(58)【調査した分野】(Int.Cl.,DB名)
回転可能な音響カプラから音響センサ素子へ音響振動を連結する絶縁キャップであって、回転可能な音響カプラと音響センサ素子との間に回転可能な継ぎ目を提供する絶縁キャップ
をさらに含む、請求項11記載の変換器アセンブリ。
回転可能な音響カプラを、回転可能な音響カプラと音響センサ素子との間に回転可能な継ぎ目を形成する絶縁キャップ経由で音響センサ素子と連結する、請求項18記載の方法。
【発明を実施するための形態】
【0008】
詳細な説明
後述する実施形態において、変換器アセンブリは、圧力容器、たとえばバルブ、蒸気トラップ、流量制限器、圧力逃がしバルブなどの内の流量制御における機能不全、たとえば気体漏れを検出する。変換器アセンブリは、音響感知を用いる。ある実施形態では、温度感知も同様に用いられる。一例では、低レベルのノイズが検出された、または音響ノイズが検出されない、ならびに圧力容器温度が蒸気の飽和温度に近いとき、蒸気トラップは正常に動作する。音響ノイズが閾値レベルより上に上昇する、および温度が蒸気の飽和温度に近いとき、変換器アセンブリは、圧力容器内のバルブが漏れることを感知および表示する。音響ノイズ
が高くて温度が低いとき、変換器アセンブリは、圧力容器内のバルブが、空気の漏れている起動状態であることを感知および表示する。音響ノイズがなく、温度が低いとき、変換器アセンブリは、圧力容器内のバルブが塞がっている、引っかかっている、または動作できないことを感知および表示する。本発明は、しかしながら、この例示的診断技術に限定されない。
【0009】
変換器アセンブリは、音響センサ素子および音響導波路を含む。音響導波路は、診断回路を高温の容器から熱的に分離することを可能にする。音響導波路は、音響センサと連結された回転可能な音響カプラ、たとえば例としてばねまたはシャフトを含み、ならびに、回転可能な音響カプラと、および、圧力容器に接続された流体導管に搭載する搭載面を有する下部と連結されたチューブを含む。1つの実施形態では、温度センサは、下部内の内部熱井戸空洞における温度を感知し、チューブを通って伸びる出力ケーブルを有する。熱井戸空洞は、熱井戸内で保護された空洞である。熱井戸は、温度感知デバイスを空洞内に包み込むように、および環境の悪影響から温度感知デバイスを保護するように設計された保護チューブである。1つの実施形態によると、変換器アセンブリ内の電子機器アセンブリは、センサから温度および音響ノイズデータを受信して、遠隔モニタと連結された無線出力を提供する。
【0010】
図1は、変換器アセンブリ50の分解図を図示する。変換器アセンブリ50は、音響センサ素子1を含む。1つの実施形態によると、音響センサ素子1は、圧電式力センサを含む。別の実施形態によると、音響センサ素子1は、容量式力センサを含む。また別の実施形態によると、音響センサ素子1は、磁気式力センサを含む。
【0011】
変換器アセンブリ50は、音響導波路4を含む。音響導波路4は、音響センサ素子1と回転可能に連結するばね4Aを含む。音響導波路4は、ばね4Aと連結された第1チューブ端7を有するチューブ4Bを含む。
【0012】
音響導波路4は、チューブ4Bの第2チューブ端9へ連結する連結領域を提供する下部4Cを含む。下部4Cは、流体導管(
図1には図示せず)と接触して搭載可能な搭載面11を含む。
【0013】
音響導波路4は、音響振動を、下部4Cの搭載面11から音響センサ素子1へ連結する。当業者には、チューブ4Bおよび下部4Cが単一のチューブで形成されることがあり、その場合、チューブ4Bと下部4Cとの間に継ぎ目のないことが理解されるだろう。1つの実施形態によると、音響振動は、30kHzから50kHzまでの範囲で感知される。
【0014】
1つの実施形態によると、チューブ4Bは、断熱を提供するように、音響センサ素子1が下部4Cからある距離で離れるように引き離す長さを有する。典型的にはプロセス容器上の配管に締め付けられた下部4Cにおける高温は、音響センサ素子1が周囲の大気温度に近いより低い温度を有するように、チューブ4Bの長さに沿って減衰する。チューブ4Bは図示のとおり中空であり、それがチューブ4Bの長さに沿って熱伝導を低減させる。
【0015】
1つの実施形態によると、ばね4Aは、ばね4Aと音響センサ素子1との間に回転可能な継ぎ目を提供する絶縁キャップ13によって、音響センサ素子1と隣接して位置する。絶縁キャップ13は、ばね4Aから音響センサ素子1へ音響振動を連結する。絶縁キャップ13は、音響センサ素子1に力を及ぼす位置にばね4Aを位置づける。
【0016】
