2から高調波成分を除去するローパスフィルター(以下LPFという。)16と、LPF16で高調波成分が除去された電圧V2を整流する全波整流部17と、LPF12により高調波成分が除去された変換後電圧V1の信号波形S1と、LPF16により高調波成分が除去された電圧V2の信号波形S2とを比較する比較部18と、比較部18により比較された結果に基づき所定の演算を行う演算部19と、演算部19による演算結果に基づき位相パルス幅を測定する位相パルス幅測定部20と、LPF16により高調波成分が除去された電圧V2の信号から被測定電線路Aの電圧線路に発生している電源周波数を測定する電源周波数測定部21と、位相パルス幅測定部20で測定された位相パルスと、電源周波数測定部21で測定された電源周波数から被測定電線路Aに流れる漏洩電流Iの位相角度を算出する位相角度算出部22と、全波整流部13で整流された変換後電圧V1をデジタル信号に変換するA/D変換部23と、A/D変換部23でデジタル信号に変換された変換後電圧V1の実効値を算出する実効値算出部24と、全波整流部17で整流された電圧V2をデジタル信号に変換するA/D変換部25と、A/D変換部25でデジタル信号に変換された電圧V2の実効値を算出する実効値算出部26と、位相角度算出部22で算出された漏洩電流Iの位相角度と、実効値算出部24で算出された変換後電圧V1の実効値から対地絶縁抵抗に起因する漏洩電流Igrを算出する漏洩電流算出部27と、位相角度算出部22で算出された漏洩電流Iの位相角度と、実効値算出部26で算出された電圧V2の実効値から対地絶縁抵抗の抵抗値を算出する抵抗値算出部28と、漏洩電流算出部27で算出された漏洩電流Igrが、任意の値を超えたかどうかを判断する判断部29と、判断部29による判断に基づいて、被測定電線路Aを遮断する遮断部30と、外部機器と通信する通信部33を備えてなる。
【0022】
また、遮断部30は、既存の漏電ブレーカに準じており、遮断スピードは概ね2サイクル(50Hzの場合には0.04秒)〜5サイクル(50Hzの場合には0.1秒)程度である。また、本願発明に係る漏洩電流遮断装置1では、図1中のB部分をチップ化し、既存のブレーカにおけるIの検出を行うブロック(回路)に置き換えて構成されるものを想定している。
【0023】
CTセンサ部10は、被測定電線路Aに流れている漏洩電流成分から生じる磁気を検出し、検出した磁気から電流を生成する。CTセンサ部10は、生成した電流を漏洩電流Iとして増幅部11に供給する。なお、CTセンサ部10により生成された漏洩電流Iは、対地静電容量に起因する漏洩電流Igcと、絶縁抵抗に直接関与している対地絶縁抵抗に起因する漏洩電流Igrとが含まれている。なお、漏洩電流Igcは、被測定線路Aの長さに応じて容量が増大するだけでなく、電気機器に使用されているインバータやノイズフィルター等に起因する高調波歪み電流によっても容量が増大する。
【0024】
増幅部11は、CTセンサ部10から供給された漏洩電流Iを電圧に変換し、変換後電圧V1を所定のレベルまで増幅する。また、増幅部11は、例えば、CTセンサ部10から供給された漏洩電流Iが0mA〜10mAのときには、二段で増幅し、また、CTセンサ部10から供給された漏洩電流Iが10mA〜300mAのときには、一段で増幅する。増幅部11は、増幅後の変換後電圧V1をLPF12に供給する。LPF12は、変換後電圧V1に含まれている高調波成分を除去する。LPF12は、高調波成分が除去された変換後電圧V1を全波整流部13と比較部18に供給する。全波整流部13は、供給された変換後電圧V1を整流し、整流後の変換後電圧V1をA/D変換部23に供給する。
【0025】
電圧検出部14は、被測定電線路Aに電圧プローブを接続することにより、電圧線路に発生している電圧を検出する。なお、電圧検出部14は、被測定電線路Aの電気方式が三相3線式(デルタ結線からなる方式)の場合には、S相(接地)以外のR相とT相間の電圧を検出する。また、電圧検出部14は、被測定電線路Aの電気方式が三相4線式(スター結線からなる方式)の場合には、接地線以外の相間から電圧を検出する。また、電圧検出部14は、被測定電線路Aの電気方式が単相2線式の場合には、N相とL相間の電圧を検出する。
