(58)【調査した分野】(Int.Cl.,DB名)
前記異方性エッチングにより、前記第1の柱状シリコン層と前記第2の柱状シリコン層上部がエッチングされることを特徴とする請求項1に記載の半導体装置の製造方法。
前記ゲート配線を形成するための前記第3のレジストの上面の高さは、前記第1の柱状シリコン層と前記第2の柱状シリコン層上部の前記ポリシリコン膜の上面の高さより低いことを特徴とする請求項1に記載の半導体装置の製造方法。
前記第1のn型拡散層上と前記第2のn型拡散層上と前記第1のp型拡散層上と前記第2のp型拡散層上と前記ゲート配線上にシリサイドを形成する第5の工程とをさらに含むことを特徴とする請求項4に記載の半導体装置の製造方法。
【発明の概要】
【発明が解決しようとする課題】
【0009】
そこで、本発明は、薄いゲート材を用い、金属ゲートであり、自己整合プロセスであるSGTの製造方法とその結果得られるSGTの構造を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の第1の観点に係る半導体装置の製造方法は、
シリコン基板上に平面状シリコン層を形成し、
前記平面状シリコン層上に第1の柱状シリコン層と第2の柱状シリコン層とを形成する第1の工程と、
前記第1の工程の後、
前記第1の柱状シリコン層と前記第2の柱状シリコン層の周囲にゲート絶縁膜を形成し、
前記ゲート絶縁膜の周囲に金属膜及びポリシリコン膜を成膜し、
前記ポリシリコン膜の膜厚は前記第1の柱状シリコン層と前記第2の柱状シリコン層との間の間隔の半分より薄いのであって、
ゲート配線を形成するための第3のレジストを形成し、
異方性エッチングを行うことにより前記ゲート配線を形成する第2の工程と、
前記第2の工程の後、
第4のレジストを堆積し、前記第1の柱状シリコン層と前記第2の柱状シリコン層上部側壁の前記ポリシリコン膜を露出し、露出した前記ポリシリコン膜をエッチングにより除去し、前記第4のレジストを剥離し、前記金属膜をエッチングにより除去し、前記ゲート配線に接続する第1のゲート電極と第2のゲート電極を形成する第3の工程と、
を有することを特徴とする。
【0011】
また、前記異方性エッチングにより、前記第1の柱状シリコン層と前記第2の柱状シリコン層上部がエッチングされることを特徴とする。
【0012】
また、前記ゲート配線を形成するための前記第3のレジストの上面の高さは、前記第1の柱状シリコン層と前記第2の柱状シリコン層上部の前記ポリシリコン膜の上面の高さより低いことを特徴とする。
【0013】
前記第1の柱状シリコン層の上部に第1のn型拡散層を形成し、
前記第1の柱状シリコン層の下部と前記平面状シリコン層の上部に第2のn型拡散層を形成し、
前記第2の柱状シリコン層の上部に第1のp型拡散層を形成し、
前記第2の柱状シリコン層の下部と前記平面状シリコン層の上部に第2のp型拡散層を形成する第4の工程をさらに含むことを特徴とする。
【0014】
前記第1のn型拡散層上と前記第2のn型拡散層上と前記第1のp型拡散層上と前記第2のp型拡散層上と前記ゲート配線上にシリサイドを形成する第5の工程とをさらに含むことを特徴とする。
【0015】
また、本発明の第2の観点に係る半導体装置は、
シリコン基板上に形成された平面状シリコン層と、
前記平面状シリコン層上に形成された第1及び第2の柱状シリコン層と、
前記第1の柱状シリコン層の周囲に形成されたゲート絶縁膜と、
前記ゲート絶縁膜の周囲に形成された金属膜及びポリシリコン膜の積層構造からなる第1のゲート電極と、
前記第2の柱状シリコン層の周囲に形成されたゲート絶縁膜と、
前記ゲート絶縁膜の周囲に形成された金属膜及びポリシリコン膜の積層構造からなる第2のゲート電極と、
前記ポリシリコン膜の膜厚は前記第1の柱状シリコン層と前記第2の柱状シリコン層との間の間隔の半分より薄いのであって、
前記第1及び前記第2のゲート電極に接続されたゲート配線と、
前記ゲート配線の上面の高さは前記第1及び第2のゲート電極の上面の高さより低いことであって、
前記第1の柱状シリコン層の上部に形成された第1のn型拡散層と、
前記第1の柱状シリコン層の下部と前記平面状シリコン層の上部とに形成された第2のn型拡散層と、
前記第2の柱状シリコン層の上部に形成された第1のp型拡散層と、
前記第2の柱状シリコン層の下部と前記平面状シリコン層の上部とに形成された第2のp型拡散層と、
を有することを特徴とする。
【0016】
また、前記ゲート配線は、前記金属膜とシリサイドの積層構造からなることを特徴とする。
【0017】
また、前記第1のn型拡散層側壁に形成された絶縁膜サイドウォールの膜厚は、前記金属膜及びポリシリコン膜の膜厚の和より厚いことを特徴とする。
【0018】
また、前記ゲート配線の中心線が、前記第1の柱状シリコン層の中心点と前記第2の柱状シリコン層の中心点とを結ぶ線に対して第1の所定量ずれていることを特徴とする。
【0019】
