(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
[第1の実施の形態]
図1は、第1の実施の形態に係る情報処理装置11を用いたシステムの構成例を示した図である。
図1に示すように、情報処理装置11、設備12、および端末装置13は、例えば、インターネット等のネットワーク14を介して接続されている。
【0013】
情報処理装置11は、設備12からのセンサ信号に基づいて、設備12の異常予兆を検知する。また、情報処理装置11は、異常予兆を検知した場合、その異常予兆に対する保守作業を提示する。情報処理装置11は、例えば、サーバによって構成される。
【0014】
設備12は、電力プラントや石油プラント等のガスタービンや蒸気タービン等である。設備12は、例えば、油圧センサ、水圧センサ、または温度センサ等、様々な種類のセンサを有している。設備12が有するセンサのセンサ信号は、ネットワーク14を介して、情報処理装置11へ送信される。
【0015】
端末装置13は、設備12の保守作業者から、保守作業のレポートを受付ける。例えば、設備12の保守作業者は、設備12の保守作業を行うと、その保守作業内容を端末装置13に入力する。端末装置13は、受付けた保守作業のレポートを、ネットワーク14を介して、情報処理装置11へ送信する。
【0016】
上記では、設備12および端末装置13のそれぞれは1つしか示していないが、複数存在していてもよい。また、情報処理装置11が端末装置13の機能を有していてもよい。すなわち、情報処理装置11が保守作業者から、保守作業のレポートを受付けてもよい。
【0017】
なお、電力会社では、ガスタービンの廃熱などを利用して地域暖房用温水を供給したり、工場向けに高圧蒸気や低圧蒸気を供給したりしている。石油化学会社では、ガスタービンなどを電源設備として運転している。このようにガスタービンなどを用いた各種プラントや設備において、設備の不具合あるいはその兆候を検知する異常検知は、社会へのダメージを最小限に抑えるためにも極めて重要である。
【0018】
ガスタービンや蒸気タービンのみならず、水力発電所での水車、原子力発電所の原子炉、風力発電所の風車、航空機や重機のエンジン、鉄道車両や軌道、エスカレータ、エレベータ、MRIなどの医療機器、半導体やフラットパネルディスプレイ向けの製造・検査装置、機器・部品レベルでも、搭載電池の劣化・寿命など、早期に異常を発見し、診断しなければならない設備は枚挙に暇がない。最近では、健康管理のため、脳波測定・診断に見られるように、人体に対する異常(各種症状)検知も重要になりつつある。
【0019】
図2は、情報処理装置11の機能ブロックの一例を示した図である。
図2に示すように、情報処理装置11は、稼働情報DB(DB:Data Base)101と、保守履歴情報DB102と、異常予兆検知部103と、現象パターン抽出部104と、関連情報紐付部105と、作業キーワード抽出部106と、現象パターン分類基準作成部107と、現象パターン分類部108と、診断モデル作成部109と、保守作業提示部110とを有している。
【0020】
稼働情報DB101は、設備12から出力されるセンサ信号を記憶する。
【0021】
図3は、稼働情報DB101のデータ構成例を示した図である。
図3に示すように、稼働情報DB101には、設備12から出力されたセンサ信号を記憶した日時101aと、そのセンサ信号101bとが記憶される。
【0022】
図2の説明に戻る。保守履歴情報DB102は、設備12の保守に関する情報を記憶する。
【0023】
図4は、保守履歴情報DB102のデータ構成例を示した図である。
図4に示すように、保守履歴情報DB102には、設備12の保守作業に至る原因となったアラーム102aと、そのアラームが発生した発生日時102bと、端末装置13から入力された、自由記述のテキスト情報である保守作業報告書102cと、保守作業にかかったコスト102dと、設備12のダウンタイム102eとが記憶される。
【0024】
図2の説明に戻る。異常予兆検知部103は、センサ信号に基づいて、設備12の異常予兆を検知する。
【0025】