【0026】
そして、電圧検出部14は、被測定電線路Aから検出した電圧V2から基準点を求め、電圧V2を変圧器15に供給する。例えば、電圧検出部14は、被測定電線路Aから検出した電圧V2の0クロスする点を基準点とする。
【0027】
変圧器15は、供給された電圧V2を所定の電圧値に変圧し、変圧後の電圧VをLPF16に供給する。変圧器15は、例えば、電圧比が20:1になるように変圧を行う。LPF16は、供給された電圧V2に含まれている高調波成分を除去する。LPF16は、高調波成分を除去した電圧V2を全波整流部17と、比較部18と、電源周波数測定部21に供給する。全波整流部17は、供給された電圧V2を整流し、整流後の電圧V2をA/D変換部25に供給する。
【0028】
比較部18では、LPF12から供給された変換後電圧V1の0Vクロス点をとり、方形波変換を行い、方形波変換後の信号を演算部19に供給する。また、比較部18では、LPF16から供給された電圧V2の0Vクロス点をとり、方形波変換を行い、方形波変換後の信号を演算部19に供給する。
【0029】
演算部19は、比較部18から供給される信号に基づき所定の演算を行い、演算後の信号を位相パルス幅測定部20に供給する。演算部19は、例えば、EXOR(排他的論理和)回路からなっており、比較部18から供給されてきた2つの方形波変換後の信号についてEXOR演算を実行する。
【0030】
位相パルス幅測定部20は、演算部19から供給される演算結果に基づき、変換後電圧V1と電圧V2の位相パルス幅を検出する。ここで、位相パルス幅測定部20の動作について説明する。
【0031】
電気方式が単相の場合には、図2Aに示すように、漏洩電流Igrの位相角θは0°、漏洩電流Igcの位相角θは90°となる。したがって、漏洩電流Igrと漏洩電流Igcの位相差は、90°(1/4サイクル)となる。また、電源が三相の場合には、図2Bに示すように、漏洩電流Igrの位相角θは60°、漏洩電流Igcの位相角θは0°となる。したがって、漏洩電流Igrと漏洩電流Igcの位相差は、60°(1/6サイクル)となる。そこで、位相パルス幅測定部20は、電源が単相のときでも、三相のときでも対応できるように、位相パルス幅を1サイクルの1/4以下のもののみ対象とする。
【0032】
ゆえに、位相パルス幅測定部20は、演算部19から供給される演算結果に基づいて算出した、1サイクルの1/4以下の位相パルス幅を位相角度算出部22に出力する。なお、電源周波数が60Hzの場合には、1サイクルが16.6msであるので、位相パルス幅は、4.15ms以下となり、また、電源周波数が50Hzの場合には、1サイクルが20msであるので、5ms以下となる。
【0033】
電源周波数測定部21は、LPF16から供給された電圧V2に基づき、電源周波数を測定し、測定結果を位相角度算出部22に供給する。なお、被測定電線路Aが商用電源であれば、電源周波数測定部21の測定結果は、50Hz若しくは60Hzとなる。また、電源周波数測定部21は、LPF16から供給された電圧V2に基づき、50Hz又は60Hzの何れかを判定する構成であっても良い。
【0034】
位相角度算出部22は、位相パルス幅測定部20から供給された位相パルス幅Wと、電源周波数測定部21から供給された電源周波数Fに基づき、下記(1)式により被測定電線路Aに流れている漏洩電流Iの位相角度θを算出する。
θ=360×W×F・・・(1)
【0035】
位相角度算出部22は、算出した位相角度θを漏洩電流算出部27に供給する。
【0036】