また、前記第1及び前記第2のn型拡散層上と前記第1及び前記第2のp型拡散層上に形成されたシリサイドと、を有する、ことを特徴とする。
【発明の効果】
【0020】
本発明によれば、薄いゲート材を用い、金属ゲートであり、自己整合プロセスであるSGTの製造方法とその結果得られるSGTの構造を提供することができる。
第1の柱状シリコン層と第2の柱状シリコン層の高さは、所望の柱状シリコン層高さと、後にゲート配線エッチング中に削られる分の高さとの和とすることにより自己整合プロセスを実現している。
【0021】
また、前記第1の柱状シリコン層と前記第2の柱状シリコン層の周囲にゲート絶縁膜を形成し、
前記ゲート絶縁膜の周囲に金属膜及びポリシリコン膜を成膜し、
前記ポリシリコン膜の膜厚は前記第1の柱状シリコン層と前記第2の柱状シリコン層との間の間隔の半分より薄いのであって、
ゲート配線を形成するための第3のレジストを形成し、
異方性エッチングを行うことにより前記ゲート配線を形成する第2の工程と、
前記第2の工程の後、
第4のレジストを堆積し、前記第1の柱状シリコン層と前記第2の柱状シリコン層上部側壁の前記ポリシリコン膜を露出し、露出した前記ポリシリコン膜をエッチングにより除去し、前記第4のレジストを剥離し、前記金属膜をエッチングにより除去し、前記ゲート配線に接続する第1のゲート電極と第2のゲート電極を形成する第3の工程と、
により自己整合プロセスを実現している。
自己整合プロセスであるから、高集積化が可能となる。
【0022】
また、前記ゲート配線は、前記金属膜とシリサイドの積層構造からなる。シリサイドと金属膜とが直接接触するため、低抵抗化をすることができる。
【0023】
前記第1のn型拡散層側壁に形成された絶縁膜サイドウォールの膜厚は、前記金属膜及びポリシリコン膜の膜厚の和より厚い。
コンタクト孔形成のためのレジストがずれて、かつコンタクト孔エッチングがオーバーエッチとなったとき、コンタクトとゲート電極との短絡を防ぐことができる。
金属膜110は、窒化チタンといった、半導体工程に用いられ、トランジスタのしきい値電圧を設定する金属であればよい。
ゲート絶縁膜109は、酸化膜、酸窒化膜、高誘電体膜といった、半導体工程に用いられるものであればよい。
【0024】
前記ゲート配線の中心線が、前記第1の柱状シリコン層の中心点と前記第2の柱状シリコン層の中心点とを結ぶ線に対して第1の所定量ずれている。
第2のn型拡散層と、第2のp型拡散層とを接続するシリサイドを形成しやすい。従って、高集積化をおこなうことができる。
【図面の簡単な説明】
【0025】
【
図1】(A)は本発明の実施形態に係る半導体装置の平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図2】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図3】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図4】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図5】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図6】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図7】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図8】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図9】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図10】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図11】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図12】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図13】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図14】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図15】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図16】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図17】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図18】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