現象パターン抽出部104は、センサ信号の現象パターンを抽出する。
【0026】
関連情報紐付部105は、センサ信号と保守履歴情報とを紐付ける。例えば、関連情報紐付部105は、アラーム102aの発生日時102bを起点に、一定期間遡ったセンサ信号を取り出し、取出したセンサ信号と、アラーム102aの発生日時102bとを紐付ける。より具体的には、関連情報紐付部105は、アラーム102aの発生日時102bを起点に、過去の所定分のセンサ信号を取り出し、取出したセンサ信号と、アラーム102aの発生日時102bとを紐付ける。すなわち、関連情報紐付部105は、保守作業ごとに、その保守作業に関連すると考えられるセンサ信号を紐付ける。
【0027】
作業キーワード抽出部106は、保守作業報告書102cとその付随値とから、作業キーワードを抽出する。付随値は、例えば、コスト102dまたはダウンタイム102e等である。
【0028】
現象パターン分類基準作成部107は、作業キーワードを教師として、現象パターンを分類するための分類基準を作成する。
【0029】
現象パターン分類部108は、現象パターン分類基準作成部107によって作成された分類基準に基づいて、センサ信号から抽出された現象パターンを分類する。
【0030】
診断モデル作成部109は、現象パターンの分類結果から、保守作業者に提示する作業キーワードを推定するための診断モデルを作成する。
【0031】
保守作業提示部110は、現象パターンの分類結果と診断モデルとを用いて、保守作業者に提示する作業キーワードを推定し、これを基に保守作業候補を提示する。
【0032】
情報処理装置11の動作には、蓄積された過去のセンサ信号と保守履歴情報とを用いて診断モデルを作成する「診断モデル作成フェーズ」と、センサ信号に基づき異常予兆を検知し、作成した診断モデルを用いて保守作業の提示を行う「保守作業提示フェーズ」の二つのフェーズがある。
【0033】
診断モデル作成フェーズにおける処理の流れを説明する。まず、異常予兆検知部103は、稼働情報DB101に記憶された過去のセンサ信号を用いて異常予兆検知を行う。次に、現象パターン抽出部104は、同じセンサ信号を用いて現象パターンを抽出する。次に、関連情報紐付部105は、稼働情報DB101に記憶されている過去のセンサ信号と保守履歴情報DB102に記憶されている保守履歴情報の紐付けを行う。次に、作業キーワード抽出部106は、保守履歴情報DB102に記憶されている保守履歴情報から、作業キーワードを抽出する。次に、現象パターン分類基準作成部107は、関連情報紐付部105が紐付けた紐付情報を用い、作業キーワードを教師とし、現象パターンを分類するための分類基準を作成する。次に、現象パターン分類部108は、現象パターン分類基準作成部107にて作成された分類基準を用い、センサ信号から抽出された現象パターンを分類する。次に、診断モデル作成部109は、関連情報紐付部105が紐付けた紐付情報を用い、現象パターンの分類結果から、保守作業者に提示する作業キーワードを推定するための診断モデルを作成する。
【0034】
保守作業提示フェーズにおける処理の流れを説明する。まず、異常予兆検知部103は、診断対象となるセンサ信号(例えば、現在のセンサ信号)を用いて異常予兆検知を行う。次に、現象パターン抽出部104は、現象パターンを抽出する。次に、現象パターン分類部108は、分類基準を用いて抽出した現象パターンの分類を行う。次に、保守作業提示部110は、現象パターン分類部108によって分類された現象パターンの分類結果と、診断モデル作成部109で作成された診断モデルとを用い、保守作業者に提示する作業キーワードを抽出し、これをもとに保守作業を提示する。
【0035】
以下、各ブロックについて詳細に説明する。
上記したように、状態監視の対象となる設備12は、ガスタービンや蒸気タービンなどの設備である。設備12は、設備12の状態を表すセンサ信号を出力し、ネットワーク14を介して情報処理装置1へ送信する。情報処理装置1へ送信されたセンサ信号は、稼働情報DB101に蓄積される。
【0036】
センサ信号は、