1つの実施形態によると、絶縁キャップ13は電気絶縁材料で形成され、センサ素子1と電気伝導ばね4Aとの間に適切な電気的クリアランスおよび沿面距離を提供するように寸法決めされて、電気的絶縁を確実にする。別の実施形態によると、ばね4Aはパイプ電位にあり、センサ素子1は電子回路電位にあり、絶縁キャップ13はガルバニック絶縁を提供して、変換器アセンブリ50内の回路について本質安全要件が満たされることを確実にする。
【0017】
1つの実施形態によると、変換器アセンブリ50は、チューブ4Bに搭載され、第1チューブ端7と隣接するねじ切りフランジ部21を含む電子機器筐体搭載フランジ23を含む。この実施形態では、電子機器筐体搭載フランジ23は、第1チューブ端7と隣接する電子機器筐体2を搭載するのに用いられる。別の実施形態によると、変換器アセンブリ50は、センサ支持アダプタ22を含む。センサ支持アダプタ22は、搭載のため、アダプタ22のスロットに滑り込むプリント配線基板26を含む。この実施形態では、音響センサ素子1が、機械的支持および電気的接続のためにプリント配線基板上に搭載される。センサ支持アダプタ22は、ねじ21を係合するねじ21Aでねじ切りされている。ねじの係合が進行するにつれて、ばね4Aは、音響センサ素子1へより大きな力を及ぼし、ばね4Aを圧縮して音響導波路4内の遊動または空動をなくす。
【0018】
音響センサ素子1のリード線30は、電気的であって、電子機器と連結する音響エネルギ出力を提供する。リード線30上の音響エネルギ出力は、蒸気トラップおよびその他のプロセス流体容器の診断試験に有用である。
【0019】
1つの実施形態によると、チューブ4Bは、11ミリメートル未満の外径を有する金属チューブを含む。別の実施形態によると、チューブ4Bは、2.0ミリメートル未満の壁面厚さのチューブを含む。
【0020】
変換器アセンブリ50は、電子機器筐体2および筐体カバー5を含む。Oリング6は、電子機器筐体2とカバー5との間の密閉を提供する。
【0021】
電子機器筐体2は、円錐台内表面8、10の両方に共通の円錐頂点12を有する円錐台内表面8、10を含む。電子機器筐体搭載フランジ23の円錐台外表面14は、円錐台内表面10と隣接して組み立てられる。変換器アセンブリ50は、円錐台内表面8と隣接して組み立てられる円錐台外表面18を有する円錐台ワッシャ16を含む。ばねワッシャ(皿ばねとも呼ばれる)20は、円錐台ワッシャ16の上部に位置する。センサ支持アダプタ22のねじ21Aは電子機器筐体搭載フランジ23のねじ21に螺合して、ばねワッシャ20を圧縮する。共通の頂点12を有する円錐台表面8、10、14、18の機構は、筐体2およびチューブ4Bが異なる温度膨張係数を持つ材料で形成されていても、筐体2とフランジ23との間の接続を提供して、安定した間隔を維持する。
【0022】
電子機器アセンブリ24は、カバー5経由で無線通信を提供する。バッテリ27は、電子機器アセンブリ24にエネルギを与える。電子機器アセンブリ24は、格納された音響信号レベルの閾値を含む。格納された閾値は不揮発性メモリに格納され、無線通信によって調節可能である。音響信号レベルのリアルタイムレベルは、リアルタイムでの診断意思決定を実施するために、格納されたそれぞれの閾値と比較される。電子機器アセンブリ50は、無線で発信される格納された識別番号または名称も含み、データ源または診断意思決定を識別する。
【0023】
1つの実施形態によると、筐体2は電気コネクタ32を支持して、外部温度センサ(
図1には図示せず)に接続する。この実施形態では、電子機器アセンブリ24は、音響信号レベルおよび外部温度も両方に基づいて意思決定する。別の実施形態によると、電子機器アセンブリは、カバー5内のウィンドウ経由で目視可能なデジタルディスプレイ3を含む。
【0024】
図2は、復水/蒸気混合物151を蒸気トラップ152にもたらす蒸気/復水配管150に据え付けられた変換器アセンブリ100を図示する。1つ以上のクランプ154が、変換器アセンブリ100の下部102を蒸気/復水配管150に据え付ける。1つまたは複数のクランプ154は、ホースクランプ、ロッキングプライヤー、Cクランプ、またはその他の公知の種類のクランプであることができる。
図2に図示のとおり、下部102は、蒸気/復水配管150の凸型の丸い外表面と接触して締め付けられた凹型の丸い表面を有する。
【0025】
下部102と蒸気トラップ152との間のパイプ長さ156は短く保たれるので、下部102の温度は、復水/蒸気混合物151の温度
を表す。復水160は蒸気から分離され、蒸気トラップ152から排出される。温度センサ103は、熱井戸空洞内の下部102の内部に包み込まれる。パイプ長さ156は、蒸気トラップ152内のバルブ158を通って流れる流体によって生成された音響ノイズが、蒸気/復水配管150に沿ってバルブ158から下部102への低減衰と容易に連結するのに十分短い。変換器アセンブリ100の下部102は蒸気トラップ152と熱および音響的に連通して、蒸気トラップ156の性能を変換し、ならびに蒸気トラップ156の診断試験、たとえば漏れ、塞がり、および起動状態を検出する。
