【実施例】
【0042】
以下、実施例を用いて本発明を更に具体的に説明する。実施例中、NMRはJEOL製「AL300」(300MHz)、IRはThermo Nicolet製「Avatar300T2」、MALDI−TOF−MSはBruker製「Autoflex」、可視近赤外吸収スペクトルはShimazu製「UV−3150」、ラマンスペクトルはJobin−Yvon製の装置を用いて測定した。また、原子間力顕微鏡(AFM)はSeiko製「SPA400−DFM」を用いた。
【0043】
(実施例1)
合成例1[主鎖の鎖長が32である末端Br化合物2の合成]
300 ml二口フラスコに1,10-ジブロモデカン(22.50 g, 75 mmol)、K
2CO
3(22.77 g, 165 mmol)、DMF(150 ml)を入れ、アルゴンガスを封入しパラフィルムを巻き、65℃で加熱撹拌した。その後、1,10-デカンジオール1(5.22 g, 30 mmol)をDMF(50 ml)に溶かした溶液を、2時間かけて滴下し、3日間、65℃で加熱攪拌した。室温まで冷ました後に、2%の塩酸(400 ml)を氷浴中で滴下した。その後、クロロホルムとイオン交換水で分液を行った。有機層を抽出し、5%のNaOH水溶液(100 ml)で3回、イオン交換水(250 ml)で2回洗った。その後、無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターで濃縮し、溶媒を留去した。得られたオイル状の物を、ジエチルエーテル(10 ml)中で攪拌し、析出してきた白色の粉末である化合物2(10.18 g)を収率56%で得た。化学反応式を以下に示す。
【0044】
【化8】
【0045】
化合物2 :
1H-NMR (300 MHz, CDCl
3) δ 1.25 (36H, s), 1.60 (8H, q), 1.86 (4H, q), 3.44 (4H, t, J = 6.6 Hz), 3.67(8H, t, J = 6.6 Hz);
13C-NMR (75 MHz, CDCl
3) δ 26.0,28.1, 28.5, 28.6, 29.7, 29.8, 30.1, 32.6, 33.6, 72.6; IR (KBr): 3396, 3329,2920, 2850, 1463, 1361, 1058, 1018, 615 cm
-1.
【0046】
合成例2[主鎖の鎖長が32である末端NH
2化合物3の合成]
100 mlナスフラスコに化合物2(66.10 mg, 0.11 mmol)とフタルイミドカリウム(59.90 mg, 0.32 mmol)、DMF(10 ml)を量り入れ、70℃で2日間加熱攪拌した。室温まで冷ました後、分液漏斗に移し、クロロホルムと食塩水で分液を行った。有機層を無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターで溶媒を除去して白色沈澱を得た。得られた沈殿物にメタノールを加えて超音波照射により懸濁させ、それを吸引濾過した後、真空乾燥を行うことで白色粉末のフタルイミド化合物を得た。さらにフタルイミド化合物にベンゼン(10 ml)を加えて加熱しながら溶解させた後にエタノール(10 ml)、ヒドラジン一水和物(H
2NNH
2・H
2O; 1.50 ml)を加え、3時間還流させた。室温まで冷ました後、白色の沈殿物をひだ折り濾過により取り除き、濾液をエヴァポレーターにより濃縮し、溶媒を留去した。その後、分液漏斗に移し、クロロホルム、イオン交換水を用いて分液を行った。有機層を抽出し、無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターにより濃縮した。その後、真空乾燥を行ったところ、白色固体の化合物3を得た(42.6 mg, 0.09 mmol, 収率 80%)。化学反応式を以下に示す。
【0047】
【化9】
【0048】
合成例3[主鎖の鎖長が32である0.5世代末端メチルエステルデンドリマー6の合成]
化合物3(400 mg, 0.83 mmol)を精秤し、メタノール(30 ml)に溶かした溶液を100 mlナス型フラスコに加えた。次に、アクリル酸メチル(1.40 ml, 16.5 mmol)を加え、45℃で3日間攪拌を行った。その後、溶媒を留去し、カラムクロマトグラフィー(シリカ, eluent: CHCl
3:MeOH = 50:1)によって精製したところ、-0.5世代末端メチルエステルデンドリマー4(677 mg, 0.82 mmol, 収率 99%)を得た。次に、エチレンジアミン(7.77 ml)を100 mlナス型フラスコに入れ、合成したデンドリマー4(268 mg, 0.32 mmol)を精秤し、メタノール(30 ml)に溶かした溶液をエチレンジアミン中に滴下し、室温で1日攪拌を行った。その後、濃縮、ジエチルエーテルで再沈澱を行った得た化合物5に、メタノール(30 ml)を加え溶液にし、アクリル酸メチル(2.20 ml)を加え、45℃で5日間攪拌を行った。その後、溶媒を留去し、カラムクロマトグラフィー(シリカ, eluent: CHCl