A/D変換部23は、全波整流部13から供給された整流後の変換後電圧V1をデジタル信号に変換し、変換後の信号を実効値算出部24に供給する。実効値算出部24は、A/D変換部23から供給された信号に基づき、下記(2)式により変換後電圧V1の実効値Iを算出する。なお、実効値算出部24に供給される信号は、被測定電線路Aに流れている漏洩電流Iを電圧に変換した変換後電圧V1に基づくものであるので、便宜的にIとする。
=I×(π/2)/√2・・・(2)
【0037】
実効値算出部24は、算出した実効値Iを漏洩電流算出部27に供給する。
【0038】
また、A/D変換部25は、全波整流部17から供給された整流後の電圧V2をデジタル信号に変換し、変換後の信号を実効値算出部26に供給する。実効値算出部26は、A/D変換部25から供給された信号に基づき、下記(3)式により電圧V2の実効値V0を算出する。
V0=V×(π/2)√2・・・(3)
【0039】
実効値算出部26は、算出した実効値V0を抵抗値算出部28に供給する。
【0040】
漏洩電流算出部27は、位相角度算出部22から供給された位相角度θと、実効値算出部24から供給されたIに基づき、漏洩電流Igrを算出し、算出した漏洩電流Igrを抵抗値算出部28に供給する。なお、電源が単相電源の場合には、下記(4)式により漏洩電流Igrを算出し、電源が三相電源の場合には、下記(5)式により漏洩電流Igrを算出する。
Igr=I×cosθ・・・(4)
Igr=(I×sinθ)/cos30°・・・(5)
【0041】
なお、漏洩電流算出部27は、電源が単相電源であるか三相電源であるかを、ロータリースイッチの選択状態に応じて判断することとする。
【0042】
抵抗値算出部28は、実効値算出部26から供給された実効値V0と、漏洩電流算出部27から供給された漏洩電流Igrに基づき、下記(6)式によりGrを算出する。
Gr=V0/Igr・・・(6)
【0043】
判断部29は、漏洩電流算出部27で算出された漏洩電流Igrが任意の値を超えている場合には、所定の遮断信号SCを生成し、生成した遮断信号SCを遮断部30に供給する。
【0044】
遮断部30は、判断部29から供給された遮断信号SCに基づき、被測定電線路Aを遮断する。また、遮断部30は、図3に示すように、引き外しコイルTC等により構成されており、判断部29から供給される遮断信号SCに基づいて被測定電線路Aを遮断する。
【0045】
また、漏洩電流遮断装置1は、任意の値を設定する設定部31を備え、漏洩電流算出部27で算出された漏洩電流Igrが、設定部31で設定された任意の値を超えているかどうかを判断部29で判断する構成であっても良い。また、このような構成の場合、設定部31は、予め定められている複数の値をロータリースイッチで選択できるような構成であっても良い。また、値は、例えば、10mAステップで設定されている。
【0046】
また、漏洩電流遮断装置1は、漏洩電流算出部27により算出された漏洩電流Igrを記録する記録部32を備える構成であっても良い。記録部32では、漏洩電流算出部27により算出された漏洩電流Igrを経過時間ごとに記録するので、ユーザは、漏洩電流Igrの時間的な変化の様子を把握することができる。
【0047】
例えば、ユーザは、通信コネクタを介してモニタ装置を漏洩電流遮断装置1に接続し、記録部32に記憶されているデータにアクセスする。なお、漏洩電流遮断装置1には、予め固有の識別番号をセットしておく。
【0048】
モニタ装置は、通信コネクタを介して、漏洩電流遮断装置1から、実効値算出部24で算出された実効値Iと、漏洩電流算出部27で算出された漏洩電流Igrと、電圧検出部14で検出した被測定電線路Aの電圧値Vと、電源周波数測定部21で測定された周波数と、漏洩電流遮断装置1の識別番号を読み出す。また、モニタ装置は、通信部33と接続されるコネクタの形状を丸形コネクタとし、通信部33との接触不良をなくすため、外れ防止機構を備えている。
【0049】