【0026】
蒸気トラップ152は、蒸気/復水配管150と連結する。1つの実施形態によると、蒸気/復水配管150は、蒸気を蒸気源(
図2には図示せず)から蒸気利用デバイス(
図2には図示せず)へ運ぶ。蒸気/復水配管150内の復水は、蒸気トラップ152内へ排水する。格納された復水164は、十分な量の格納された復水164が蓄積して、浮き166を持ち上げてバルブ158を開放するまで、蒸気トラップ152の内部に蓄積する。バルブ158が開放するとき、復水164は、浮き166が沈んで、まだ蒸気トラップ152内に存在するいくらかの格納された復水164でバルブ158を閉鎖するまで、排水配管168へ(矢印160で表示されるように)流入する。浮き166、バルブ158、および格納された復水164の機構は、蒸気を蒸気トラップ152内にトラップしながら、余分な復水を排水することを可能にする。適正に機能するとき、蒸気トラップ152は、蒸気/復水配管150内の不要で余分な復水を排水する有用な機能を実施しながら、蒸気トラップ152を通る蒸気の損失(および付随するエネルギの損失)を防止する。蒸気トラップ152が機能不全であるとき、エネルギの大きな損失、復水で蒸気/復水配管150が塞がること、またはその他の問題があることがある。
【0027】
変換器アセンブリ100の下部102は、溶接106によってチューブ104に取り付けられる。チューブ104は、チューブ長さ108を有する。チューブ104は、溶接112によって電子機器筐体搭載フランジ110に溶接される。1つの実施形態によると、チューブ104は、図示のような丸い円柱形の断面を有する。別の態様によると、チューブ104は、一般的に長方形の断面を有する。電子機器筐体搭載フランジ110は、電子機器筐体114を支持する。電子機器筐体114は、音響センサ素子116を包み込む。音響センサ素子116は、ばね120によってパイプ104の端118と音響的に連結される。電子機器アセンブリ122は、リード124によって音響センサ素子116および温度センサ103と連結する。電子機器アセンブリ122は、無線通信信号126で、例えば遠隔モニタリング局128と通信する。筐体カバー130は、無線通信信号126に対して透過的である。1つの実施形態によると、筐体カバー130は、熱可塑性樹脂を含む。バッテリ132は、電子機器アセンブリ122にエネルギを与える。
【0028】
下部102、チューブ104、およびばね120は、音響振動または音響信号を、蒸気/復水配管150上の(下部102の)搭載面から音響センサ素子116へ連結する音響導波路として機能する。1つの実施形態によると、音響センサ素子116によって感知された音響振動は、30kHzから50kHzまでの範囲である。音響振動は、バルブ158を通って流れる気体により、蒸気トラップ152内、特にバルブ158において生じる。バルブ158を通って流れる気体は、漏れやすいバルブの場合は蒸気であることがあり、起動状態の場合は空気または蒸気のいずれかであることがある。電子機器アセンブリ122は、センサ103、116から音響および温度データを処理して、蒸気トラップ156の機能に関しての診断情報を計算する。1つの実施形態によると、下部102、クランプ154、および蒸気/復水配管150は、設置の時点で断熱材に包まれて、蒸気トラップ152と温度センサ103との間の温度差を低減する。変換器アセンブリ100の動作は、
図3に図示された例によって、下記でより詳細に説明される。
【0029】
図3は、変換器アセンブリ200を図示する。変換器アセンブリ200は、音響センサ素子202を含む。1つの実施形態によると、音響センサ素子202は、圧電式力センサを含む。別の実施形態によると、音響センサ素子202は、容量式力センサを含む。また別の実施形態によると、音響センサ素子202は、磁気式力センサを含む。
【0030】
変換器アセンブリ202は、音響導波路204を含む。音響導波路204は、音響センサ素子202と回転可能に連結するばね204Aを含む。音響導波路204は、ばね204Aと連結された第1チューブ端206を有するチューブ204Bを含む。
【0031】