3:MeOH = 20:1)によって精製を行ったところ、0.5世代末端メチルエステルデンドリマー6(273 mg, 0.17 mmol, 収率52%)を得た。化学反応式を以下に示す。
【0049】
【化10】
【0050】
0.5世代末端メチルエステルデンドリマー6 :
1H-NMR (300 MHz, CDCl
3) δ 1.26 (36H, d), 1.46-1.56 (12H, br), 2.35-2.46 (28H, m), 2.52-2.56 (8H, t, J = 6.0 Hz), 2.74-2.79 (24H, t, J = 6.6 Hz), 3.28-3.30 (8H, m), 3.36-3.41 (8H, t, J = 6.8 Hz), 3.68 (24H, s), 7.23 (4H, br);
13C-NMR (75 MHz, CDCl
3) δ 26.12, 26.15, 26.6, 27.6, 29.4, 29.54, 29.56, 29.6, 29.7, 32.6, 33.3, 37.0, 49.2, 49.6, 51.5, 53.0, 53.2, 70.90, 70.93, 172.2, 172.9; IR (ATR): 2929, 2854, 1737, 1657, 1650, 1438, 1259, 1198, 1176 cm
-1; MALDI-TOF-MS, for C
82H
152N
10O
22: m/z calcd, 1630.11 [MH
+]; found, 1629.77.
【0051】
合成例4[主鎖の鎖長が32である0.5世代末端カルボキシレートデンドリマー7の合成]
0.5世代末端メチルエステルデンドリマー6(34.4 mg, 0.02 mmol)をテトラヒドロフラン(2 ml)に溶かし、遠沈管に入れ、KOH(85.5%)(10.9 mg, 0.19 mmol)をメタノール(3.2 ml)に溶かしたもの(0.13 ml)を遠沈管に滴下し、室温で5時間攪拌し、留去することにより、0.5世代末端カルボキシレートデンドリマー7(38.3 mg, 0.02 mmol, 収率 99%)を得た。化学反応式を以下に示す。
【0052】
【化11】
【0053】
0.5世代末端カルボキシレートデンドリマー7 :
1H-NMR (300 MHz, CD
3OD) δ 1.26 (36H, s), 1.48-1.50 (12H, br), 2.30-2.36 (24H, m), 2.43 (4H, br), 2.60-2.64 (8H, t, J = 6.6 Hz), 2.72-2.86 (16H, t, J = 7.5 Hz), 3.25-3.30 (8H, m), 3.34-3.38 (8H, t, J = 6.6 Hz); IR (ATR): 3389, 2928, 2854, 1643, 1564, 1401 cm
-1.
【0054】
(実施例2)
合成例5[主鎖の鎖長が76である末端Br化合物8の合成]
300 ml二口フラスコに化合物2(8.88g, 14.5 mmol)、K
2CO
3(4.40 g, 31.9 mmol)、DMF(150 ml)を入れ、アルゴンガスを封入しパラフィルムを巻き、65℃で加熱撹拌した。その後、1,10-デカンジオール1(1.15 g, 6.60 mmol)をDMF(30 ml)に溶かした溶液を、2時間かけて滴下し、3日間、65℃で加熱攪拌した。室温まで冷ました後に、2%の塩酸(250 ml)を氷浴中で滴下した。その後、クロロホルムとイオン交換水で分液を行った。有機層を抽出し、5%のNaOH水溶液(100 ml)で3回、イオン交換水(100 ml)で2回洗った。その後、無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターで濃縮し、溶媒を留去した。得られた金色でオイル状の物を、(ジエチルエーテル:ヘキサン = 1:4)(100 ml)中で3時間攪拌し、上澄み溶液をデカンテーションにより取り除いた。その後、少量のアセトンにとかし、ペンタン中、3日間、4℃で攪拌し、析出してきた粉末である化合物8(5.50 g)を収率67%で得た。化学反応式を以下に示す。
【0055】
【化12】
【0056】
化合物8 :
1H-NMR (300 MHz, CDCl
3) δ 1.23-1.46 (84H, m), 1.62 (28H, m), 3.56 (4H, t, J = 6.5 Hz), 4.05 (24H, t, J = 6.5 Hz);
13C-NMR (75 MHz, CDCl
3) δ 26.0, 28.1, 28.7, 29.7, 30.2, 32.8, 33.7, 72.4; IR (KBr): 3332, 2918, 1738, 1469, 1259, 1057, 610 cm
-1.