記録部32に記録されているデータを参照し、漏洩電流Igrの時間的な変化の様子から、例えば、瞬時に漏洩電流Igrが任意の値に達していることを把握した場合には、漏洩電流Igrが任意の値に達したときに起動させた機器、若しくは起動中の機器が漏電の原因である疑いが強いので、これを手がかりにして、漏電箇所の特定ができる。
【0050】
また、漏洩電流Igrの時間的な変化の様子から、例えば、徐々に漏洩電流Igrが増えていることを把握した場合には、起動中の機器を検査することにより、漏電の原因となる機器を早期に発見することができる。
【0051】
上述のように構成される本願発明に係る漏洩電流遮断装置1では、例えば、被測定電線路Aの電源が三相式の場合、電源を単相式と同様の処理が可能な構成となっている。ここで、本願発明に係る漏洩電流遮断装置1の原理について述べる。
【0052】
CTセンサ部10は、被測定電線路Aをクランプし、図4Aに示すように、位相が120°ずつ異なるR相−S相間、S相−T相間及びT相−R相間の波形を検出する。なお、図4Aでは、便宜的にそれぞれの波形を示しているが、CTセンサ部10で検出される波形は合成波形である。CTセンサ部10により検出された合成波形は、増幅部11、LPF12及び比較部18を介して演算部19に入力される。
【0053】
また、電圧検出部14は、R相及びT相に電圧プローブを接続し、R相−T相間の電圧を検出し、検出した電圧を、図4Bに示すように、反転させる。電圧検出部14は、検出した電圧の所定の場所で0クロスする点を基準点aとして定める。このように基準点aが定まった電圧V2は、変圧器15、LPF16及び比較部18を介して演算部19に入力される。
【0054】
例えば、被測定電線路AのR相に漏洩電流Igr(以下「R相Igr」という。)のみが発生し、また、T相に漏洩電流Igr(以下「T相Igr」という。)のみが発生している場合には、図4Cに示すように、R相Igrは、基準点aから120°の位相差が生じ、T相Igrは、基準点aから60°の位相差が生じる。
【0055】
また、被測定電線路AのR相に漏洩電流Igc(以下「R相Igc」という。)のみが発生し、また、T相に漏洩電流Igc(以下「T相Igc」という。)のみが発生している場合には、図4Dに示すように、R相IgcとT相Igcの合成波形の基準点aからの位相差は、180°(0°)である。
【0056】
さらに、被測定電線路AのR相に漏洩電流Igrと漏洩電流Igcとが発生し、T相に漏洩電流Igrと漏洩電流Igcとが発生している場合には、図4Eに示すようになる。
【0057】
また、上述の説明をベクトルで表すと、以下のようになる。被測定電線路Aが三相式なので、図5Aに示すようになる。そして、電圧検出部14でR相−T相間の電圧を検出し、検出した電圧から基準点aを求めると、図5Bに示すように、単相式のベクトル図となる。なお、上述したように、R相Igrと基準点aとの位相差は、60°であり、また、T相Igrと基準点aとの位相差は、120°である。
【0058】
また、単相式の場合には、図2Aを用いて既述したように、漏洩電流Igrと漏洩電流Igcの位相差は90°なので、R相Igrから90°回った位置にR相Igcを求めることができ、また、T相Igrから90°回った位置にT相Igcを求めることができる。さらに、基準点aから180°(0°)の位置に、R相IgcとT相Igcとの合成ベクトルIgcを求めることができる(図5C)。
【0059】
したがって、例えば、被測定電線路AにR相Igrのみが発生している場合には、R相IgrとIgcとの合成ベクトル、すなわち被測定電線路Aに流れている漏洩電流Iは、図5Dのように表すことができる。なお、図5Dから、R相Igrを算出する式として、上述した(5)式を導き出すことができる。また、漏洩電流Iの位相差θは、R相Igr及びIgcの大きさにより変化し、変化の幅は、基準点aから60°〜180°である。
【0060】