音響導波路204は、チューブ204Bの第2チューブ端210と連結する連結領域を提供する下部204Cを含む。下部204Cは、流体導管212と接触して搭載可能な搭載面208を含む。下部204Cは、搭載面208と隣接する内部熱井戸空洞214を含む。温度センサ216は、熱井戸空洞214内に配置され、内部熱井戸空洞214内の温度を感知する。熱井戸空洞214内の空間は、ある分量の熱伝導埋め込み化合物215で充填されることがある。1つの実施形態によると、埋め込み化合物215は、アメリカ合衆国ペンシルバニア州15238、ピッツバーグのSauereisen Cements Companyによって販売されている高温用無機セラミックセメントの薄い層を含む。熱伝導化合物215は、温度センサ216と流体導管212との間の良好な熱的連結を提供する。温度センサ216は、チューブ204Bおよび第1チューブ端206を通って伸びる出力ケーブル218に接続される。1つの実施形態によると、温度センサ216は、サーミスタを含む。別の実施形態によると、温度センサ216は、熱電対接合を含む。
【0032】
音響導波路204は、下部204Cの搭載面208から音響センサ素子202へ音響振動を連結する。当業者には、チューブ204Bおよび下部204Cが単一のチューブで形成され
ることがあり、その場合、チューブ204Bと下部204Cとの間には継ぎ目のないことが理解されるだろう。1つの実施形態によると、音響振動は、30kHzから50kHzまでの範囲で感知される。
【0033】
1つの実施形態によると、チューブ204Bは、断熱を提供するように、音響センサ素子202が下部204Cからある距離で離れるように引き離す長さを有する。典型的には蒸気トラップ排水配管に締め付けられた下部204Cにおける高温は、音響センサ素子202が周囲の大気温度に近いより低い温度を有するように、チューブ204Bの長さに沿って減衰する。チューブ204Bは図示のとおり中空であり、それがチューブ204Bの長さに沿って熱伝導を低減させる。
【0034】
1つの実施形態によると、ばね204Aは、ばね204Aと音響センサ素子202との間で回転可能な継ぎ目を提供する絶縁キャップ220によって音響センサ素子202と隣接して位置する。絶縁キャップ220は、ばね204Aから音響センサ素子202へ音響振動を連結する。絶縁キャップ220は、音響センサ素子202に力を及ぼす位置にばね204Aを位置づける。1つの実施形態によると、絶縁キャップ220は電気絶縁材料で形成され、センサ素子202と電気伝導物とばね204との間に適切な電気的クリアランスおよび沿面距離を提供するように寸法決めされて、電気的絶縁を確実にする。別の実施形態によると、ばね204Aはパイプ電位にあり、センサ素子202は電子回路電位にあり、絶縁キャップ220はガルバニック絶縁を提供して、変換器アセンブリ200内の回路について本質安全要件が満たされることを確実にする。
【0035】
1つの実施形態によると、変換器アセンブリ200は、チューブ204B上に搭載され、第1チューブ端206と隣接するねじ切りフランジ部224を含む電子機器筐体搭載フランジ223を含む。この実施形態では、電子機器筐体搭載フランジ223が、第1チューブ端206と隣接する電子機器筐体(
図3には図示せず)上に搭載するのに用いられる。
【0036】
別の実施形態によると、変換器アセンブリ200は、センサ支持アダプタ222を含む。センサ支持アダプタ222は、搭載のため、アダプタ222のスロット228に滑り込むプリント配線基板226を含む。この実施形態では、音響センサ素子202が、機械的支持および電気的接続のためにプリント配線基板上に搭載される。センサ支持アダプタ222は、ねじ切りフランジ部224を係合するねじ221でねじ切りされている。
【0037】
音響センサ素子202のリード線230および温度センサ216の出力ケーブル218は音響エネルギおよび温度出力を提供し、電子機器(
図3には図示せず)と連結する。温度および音響エネルギ出力は、蒸気トラップおよびその他のプロセス流体容器の診断試験に有用である。センサ支持アダプタ222は、ねじ切りフランジ部224を係合するねじ221を持つねじ切り支持端225を含む。ねじの係合が進行するにつれて、ばね204Aは音響センサ素子202により大きな力を及ぼし、ばね204Aを圧縮して、音響導波路204内の遊動または空動をなくす。
【0038】
1つの実施形態によると、チューブ204Bは、11ミリメートル未満の外径を有する金属チューブを含む。別の実施形態によると、チューブ204Bは、2.0ミリメートル未満の壁面厚さのチューブを含む。変換器アセンブリ200のアセンブリおよび動作は、
図4に図示された例に関連して、下記でより詳細に説明される。
【0039】
図4は、変換器アセンブリ300の分解図を図示する。変換器アセンブリ300は、
図3に図示のようなばね204A、チューブ204B、および下部204Cを含む導波路を含む。変換器アセンブリ300は、
図3に図示のような音響センサ素子202、センサ支持アダプタ222、および電子機器筐体搭載フランジ223を含む。