図19】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図20】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図21】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図22】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図23】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図24】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図25】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図26】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図27】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図28】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図29】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図30】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図31】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図32】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図33】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図34】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図35】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図36】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図37】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図38】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図39】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【
図40】(A)は本実施形態に係る半導体装置の製造方法を示す平面図である。(B)は(A)のX−X’線での断面図である。(C)は(A)のY−Y’線での断面図である。
【発明を実施するための形態】
【0026】
以下、本発明の実施形態に係る、SGTの構造を有する半導体装置の製造工程を、
図2〜
図40を参照しながら説明する。
【0027】
以下に、シリコン基板101上に平面状シリコン層107と、平面状シリコン層107上に、第1の柱状シリコン層104と第2の柱状シリコン層105と、を形成する第1の工程を示す。
【0028】
まず、
図2に示すように、シリコン基板101上に第1の柱状シリコン層104と第2の柱状シリコン層105とを形成するための第1のレジスト102、103を形成する。
【0029】
次に、
図3に示すように、シリコン基板101をエッチングし、第1の柱状シリコン層104と第2の柱状シリコン層105とを形成する。第1の柱状シリコン層104と第2の柱状シリコン層105の高さは、所望の柱状シリコン層高さと、後にゲート配線エッチング中に削られる分の高さとの和とすることが望ましい。
【0030】
次に、
図4に示すように、第1のレジスト102、103を剥離する。
【0031】
次に、
図5に示すように、平面状シリコン層107を形成するための第2のレジスト106を形成する。
【0032】
次に、
図6に示すように、シリコン基板101をエッチングし、平面状シリコン層107を形成する。
【0033】
次に、
図7に示すように、第2のレジスト106を剥離する。
【0034】
次に、
図8に示すように、平面状シリコン層107の周囲に素子分離膜108を形成する。
以上により、シリコン基板101上に平面状シリコン層107と、平面状シリコン層107上に、第1の柱状シリコン層104と第2の柱状シリコン層105と、を形成する第1の工程が示された。
【0035】
次に、前記第1の柱状シリコン層104と前記第2の柱状シリコン層105の周囲にゲート絶縁膜109を形成し、
前記ゲート絶縁膜109の周囲に金属膜110及びポリシリコン膜111を成膜し、