また、例えば、被測定電線路AにT相Igrのみが発生している場合には、T相IgrとIgcとの合成ベクトル、すなわち被測定電線路Aに流れている漏洩電流Iは、図5Eのように表すことができる。なお、図5Eから、T相Igrを算出する式として、上述した(5)式を導き出すことができる。また、漏洩電流Iの位相差θは、T相Igr及びIgcの大きさにより変化し、変化の幅は、120°〜180°である。
【0061】
ここで、上述に示した本願発明に係る漏洩電流遮断装置1により、被測定電線路Aに流れる漏洩電流Igrを検出し、検出した漏洩電流Igrに基づいて、被測定電線路Aを遮断する動作について図6に示すフローチャートを用いて説明する。なお、漏洩電流遮断装置1は、既存の漏電ブレーカ内に収納することを想定しているが、収納できない場合には、外付けであっても良い。
【0062】
ステップST1において、ユーザは、被測定電線路Aの種類(単相2線式、単相3線式及び三相3線式等)に応じて、漏洩電流遮断装置1の図示しないロータリースイッチを切り換える。なお、ステップST1の工程では、被測定電線路Aは、遮断状態である。
【0063】
ステップST2において、ユーザは、設定部31を操作し、任意の値を設定する。
【0064】
ステップST3において、ユーザは、漏洩電流遮断装置1を通電状態にする。
【0065】
その後、漏洩電流遮断装置1は、漏洩電流算出部27により被測定電線路Aの漏洩電流Igrの算出を行い、判断部29により漏洩電流Igrが任意の値に達したかどうかの判断を行う。そして、漏洩電流遮断装置1は、判断部29により任意の値に達したと判断した場合に、遮断部30により被測定電線路Aを遮断する。
【0066】
ここで、本発明に係る漏洩電流遮断装置1により、実際に被測定電線路から漏洩電流成分を測定した第1の結果を図7に示す。図7は、屋上受配電キュービクル(高圧受電設備)の動力盤(電源周波数:50Hz、電圧:200V、被測定低電圧電路の種類:三相3線式、150kvA、室温:41℃、湿度:43%)を測定対象として行ったものである。
【0067】
また、実験では、測定開始から6分経過時〜9分経過前(3分間)に疑似絶縁抵抗としてR相に20kΩを接地し、測定開始から9分経過時〜11分経過前(2分間)に疑似絶縁抵抗としてT相に20kΩを接地し、測定開始から11分経過時〜12分経過前(1分間)に疑似絶縁抵抗を外し(接地解除)、測定開始から12分経過時〜13分経過前(1分間)に疑似絶縁抵抗としてR相に10kΩを接地し、測定開始から13分経過時〜15分経過前(2分間)に疑似絶縁抵抗としてT相に10kΩを接地し、測定開始から15分経過後に疑似絶縁抵抗を外した。
例えば、疑似絶縁抵抗としてR相に20kΩの抵抗を接地した場合には、理論的に、疑似絶縁抵抗成分の電流として、
Igr=V/R=200/(20×103)=10mA
の電流が被測定電線路に加算されて流れる。
【0068】
漏洩電流遮断装置1は、図7に示すように、時間が6分経過時に、疑似絶縁抵抗としてR相に20kΩの抵抗を接地したら、12.3mAの漏洩電流Igrを検出した。疑似絶縁抵抗を接地していないとき(測定開始から6分経過前、測定開始から11分経過時〜12分経過前及び測定開始から15分経過後)の漏洩電流Igrが2mAであるので、R相に20kΩの疑似抵抗を接地した後の漏洩電流Igrから2mAを差し引くと、10.3mAとなる。したがって、本願発明に係る漏洩電流遮断装置1は、10.3mAの変化を測定できたことになる。この値は、上述した理論値(10mA)とほぼ一致している。
【0069】
また、R相に疑似絶縁抵抗を20kΩ接地したとき、接地前の抵抗値(Gr≒105.46kΩ(測定開始から6分経過前までのGrの平均値))との合成抵抗値は、
Gr=(20×103×105.46×103)/(20×103+105.46×103)≒16.3kΩ
となる。漏洩電流遮断装置1は、図7に示すように、測定開始から6分経過時の抵抗Grは17.2kΩを示しており、上述した理論値(16.3kΩ)とほぼ一致している。
【0070】