図3および
図4に共通の構成要素のアセンブリおよび機能について、
図3および
図3の説明を参照することがある。変換器アセンブリ300は、電子機器筐体302および筐体カバー304を含む。Oリング306は、電子機器筐体302とカバー304との間の密閉を提供する。
【0040】
電子機器筐体302は、円錐台内表面308、310の両方に共通の円錐頂点312を有する円錐台内表面308、310を含む。電子機器筐体搭載フランジ223の円錐台外表面314は、円錐台内表面310と隣接して組み立てられる。変換器アセンブリ300は、円錐台内表面308と隣接して組み立てられる円錐台外表面318を有する円錐台ワッシャ316を含む。ばねワッシャ(皿ばねとも呼ばれる)320は、円錐台ワッシャ316の上部に位置づけられる。センサ支持アダプタ222は電子機器筐体搭載フランジ223のねじ322に螺合して、ばねワッシャ320を圧縮する。共通の頂点312を有する円錐台表面308、310、314、318の機構は、筐体302とフランジ223との間の接続を提供して、筐体302およびチューブ204Bが異なる温度膨張係数を持つ材料で形成されても、安定した間隔を維持する。
【0041】
電子機器アセンブリ324は、カバー304経由で無線通信を提供する。その他の側面では、変換器アセンブリ300は、
図2の変換器アセンブリ100と同様である。バッテリ326は、電子機器アセンブリ324にエネルギを与える。電子機器アセンブリ324は、格納された温度および音響信号レベルの閾値を含む。格納された閾値は不揮発性メモリに格納され、無線通信によって調節可能である。リアルタイムレベルの温度および音響信号レベルは、リアルタイムでの節度ある診断意思決定を実施するために、格納されたそれぞれの閾値と比較され、レベルデータ、決定、または両方が無線通信によって発信される。電子機器アセンブリ324は、無線で発信される格納された識別番号または名称も含み、データ源または診断意思決定を識別する。電子機器アセンブリ324は、カバー304内のウィンドウ経由で目視可能であるデジタルディスプレイ303を含む。
【0042】
図5Aは、変換器アセンブリ400上の温度感知場所を図示する。変換器アセンブリ400は、クランプ404、406によって復水排水パイプ402に据え付けられた下部408を含む。正常動作の間、復水排水パイプ402は、加熱された復水を運ぶ。熱は、復水排水パイプ402から変換器アセンブリ400を通って、より低い温度である周囲の大気へ流れる。そのため、変換器アセンブリ400内には温度勾配がある。温度勾配は、電子機器アセンブリ(たとえば、
図2のアセンブリ122)により低い動作温度を提供する点で役立つ。温度勾配は、復水排水パイプの温度が正確に推測できる温度測定値を得ることができるように温度センサが置かれた変換器アセンブリ400上で、場所を見つけるのが困難である点で問題になる。
【0043】
設計試験の間に温度を測定する目的で、熱電対接合は、下部408の先端に近い先端で表示される場所においてクランプ404で圧縮される。熱電対接合は、下部408の後端の後端で表示される場所においてクランプ406で圧縮される。
【0044】
先端クランプ404下の熱電対接合からの測定値は平均されて、
図5Bに図示のとおり記録された先端温度測定値を提供する。後端クランプ406下の熱電対接合からの測定値は平均されて、
図5Bに図示のとおり記録された後端温度測定値を提供する。
【0045】
2つの熱電対接合は、パイプで表示される場所において復水排水パイプ402に取り付けられる。パイプの場所での熱電対接合からの測定値は平均されて、
図5Bに表示されるようにパイプ温度測定値を提供する。変換器アセンブリ400の一部であるセンサは、
図5Bにおけるセンサ温度測定値を提供する。
【0046】
図5Bは、設計試験の間の
図5Aの温度感知場所についての温度のグラフを図示する。
図5Bに図示のとおり、復水排水パイプの加熱は、ゼロ時間で開始する。ゼロ時間からおよそ100分後に、記録された温度は安定する。ゼロ時間からおよそ115分後に、下部408および復水排水パイプ402の隣接部分は、断熱材で包まれている。ゼロ時間からおよそ200分後に、記録された温度は再び安定する。先端の場所で記録された温度はパイプ温度に最も近いことが、
図5Bの検査によってわかる。これらの結果に基づいて、変換器アセンブリ400内で用いられる温度センサ(たとえば、
図3の温度センサ216)は、改善された精度の温度測定値を提供するために、下部408の先端端部の近くへ有利に配置される。これらの試験結果に基づいて、断熱材は、下部408および隣接する復水排水パイプ402に取り囲まれて、パイプとセンサとの間の温度差を低減することができ、