【0057】
合成例6[主鎖の鎖長が76である末端NH
2化合物9の合成]
100 mlナスフラスコに化合物8(100 mg, 0.08 mmol)とフタルイミドカリウム(59.90 mg, 0.32 mmol)、DMF(10 ml)を量り入れ、70℃で2日間加熱攪拌した。室温まで冷ました後、分液漏斗に移し、クロロホルムと食塩水で分液を行った。有機層を無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターで溶媒を除去して白色沈澱を得た。得られた沈殿物にメタノールを加えて超音波照射により懸濁させ、それを吸引濾過した後、真空乾燥を行うことで白色粉末のフタルイミド化合物を得た。さらにフタルイミド化合物にベンゼン(10 ml)を加えて加熱しながら溶解させた後にエタノール(10 ml)、ヒドラジン一水和物(1.50 ml)を加え、3時間還流させた。室温まで冷ました後、白色の沈殿物をひだ折り濾過により取り除き、濾液をエヴァポレーターにより濃縮し、溶媒を留去した。その後、分液漏斗に移し、クロロホルム、イオン交換水を用いて分液を行った。有機層を抽出し、無水硫酸マグネシウムで乾燥させ、ひだ折り濾紙を用いて濾別し、濾液をエヴァポレーターにより濃縮した。その後、真空乾燥を行ったところ、白色固体の化合物9を得た(71.5 mg, 0.07 mmol, 収率 80%)。化学反応式を以下に示す。
【0058】
【化13】
【0059】
合成例7[主鎖の鎖長が76である0.5世代末端メチルエステルデンドリマー12の合成]
化合物9(300 mg, 0.28 mmol)を精秤し、メタノール(30 ml)に溶かした溶液を100 mlナス型フラスコに加えた。次に、アクリル酸メチル(0.95 ml, 11.1 mmol)を加え、45℃で3日間攪拌を行った。その後、溶媒を留去し、カラムクロマトグラフィー(シリカ, eluent: CHCl
3:MeOH = 50:1)によって精製したところ、-0.5世代末端メチルエステルデンドリマー10(391 mg, 0.28 mmol, 収率 99%)を得た。次に、エチレンジアミン(7.77 ml)を100 mlナス型フラスコに入れ、合成したデンドリマー10(391 mg, 0.28 mmol)を精秤し、メタノール(30 ml)に溶かした溶液をエチレンジアミン中に滴下し、室温で1日攪拌を行った。その後、濃縮、ジエチルエーテルで再沈澱を行って得た化合物11に、メタノール(30 ml)を加え溶液にし、アクリル酸メチル(2.20 ml, 25.5 mmol)を加え、45℃で5日間攪拌を行った。その後、溶媒を留去し、カラムクロマトグラフィー(シリカ, eluent: CHCl
3:MeOH = 20:1)によって精製を行ったところ、0.5世代末端メチルエステルデンドリマー12(267 mg, 0.12 mmol, 収率43%)を得た。化学反応式を以下に示す。
【0060】
【化14】
【0061】
0.5世代末端カルボキシレートデンドリマー12 : IR (ATR): 2929, 2854, 1737, 1657, 1650, 1438, 1259, 1198, 1176 cm
-1.
【0062】
合成例8[主鎖の鎖長が76である0.5世代末端カルボキシレートデンドリマー13の合成]
0.5世代末端メチルエステルデンドリマー12(50.0 mg, 0.02 mmol)をテトラヒドロフラン(2 ml)に溶かし、遠沈管に入れ、KOH(85.5%)(10.9 mg, 0.19 mmol)をメタノール(3.2 ml)に溶かしたもの(0.13 ml)を遠沈管に滴下し、室温で5時間攪拌し、留去することにより、0.5世代末端カルボキシレートデンドリマー13(54.3 mg, 0.02 mmol, 収率 99%)を得た。化学反応式を以下に示す。
【0063】
【化15】
【0064】
0.5世代末端カルボキシレートデンドリマー13 : IR (ATR): 3389, 2928, 2854, 1643, 1564, 1401 cm
-1.