前記ポリシリコン膜111の膜厚は前記第1の柱状シリコン層104と前記第2の柱状シリコン層105との間の間隔の半分より薄いのであって、
ゲート配線114cを形成するための第3のレジスト112を形成し、
異方性エッチングを行うことにより前記ゲート配線114cを形成する第2の工程を示す。
【0036】
次に、
図9に示すように、前記第1の柱状シリコン層104と前記第2の柱状シリコン層105の周囲にゲート絶縁膜109を形成し、
前記ゲート絶縁膜109の周囲に金属膜110及びポリシリコン膜111を成膜する。このとき、薄いポリシリコン膜を使用する。従って、ポリシリコン膜中にボイドが形成されることを防ぐことができる。
金属膜110は、窒化チタンといった、半導体工程に用いられ、トランジスタのしきい値電圧を設定する金属であればよい。
ゲート絶縁膜109は、酸化膜、酸窒化膜、高誘電体膜といった、半導体工程に用いられるものであればよい。
【0037】
次に、
図10に示すように、ゲート配線114cを形成するための第3のレジスト112を形成する。本実施例においては、レジスト高さが柱状シリコン層より低くなるように記載した。柱状シリコン層の高さが高いとき、柱状シリコン層上部のレジスト厚さが薄くなり、もしくは、柱状シリコン層上部のポリシリコン膜が露出することが考えられるからである。ゲート配線幅が細くなるにつれて、柱状シリコン層上部のポリシリコン膜が露出しやすくなる。
レジスト高さが柱状シリコン層より高くなってもよい。
【0038】
また、このとき、ゲート配線のための第3のレジスト112の中心線が、第1の柱状シリコン層104の中心点と第2の柱状シリコン層105の中心点とを結ぶ線に対してずれているよう、第3のレジスト112を形成することが好ましい。第2のn型拡散層118と第2のp型拡散層121とを接続するシリサイドを形成しやすくなるからである。
【0039】
次に、
図11に示すように、ポリシリコン膜111と金属膜110をエッチングする。
ポリシリコン膜111a、ポリシリコン膜111b、ポリシリコン膜配線111cとが形成される。このとき、柱状シリコン層上部のレジスト厚さが薄く、もしくは、柱状シリコン層上部のポリシリコン膜が露出していると、エッチング中に、柱状シリコン層上部がエッチングされることがある。この場合、柱状シリコン層を形成時に、その高さを、所望の柱状シリコン層高さと、後にゲート配線エッチング中に削られる分の高さとの和としておけばよい。従って、本発明の製造工程は、自己整合プロセスとなる。
また、後に金属膜110をエッチングするため、本工程をポリシリコン膜111のエッチングとしてもよい。
【0040】
次に、
図12に示すように、第3のレジスト112を剥離する。
以上により、前記第1の柱状シリコン層104と前記第2の柱状シリコン層105の周囲にゲート絶縁膜109を形成し、
前記ゲート絶縁膜109の周囲に金属膜110及びポリシリコン膜111を成膜し、
前記ポリシリコン膜111の膜厚は前記第1の柱状シリコン層104と前記第2の柱状シリコン層105との間の間隔の半分より薄いのであって、
ゲート配線114cを形成するための第3のレジスト112を形成し、
異方性エッチングを行うことにより前記ゲート配線114cを形成する第2の工程が示された。
【0041】
次に、第4のレジスト113を堆積し、前記第1の柱状シリコン層104と前記第2の柱状シリコン層105上部側壁の前記ポリシリコン膜111a、111bを露出し、露出した前記ポリシリコン膜111a、111bをエッチングにより除去し、前記第4のレジスト113を剥離し、前記金属膜110をエッチングにより除去し、前記ゲート配線114cに接続する第1のゲート電極114bと第2のゲート電極114aを形成する第3の工程を示す。
【0042】
図13に示すように、第4のレジスト113を堆積し、前記第1の柱状シリコン層104と前記第2の柱状シリコン層105上部側壁の前記ポリシリコン膜111b、111aを露出する。レジストエッチバックを用いることが好ましい。また、スピンオングラスといった塗布膜を用いてもよい。
【0043】
次に、
図14に示すように、露出した前記ポリシリコン膜111a、111bをエッチングにより除去する。等方性ドライエッチングが好ましい。
【0044】
次に、
図15に示すように、第4のレジスト113を剥離する。
【0045】
次に、
図16に示すように、前記金属膜110をエッチングにより除去し、第1の柱状シリコン層104側壁に、金属膜110bを、第2の柱状シリコン層105側壁に、金属膜110aを、ポリシリコン膜配線111c下に金属膜110cを形成する。等方性エッチングが好ましい。
金属膜110bとポリシリコン膜111bとで第1のゲート電極114bを形成し、
金属膜110aとポリシリコン膜111aとで第2のゲート電極114aを形成し、
金属膜110cとポリシリコン膜配線111cとでゲート配線114cを形成する。従って、自己整合プロセスとなる。