図5Bに図示のとおり温度測定精度を改善する。
【0047】
1つの実施形態によると、センサの温度測定値に残存する温度誤差は、
図9に関連してより詳細に下記で説明されるように、電子的に補正される。
【0048】
図6は、変換器アセンブリ504の主アンテナローブ502の回転を図示する。変換器アセンブリ504は、電子機器筐体506(
図4の電子機器筐体302と同様)および電子機器アセンブリ508(
図4の電子機器アセンブリ324と同様)を含む。電子機器アセンブリ508は、取付用ねじ510、512によって電子機器筐体508上に搭載される。電子機器筐体506(および取り付けられた電子機器アセンブリ508)は、矢印514で表示されるように回転可能である。電子機器アセンブリ508上の指向性アンテナ516は、主アンテナローブ502を作り出す。指向性アンテナ516は、より突出の少ないアンテナローブも作り出すことができる。電子機器筐体506の回転は、主アンテナローブ502を回転させて、オペレータが主アンテナローブ502を遠隔モニタリング局522のアンテナ520に向けることを可能にする。
【0049】
上記の
図4で図示のように、電子機器筐体302は、円錐台座面314、318上で回転可能である。ばねワッシャ320は、円錐台座面314、318に圧縮力を提供する。1つの実施形態によると、電子データディスプレイ303は、電子機器アセンブリ324上に搭載される。回転可能な円錐台座面314、318は回転可能であり、フィールドサービス職員にとって簡便な測定値について好ましい方向に電子データディスプレイ303を配向する。ディスプレイ303の回転可能性は、電子データディスプレイが定位置に設置されて、電子データディスプレイが簡便な測定値に配向されないことがあるという問題を克服する。
【0050】
通常、チューブ204B(
図3〜4)は、電子機器に向かって対流する蒸気トラップからの熱を避けるために、水平配向に設置される。回路基板上に搭載された電子データディスプレイ303は、電子機器筐体302を回転させることによって、適正な測定値に配向することができる。1つの態様によると、電子データディスプレイ303は、電子機器アセンブリ324上のアンテナとの関係において電子機器アセンブリ324上で配向されるので、アンテナは、ディスプレイ303が測定値について適正に配向されるとき、発信および受信について優先的に配向される。典型的には、ディスプレイ303は、サービス職員が英語の文字および数字を読むために左から右へ水平に配向される。
【0051】
図7Aおよび7Bは、主アンテナローブ502の回転のための温度の機能として、回転に要求されるトルクを図示する。トルクは、ばねワッシャ320の圧縮力によって制御され、8から22フィートポンドの範囲のトルクを提供する。1つの態様によると、回転摺動面として円錐台座面308、310、314、316の使用と組み合わせてばねワッシャ320によって提供される、調節可能な被制御圧縮力は、同様に調節可能な所望の被制御トルクに備える。トルク範囲(時計回りおよび反時計回り方向の両方)は、振動が主アンテナローブ502の方向を変えないように十分高い。トルク範囲は、(時計回りおよび反時計回り方向の両方で)主アンテナローブ502が手で簡単に回転できるのに十分低い。トルク範囲は、円錐台座面308、310およびばねワッシャ320の使用のため、摂氏−40度から摂氏+80度までの温度範囲にわたって十分に安定している。
【0052】
図8は、変換器アセンブリ、たとえば
図4の変換器アセンブリ300または
図1の変換器アセンブリ50内で使用するための回路アセンブリ700を図示する。回路アセンブリ700は、温度データを提供する温度センサ702と、および音響データを提供する音響センサ素子704と連結する。
図1に図示された1つの実施形態によると、温度センサ704は外付けである。
図3に図示された別の実施形態によると、温度センサ704は、変換器アセンブリの一部である。回路アセンブリ700は、回路アセンブリ700にエネルギを与えるバッテリ706と連結する。
【0053】
回路アセンブリ700は、モニタリング局712と連結するアンテナ710と通信するためのアンテナ708を含む。1つの態様によると、アンテナ708は、指向性アンテナを含む。別の態様によると、アンテナ708は、プリント回路基板上のプリント導体のパターンを含む。
【0054】
回路アセンブリは、プロセッサ回路720を含む。1つの態様によると、プロセッサ回路720は、
図9の論理フローチャートに関連してより詳細に下記で説明されるように意思決定する。プロセッサ回路は、通信回路722に決定出力を提供する。通信回路722は、標準的な通信プロトコルによる意思決定および格納された識別データを符号化して、アンテナ708を用いて意思決定および識別データを発信する。