【0065】
[水中におけるSWNTs分散試験]
図1のフローチャートに示されるように、ねじ口試験管に単層カーボンナノチューブ1 mgと実施例1により得られたコアユニットにおける主鎖の鎖長が32のポリエーテルからなるデンドリマー(C30G0.5(COOK)
8)1 μmol、D
2O 10 mlを加えサンプルを調製し、室温で、1時間超音波処理を行い、8000 Gで、40分間遠心分離を経て、
図2で示される黒色透明な上澄み溶液を作製した。得られた黒色透明な上澄み溶液中で分散されたカーボンナノチューブについて、可視近赤外吸収スペクトルを用いた分析を行った。同様に、主鎖の鎖長が6のアルキル鎖からなるデンドリマー(C6G0.5(COOK)
8)、及び主鎖の鎖長が10のアルキル鎖からなるデンドリマー(C10G0.5(COOK)
8)を用いてカーボンナノチューブの分散試験を行い、可視近赤外吸収スペクトルを用いた分析を行った。得られたスペクトルを
図3に示す。更に、HiPcoチューブを用いて塗布法により得られたカーボンナノチューブ薄膜のラマンスペクトル分析、及び原子間力顕微鏡(AFM)を用いた分析を行った。得られた結果を
図4及び
図5に示す。
【0066】
図3の可視近赤外吸収スペクトルから分かるように、C6G0.5(COOK)
8、及びC10G0.5(COOK)
8と比べて、主鎖の鎖長が32のポリエーテルからなる本発明のデンドリマー(C30G0.5(COOK)
8)を用いた場合には、吸光度の値が高く、分散状態が安定であることが分かる。また、
図4のラマンスペクトル及び
図5のAFM画像から、本発明のデンドリマーを用いることで長いカーボンナノチューブや太いカーボンナノチューブの分散が可能であることが確認された。
【0067】
[有機溶媒(THF)中におけるSWNTs分散試験]
水中におけるSWNTs分散試験と同様にして、ねじ口試験管に単層カーボンナノチューブ1 mgと実施例1により得られたコアユニットにおける主鎖の鎖長が32のポリエーテルからなるデンドリマー(C30G0.5(COOK)
8)1 μmol、THF 10 mlを加えサンプルを調製し、室温で、1時間超音波処理を行い、8000 Gで、40分間遠心分離を経て、黒色透明な上澄み溶液を作製した。得られた黒色透明の上澄み溶液中で分散されたカーボンナノチューブについて、可視近赤外吸収スペクトルを用いた分析を行ったところ、
図6に示されるようにSWNTsに特徴的なピークが観測された。このことは有機溶媒中にも、SWNTsの分散が可能であること明らかとなった。また、メタノールなどへの分散も可能であった。
【0068】
[MWNTs分散試験]
図7のフローチャートに示されるように、ねじ口試験管に多層カーボンナノチューブ(MWNTs)5 mgと実施例1により得られたコアユニットにおける主鎖の鎖長が32のポリエーテルからなるデンドリマー(C30G0.5(COOK)
8)1 μmol、H
2O 10 mlを加えサンプルを調製し、室温で、1時間超音波処理を行い、8000 Gで、40分間遠心分離を経て、
図8で示される黒色透明な上澄み溶液を作製した。得られた黒色透明な上澄み溶液中で分散されたカーボンナノチューブについて、可視近赤外吸収スペクトルを用いた分析を行った。得られたスペクトルを
図9に示す。本発明のデンドリマーは、SWNTsの分散だけでなくMWNTsの分散も可能であることが分かる。
【0069】
[MWNTs/PVA複合膜の作製]
MWNTs分散試験と同様にして黒色透明な上澄み溶液を得て、次いで、
図7のフローチャートに示されるように、多層カーボンナノチューブとポリビニルアルコールとの複合膜を作製した。得られたMWNTs/PVA複合膜の写真を
図10に、MWNTs/PVA複合ゲルの写真を
図11に示す。