【0046】
以上により、第4のレジスト113を堆積し、前記第1の柱状シリコン層104と前記第2の柱状シリコン層105上部側壁の前記ポリシリコン膜111a、111bを露出し、露出した前記ポリシリコン膜111a、111bをエッチングにより除去し、前記第4のレジスト113を剥離し、前記金属膜110をエッチングにより除去し、前記ゲート配線114cに接続する第1のゲート電極114bと第2のゲート電極114aを形成する第3の工程が示された。
【0047】
次に、第1の柱状シリコン層104の上部に第1のn型拡散層117を形成し、
第1の柱状シリコン層104の下部と平面状シリコン層107の上部に第2のn型拡散層118を形成し、
第2の柱状シリコン層105の上部に第1のp型拡散層120を形成し、
第2の柱状シリコン層105の下部と平面状シリコン層107の上部に第2のp型拡散層121を形成する第4の工程を示す。
【0048】
図17に示すように、酸化膜115を堆積する。
【0049】
次に、
図18に示すように、第1のn型拡散層117と第2のn型拡散層118を形成するための、第5のレジスト116を形成する。
【0050】
次に、
図19に示すように、砒素を注入し、第1のn型拡散層117と第2のn型拡散層118を形成する。
【0051】
次に、
図20に示すように、第5のレジスト116を剥離する。
【0052】
次に、
図21に示すように、第1のp型拡散層120と第2のp型拡散層121を形成するための第6のレジスト119を形成する。
【0053】
次に、
図22に示すように、ボロンまたは弗化ボロンを注入し、第1のp型拡散層120と第2のp型拡散層121を形成する。
【0054】
次に、
図23に示すように、第6のレジスト119を剥離する。
【0055】
次に、
図24に示すように、窒化膜122を堆積し、熱処理を行う。
以上により、第1の柱状シリコン層104の上部に第1のn型拡散層117を形成し、
第1の柱状シリコン層104の下部と平面状シリコン層107の上部に第2のn型拡散層118を形成し、
第2の柱状シリコン層105の上部に第1のp型拡散層120を形成し、
第2の柱状シリコン層105の下部と平面状シリコン層107の上部に第2のp型拡散層121を形成する第4の工程が示された。
【0056】
次に、第1のn型拡散層117上と第2のn型拡散層118上と第1のp型拡散層120上と第2のp型拡散層121上とゲート配線114c上にシリサイドを形成する第5の工程を示す。
【0057】
図25に示すように、窒化膜122をエッチングし、窒化膜サイドウォール123、124、125を形成する。
【0058】
次に、
図26に示すように、酸化膜をエッチングし、酸化膜サイドウォール127、126、128を形成する。窒化膜サイドウォール123と酸化膜サイドウォール127とで絶縁膜サイドウォール129となり、窒化膜サイドウォール124と酸化膜サイドウォール126とで絶縁膜サイドウォール130となり、第1の柱状シリコン層104側壁の窒化膜サイドウォール125と酸化膜サイドウォール128とで絶縁膜サイドウォール131となり、第2の柱状シリコン層105側壁の窒化膜サイドウォール125と酸化膜サイドウォール128とで絶縁膜サイドウォール132となる。
【0059】
このとき、第1のn型拡散層117側壁に形成された絶縁膜サイドウォール129の膜厚は、金属膜110b及びポリシリコン膜111bの膜厚の和より厚いことが好ましい。
第1のn型拡散層117側壁に形成された絶縁膜サイドウォール129の膜厚が、金属膜110b及びポリシリコン膜111bの膜厚の和より厚いと、コンタクト形成時に、コンタクトとゲート電極114bとの絶縁が容易になる。
【0060】
次に、
図27に示すように、金属を堆積し、熱処理し、未反応の金属を除去することで、第1のn型拡散層117上と第2のn型拡散層118上と第1のp型拡散層120上と第2のp型拡散層121上とゲート配線114c上にシリサイド134、138、136、137、133、135を形成する。
【0061】
第2のn型拡散層118と、第2のp型拡散層121とは、シリサイド138で接続されることとなる。ゲート配線114cの中心線が、第1の柱状シリコン層104の中心点と第2の柱状シリコン層105の中心点とを結ぶ線に対してずれているので、シリサイド138を形成しやすい。従って、高集積化を行うことができる。
【0062】
また、ポリシリコン膜配線111cが薄いため、ゲート配線114cは、金属膜110cとシリサイド133の積層構造となりやすい。シリサイド133と金属膜110cとが直接接触するため、低抵抗化を図ることができる。
【0063】
以上により、第1のn型拡散層117上と第2のn型拡散層118上と第1のp型拡散層120上と第2のp型拡散層121上とゲート配線114c上にシリサイドを形成する第5の工程が示された。
【0064】
次に、