【0055】
意思決定のための閾値設定および回路アセンブリ700のための識別番号は、不揮発性記憶回路724に格納される。1つの態様によると、不揮発性記憶回路724は、EEPROMメモリを含む。試運転または起動動作の一部として、モニタリング局712は回路アセンブリ700に閾値設定を発信して、不揮発性記憶回路724に格納する。
【0056】
図9は、
図8のプロセッサ回路720によって実施することができる決定の例を図示する診断フローチャートを図示する。プロセスは、開始802で始まり、ライン804に沿って作用ブロック801へ続く。作用ブロック801では、任意の温度誤差補正アルゴリズムが実施される。温度誤差補正アルゴリズムの任意の完了後、プロセスは、ライン803に沿って決定ブロック806へ続く。
【0057】
1つの実施形態によると、作用ブロック801の温度誤差補正アルゴリズムは、静的誤差補正ルーチンを実施する:
【数1】
ただし、
T
PCは、補正されたパイプ温度を表し;
T
Wは、センサ温度を表し;
T
Cは、回路基板温度を表し;および
Kは、試験によって確定される静的補正係数を表す。
別の実施形態によると、作用ブロック801の温度誤差補正アルゴリズムは、動的誤差補正ルーチンを実施する:
【数2】
ただし、
T
PCは、補正されたパイプ温度を表し;
T
Wは、センサ温度を表し;
T
Cは、回路基板温度を表し;
Kは、試験によって確定される静的補正係数を表し;
Mは、試験によって確定される動的補正係数を表し;および
d/dtは、数学的微分法を表す。
【0058】
決定ブロック806では、温度データが、格納された温度閾値と比較される。温度が格納された温度閾値より高ければ、プロセスはライン808に沿って決定ブロック810へ続く。温度が格納された温度閾値より低ければ、プロセスはライン812に沿って決定ブロック814へ続く。
【0059】
決定ブロック814では、音響ノイズが格納された音響ノイズ閾値より高ければ、プロセスはライン816に沿って作用ブロック818へ続く。作用ブロック818では、決定は、モニタリングされたデバイスが起動状態である、または空気を漏らしていると記録される。音響ノイズが格納された音響ノイズ閾値より低ければ、プロセスは、ライン820に沿って作用ブロック822へ続く。作用ブロック822では、決定は、モニタリングされたデバイスが引っかかっている、または動作していないと記録される。
【0060】
決定ブロック810では、音響ノイズが格納された音響ノイズ閾値より高ければ、プロセスはライン830に沿って作用ブロック832へ続く。作用ブロック832では、決定は、モニタリングされたデバイスが蒸気を漏らしていると記録される。音響ノイズが格納された音響ノイズ閾値より低ければ、プロセスは、ライン834に沿って作用ブロック836へ続く。作用ブロック836では、決定は、モニタリングされたデバイスが正常に動作していると記録される。
【0061】
作用ブロック840では、ブロック818、822、832、または836のうちの1つから、もっとも最近の決定が通信回路に発信され、識別番号を伴って無線発信される。発信後、プロセスはライン842に沿って作用ブロック844へ続く。作用ブロック844では、決定ブロック832、836、818、822はリセットされて、プロセスは開始802に戻る。
【0062】
図10は、回転可能な音響カプラ900代替実施形態を図示する。回転可能な音響カプラ900は、中央シャフト902およびソケット904を含む。中央シャフト902は、音響センサ素子908と音響的に連結された第1シャフト端906を有する。中央シャフト902は、ソケット904と連結された第2シャフト端910を有する。第1シャフト端906とソケット904との間の中央シャフトの長さは、中央シャフト902とソケット904との間の小さいずれを認めるように中央シャフト902の屈曲を許容するのに十分長い。ソケット904は、小さいずれを認めるようにテーパされた開口912を有する。
【0063】
1つの実施形態によると、ソケット904は、保持リング916、918によってチューブ914内の適所に保たれる。別の実施形態によると、ソケット904のテーパされた開口912は、中央シャフト902と締まりばめされるように先細りする。ソケット904は中央シャフト902と接触して、チューブ914と中央シャフト902との間に音響結合を提供する。1つの態様によると、ソケット904は弾性材料で形成され、接触を提供する。別の態様によると、ソケット904は、アメリカ合衆国カリフォルニア州92831、フラートンのProfessional Plastics Inc.から入手可能な、熱安定化された種類の6ポリアミドで形成される。中央シャフト902とソケット904との間の把持継ぎ目は、回転可能である。