また、疑似絶縁抵抗としてT相に20kΩの抵抗を接地した場合にも、上述と同様に、理論的には、疑似絶縁抵抗成分の電流は10mA増加する。漏洩電流遮断装置1では、図7に示すように、測定開始から9分経過時〜11分経過前に検出した漏洩電流Igrは、ほぼ12.4mAとなっており、該数値から2mAを差し引くと、10.4mAとなり、ほぼ理論値(10mA)と一致する。
【0071】
また、T相に疑似絶縁抵抗を20kΩ接地したときの合成抵抗値Grは、上述と同様に、理論的には、16.3kΩであり、測定値は17.4kΩを示しており、ほぼ理論値と一致している。
【0072】
また、漏洩電流遮断装置1は、図7に示すとおり、疑似絶縁抵抗としてR相又はT相に10kΩを接地したときの漏洩電流IgrとGrも理論値と実測値がほぼ一致している。
【0073】
さらに、漏洩電流遮断装置1は、測定開始から11分経過後から12分経過前、及び15分経過時に疑似絶縁抵抗の接地状態を解除した場合、漏洩電流Igr、I及びGrの値が接地以前(測定開始から1分〜5分)の状態に戻った。
【0074】
また、本発明に係る漏洩電流遮断装置1により、実際に被測定電線路から漏洩電流成分を測定した第2の結果を図8に示す。図8は、受配電キュービクル(高圧受電設備)の動力盤(電源周波数:50Hz、電圧:200V、被測定低電圧電路の種類:三相3線式、150kvA)を測定対象として行ったものである。
【0075】
また、実験は、測定開始から1分経過時〜4分経過前(3分間)に疑似静電容量としてR相及びT相に0.22μFを接地し、測定開始から3分経過時〜4分経過前(1分間)に疑似絶縁抵抗としてT相に20kΩを接地し、測定開始から4分経過後に疑似静電容量及び疑似絶縁抵抗を外して行った。したがって、測定開始から3分経過時〜4分経過前は、R相及びT相に疑似静電容量を接地し、かつ、T相に疑似絶縁抵抗を接地して行った。
【0076】
例えば、疑似静電容量としてR相及びT相に0.22μFの容量を接地した場合には、容量性リアクタンスXは、
X=1/2πfC=1/(2π×50×(0.22×10−6+0.22×10−6))
≒7.23×103
となる。
【0077】
したがって、被測定電線路には、
I=V/X=200/7.23×103≒27.6mA
の電流が加算されて流れる。
【0078】
また、絶縁抵抗としてT相に20kΩの抵抗を接地した場合には、理論的に、疑似絶縁抵抗成分の電流として、
Igr=V/R=200/(20×103)=10mA
の電流が被測定電線路に加算されて流れる。
【0079】
漏洩電流遮断装置1は、図8に示すように、時間が測定開始から1分経過時に、疑似静電容量としてR相及びT相に0.22μFの静電容量が接地されているときに、7.8mAの漏洩電流Igrを検出し、また、100.8mAのIを検出した。なお、Iは、上述したように絶縁抵抗に起因する漏洩電流Igrと、静電容量に起因する漏洩電流Igcの合成電流である。
【0080】
疑似静電容量を接地していないときの漏洩電流Igrは、図8に示したとおり、7.6mA(測定開始から1分経過前の漏洩電流Igr)であるので、R相及びT相に疑似静電容量を接地した場合、漏洩電流Igrの変化は殆どない。
【0081】
一方、疑似静電容量を接地していないときのIは、75.9mA(測定開始から1分経過前のI)である。疑似静電容量接地後のI(100.8mA)から疑似静電容量接地前のI(75.9mA)を差し引くと、24.9mAとなり、これが、加算された漏洩電流Igcである。この加算された漏洩電流Igcは、理論値(27.6mA)とほぼ等しい。
【0082】
また、漏洩電流遮断装置1は、図8に示すように、R相及びT相に疑似静電容量が接地され、かつ、T相に疑似絶縁抵抗が接地されているとき(測定開始から3分経過時〜4分経過前)に、21.0mAの漏洩電流Igrを検出し、また、107.0mAのIを検出した。
【0083】
T相に絶縁抵抗を接地した後の漏洩電流Igr(21mA)から、絶縁抵抗を接地する前の漏洩電流Igr(8mA(測定開始から3分経過時の漏洩電流Igr))を差し引くと、13mAとなり、理論値(10mA)とほぼ等しくなる。