図28に示すように、窒化膜といったコンタクトストッパー139を成膜し、層間絶縁膜140を形成する。
【0065】
次に、
図29に示すように、コンタクト孔142,143を形成するための第7のレジスト141を形成する。
【0066】
次に、
図30に示すように、層間絶縁膜140をエッチングし、コンタクト孔142,143を形成する。第1のn型拡散層117側壁に形成された絶縁膜サイドウォール129の膜厚が、金属膜110b及びポリシリコン膜111bの膜厚の和より厚いと、第7のレジストがずれて、かつコンタクト孔エッチングがオーバーエッチとなったとき、コンタクトとゲート電極114bとの短絡を防ぐことができる。
【0067】
次に、
図31に示すように、第7のレジスト141を剥離する。
【0068】
次に、
図32に示すように、コンタクト孔145、146を形成するための第8のレジスト144を形成する。
【0069】
次に、
図33に示すように、層間絶縁膜140をエッチングし、コンタクト孔145、146を形成する。
【0070】
次に、
図34に示すように、第8のレジスト144を剥離する。
【0071】
次に、
図35に示すように、コンタクトストッパー139をエッチングし、コンタクト孔142,143、コンタクト孔145、146下のコンタクトストッパー139を除去する。
【0072】
次に、
図36に示すように、金属を堆積し、コンタクト147、148、149、150を形成する。
【0073】
次に、
図37に示すように、金属配線のための金属151を堆積する。
【0074】
次に、
図38に示すように、金属配線を形成するための第9のレジスト152、153、154、155を形成する。
【0075】
次に、
図39に示すように、金属151をエッチングし、金属配線156、157、158、159を形成する。
【0076】
次に、
図40に示すように、第9のレジスト152、153、154、155を剥離する。
以上により、薄いゲート材を用い、金属ゲートであり、自己整合プロセスであるSGTの製造方法が示された。
【0077】
上記製造方法によって得られる半導体装置の構造を
図1に示す。
図1に示すように、半導体装置は、
シリコン基板101上に形成された平面状シリコン層107と、
前記平面状シリコン層107上に形成された第1及び第2の柱状シリコン層104、105と、
前記第1の柱状シリコン層104の周囲に形成されたゲート絶縁膜109と、
前記ゲート絶縁膜109の周囲に形成された金属膜110b及びポリシリコン膜111bの積層構造からなる第1のゲート電極114bと、
前記第2の柱状シリコン層105の周囲に形成されたゲート絶縁膜109と、
前記ゲート絶縁膜109の周囲に形成された金属膜110a及びポリシリコン膜111aの積層構造からなる第2のゲート電極114aと、
前記ポリシリコン膜111b、111aの膜厚は前記第1の柱状シリコン層104と前記第2の柱状シリコン層105との間の間隔の半分より薄いのであって、
前記第1及び前記第2のゲート電極114b、114aに接続されたゲート配線114cと、
前記ゲート配線114cの上面の高さは前記第1及び第2のゲート電極114b、114aの上面の高さより低いことであって、
前記第1の柱状シリコン層104の上部に形成された第1のn型拡散層117と、
前記第1の柱状シリコン層104の下部と前記平面状シリコン層107の上部とに形成された第2のn型拡散層118と、
前記第2の柱状シリコン層105の上部に形成された第1のp型拡散層120と、
前記第2の柱状シリコン層105の下部と前記平面状シリコン層107の上部とに形成された第2のp型拡散層121と、
を有する。
【0078】
また、前記ゲート配線114cは、前記金属膜110cとシリサイド133の積層構造からなる。シリサイド133と金属膜110cとが直接接触するため、低抵抗化をすることができる。
【0079】
前記第1のn型拡散層117側壁に形成された絶縁膜サイドウォール129の膜厚は、前記金属膜110b及びポリシリコン膜111bの膜厚の和より厚い。
第7のレジストがずれて、かつコンタクト孔エッチングがオーバーエッチとなったとき、コンタクト148とゲート電極114bとの短絡を防ぐことができる。
【0080】
前記ゲート配線114cの中心線が、前記第1の柱状シリコン層104の中心点と前記第2の柱状シリコン層105の中心点とを結ぶ線に対して第1の所定量ずれている。
第2のn型拡散層118と、第2のp型拡散層121とを接続するシリサイド138を形成しやすい。従って、高集積化をおこなうことができる。
【0081】
なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。
【0082】
例えば、上記実施例において、p型(p
+型を含む。)とn型(n
+型を含む。)とをそれぞれ反対の導電型とした半導体装置の製造方法、及び、それにより得られる半導体装置も当然に本発明の技術的範囲に含まれる。