【0064】
1つの態様によると、ソケット904は、温度センサの電気リード線922がそこを経由して通ることができる、1つ以上の半径方向の開口920を含む。
【0065】
図11Aは、誤差補正ルーチンを使用しない例示的温度誤差のグラフを図示する。
図11Aのグラフに図示するように、非補償型の静的温度誤差は、断熱を使用しないでおよそ摂氏12度、断熱を使用しておよそ摂氏7度である。非補償型の動的温度誤差は、断熱を使用しないでおよそ14度、断熱を使用して7度までの範囲である。
【0066】
図11Bは、静的誤差補正ルーチンを用いた例示的温度誤差のグラフを図示する。
図11Bのグラフに図示するように、静的補償型静的温度誤差は、断熱を使用しないでおよそ摂氏3度、断熱を使用しておよそ摂氏−2度である。静的補償型動的温度誤差は、断熱を使用しないでおよそ12度、断熱を使用して−2度までの範囲である。
【0067】
図11Cは、動的誤差補正ルーチンを用いた温度誤差のグラフを図示する。
図11Cのグラフに図示するように、動的補償型静的温度誤差は、断熱を使用しないでおよそ摂氏2度、断熱を使用しておよそ摂氏−2.5度である。動的補償型動的温度誤差は、断熱を使用しないでおよそ−2度、断熱を使用して−2.5度までの範囲である。
【0068】
図11A、B、Cのデータは、静的および動的補償が温度測定誤差を著しく低減できることを図示する。1つの態様によると、温度補償は、設置場所でサービス職員によって調節可能であり、設置において断熱の使用または不使用に適合させる。
【0069】
図12は、作動可能な制御バルブ960の排出口と連結された変換器アセンブリ950を図示する。制御バルブ960は、弁座961、および、弁座961に対して可動である弁体962を含む。1つの実施形態によると、制御バルブ960は名目上閉鎖されているが、弁座961と弁体962との間の密閉を越えて漏れがあるとき、変換器アセンブリ950によって感知および診断された漏れによって、音響ノイズが生成される。別の実施形態によると、制御バルブ960は正常に液体が流れているが、バルブが空気で充填され空気がバルブ960を通って流れているとき、空気の流れによって音響ノイズが生成され、変換器アセンブリ950によって感知および診断される。
【0070】
図13は、流量絞り981を含む流量制御機構980に搭載された変換器アセンブリ970を図示する。1つの態様によると、プロセス冷却システムの高圧側は、図示のとおり毛細管を含む流量絞り981に液体冷媒984を提供する。液体冷媒984が流量絞り981に沿ってプロセス冷却システムの低圧側986に向かって流れるにつれて、液体冷媒984の圧力は落ち、冷媒は、流量絞り981から低圧側986の中へ出て行きながら気体に蒸発して、冷却を提供する。プロセス冷却システムが冷媒を漏らし、液体の代わりに気体が流量絞り981を通って流れる場合には、音響ノイズが生成される。1つの態様によると、変換器アセンブリ970は付随する音響ノイズを感知して、冷媒の損失を診断する。別の態様によると、流量制限器981が塞がっている場合には、液体の流れに付随する正常なノイズが失われ、変換器アセンブリ970は流量絞り981の塞がりを診断する。
【0071】
図1〜13に示したさまざまな態様は、適切に組み合わせることができる。1つの実施形態によると、音響センサ202は、図示のとおり、ばね204Aに対向する圧電結晶円盤の力感知面を持つ金属缶に搭載された圧電結晶円盤を含む圧電素子を含む。圧電結晶円盤はダイヤフラムとして作用し、ばね204A、周囲の空気、または両方から音を受信する。ばね204Aの圧縮は、ばね204Aと圧電結晶円盤との間の接触を維持する。音響センサ202およびばね204Aは、音響信号のフィルタリングを提供する。1つの実施形態によると、電子機器アセンブリ324内の回路は、ばね204Aおよび音響センサ202によって提供されるフィルタリングの共振周波数範囲に同調される。
図2〜4にはコイルばねが図示されているが、当業者には、その他の形状、たとえば
図10に示すシャフトが音響信号を伝導して音響センサ素子との接触を維持するのに用いられることが理解されるだろう。
【0072】
本発明の様々な実施形態の多数の態様が上述の説明で明記されてきたが、本開示は説明にすぎず、本発明の範囲および精神から逸脱しない範囲で、形態および詳細に変更を加えてもよいことが理解されるだろう。本発明は、本明細書で示された具体的な変換器アセンブリに限定されず、その他の変換器アセンブリと同様にその他の圧力容器にも適用可能である。