【0084】
また、R相に疑似絶縁抵抗として10kΩを接地したときの比較部18と演算部19の動作について図9図11を用いて説明する。
【0085】
比較部18は、図9に示すように、LPF12から変換後電圧V1が入力され、LPF16から電圧V2が入力される。変換後電圧V1と電圧V2の位相差は、120°である。比較部18は、図10Aに示すように、LPF12から入力された変換後電圧V1を方形波変換し、変換後の信号を演算部19に出力する。また、比較部18は、図10Bに示すように、LPF16から入力された電圧V2を方形波変換し、変換後の信号を演算部19に出力する。
【0086】
演算部19は、図11に示すように、変換後電圧V2の方形波信号と、電圧V2の方形波信号に基づき、EXOR演算を実行する。演算部19は、EXOR演算後の信号に基づき、1サイクルの1/4以下の位相パルス幅を求め、求めた位相パルス幅を位相角度算出部22に出力する。
【0087】
ステップST6において、ユーザは、測定が終了したら、漏洩電流遮断装置1の電源をOFFにする。
【0088】
このように構成される本願発明に係る漏洩電流遮断装置1は、被測定電線路Aに流れている漏洩電流Iを検出し、検出した漏洩電流Iを電圧に変換し、変換後の電圧から高調波成分を除去し、高調波成分を除去した変換後電圧V1と、被測定電線路Aの電圧線路から電圧V2を検出し、検出した電圧V2から高調波成分を除去し、高調波成分を除去した電圧V2とに基づき、被測定電線路Aに流れている漏洩電流Iの位相角度θを正確に求め、その正確な位相角度θと、高調波成分が除去された変換後電圧V1の実効値Iとから対地絶縁抵抗に起因する漏洩電流Igrのみを算出し、算出した漏洩電流Igrを監視し、漏洩電流Igrが任意の値を超えた場合に、被測定電線路Aを遮断する。したがって、本願発明に係る漏洩電流遮断装置1は、被測定電線路Aの長大化により、また、高調波歪み電流を出力するインバータ等により対地静電容量に起因した漏洩電流Igcが増大しても、mA単位で確実に対地絶縁抵抗に起因する漏洩電流Igrのみを検出することができるので、漏洩電流Igrを監視し、漏洩電流Igrが任意の値を超えた場合のみに被測定電線路Aを遮断するように動作させることができる。ゆえに、本願発明に係る漏洩電流遮断装置1は、漏洩電流Igr以外の要素(漏洩電流Igcの増大)によって漏洩電流が増大しても従来装置のように被測定電線路Aを遮断することがない。
【0089】
また、本願発明に係る漏洩電流遮断装置1は、電路・機械設備等を一時的に停電状態にすることなく漏洩電流Igrの検出を行うことができ、また、漏電火災等の大惨事に至る前に漏電箇所の発見に役立てることができる。
【0090】
また、本願発明に係る漏洩電流遮断装置1は、周波数注入式のように基準点を他から持ってくるのではなく、基準点を伝送線路に発生している電圧から求めるので、被測定電線路Aに流れている漏洩電流Igrを正確に測定することができる。
【0091】
なお、本発明は、図面を参照して説明した上述の実施例に限定されるものではなく、添付の請求の範囲及びその主旨を逸脱することなく、様々な変更、置換又はその同等のものを行うことができることは当業者にとって明らかである。
【符号の説明】
【0092】
A 被測定電線路
1 漏洩電流検出装置
10 カレントトランスセンサ(CTセンサ)部
11 増幅部
12,16 ローパスフィルター(LPF)
13,17 全波整流部
14 電圧検出部
15 変圧器
18 比較部
19 演算部
20 位相パルス幅測定部
21 電源周波数測定部
22 位相角度算出部
23,25 A/D変換部
24,26 実効値算出部
27 漏洩電流算出部
28 抵抗値算出部
29 判断部
30 遮断部
31 設定部
32 記録部
33 通信部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11