図3に示したように、一定間隔毎に取得される多次元時系列信号である。センサの種類は、数百から数千といった数になる場合もある。センサは、例えば、シリンダ、オイル、冷却水などの温度、オイルや冷却水の圧力、軸の回転速度、室温、運転時間などを検出する。センサ信号には、出力や状態を表すのみならず、何かをある値に制御するための制御信号も含まれる。
【0037】
図5は、異常予兆検知部103の詳細な機能ブロックの一例を示した図である。
図5に示すように、異常予兆検知部103は、特徴ベクトル抽出部201と、基準ベクトル算出部202と、異常測度算出部203と、閾値算出部204と、異常検出部205とを有している。
【0038】
特徴ベクトル抽出部201は、センサ信号に基づいて、特徴ベクトルを抽出する。特徴ベクトルは、例えば、センサ信号の信号値を要素としたベクトルである。具体的には、特徴ベクトルは、
図3のセンサ信号101bを要素としたベクトルである。
【0039】
基準ベクトル算出部202は、予め指定された学習期間の特徴ベクトルの集合と、各時刻の特徴ベクトルとに基づいて、各時刻の基準特徴ベクトルを算出する。
【0040】
異常測度算出部203は、各時刻の特徴ベクトルと基準特徴ベクトルとの差に基づいて異常測度を算出する。
【0041】
閾値算出部204は、予め指定された学習期間の異常測度に基づいて閾値を算出する。
【0042】
異常検出部205は、異常測度算出部203によって算出された異常測度と、閾値算出部204によって算出された閾値とを比較して、異常予兆を検出する。
【0043】
異常予兆検知部103の動作には、「学習」と「異常検知」の2つのフェーズがある。「学習」フェーズは、「診断モデル作成」フェーズに対応し、「異常検知」フェーズは、「保守作業フェーズ」に対応する。
【0044】
異常予兆検知部103は、「学習」フェーズにおいて、稼働情報DB101に蓄積されたセンサ信号(以下、データと呼ぶことがある)のうち、指定された期間のデータを用いて、特徴ベクトルを抽出する。ここで、抽出されたデータを「学習データ」と呼ぶこととする。また、異常予兆検知部103は、交差検証によって学習データの異常測度を算出し、全学習データの異常測度に基づき異常予兆判定を行うための閾値を算出する。
【0045】
「異常検知」フェーズにおいて、異常予兆検知部103は、診断対象とする期間のセンサ信号から、特徴ベクトルを抽出する。ここで、抽出されたデータを「評価データ」と呼ぶこととする。また、異常予兆検知部103は、学習データを用いて評価データの異常測度を算出し、閾値と比較して異常予兆があるか否かの判定を行う。
【0046】
図6は、異常予兆検知部103の学習フェーズにおける処理の流れを示したフローチャートである。異常予兆検知部103は、例えば、ユーザの学習指示に応じて、
図6のフローチャートの処理を実行する。
【0047】
まず、特徴ベクトル抽出部201は、稼働情報DB101から、学習期間として指定された期間のセンサ信号を入力する(ステップS1)。
【0048】
次に、特徴ベクトル抽出部201は、入力したセンサ信号ごとに正準化処理を行う(ステップS2)。
【0049】
次に、特徴ベクトル抽出部201は、ステップS2にて正準化したセンサ信号から、特徴ベクトルの抽出を行う(ステップS3)。
【0050】
次に、基準ベクトル算出部202は、ステップS3にて抽出された特徴ベクトルに交差検証用のグループ番号を付与する(ステップS4)。なお、グループは、例えば、1日分を1グループとするなど、期間を指定して決めるか、予め指定されたグループ数に等分に分けて決める。
【0051】
次に、基準ベクトル算出部202は、抽出した特徴ベクトルから、1個目の特徴ベクトルに注目する(ステップS5)。
【0052】
次に、基準ベクトル算出部202は、ステップS5にて注目した注目ベクトルとは異なるグループの特徴ベクトルの中から、注目ベクトルに近い順に予め指定された数の特徴ベクトルを選択する(ステップS6)。
【0053】
次に、基準ベクトル算出部202は、ステップS6にて選択した特徴ベクトルを用いて基準ベクトルを算出する(ステップS7)。
【0054】
次に、異常測度算出部203は、注目した注目ベクトルの基準ベクトルまでの距離に基づいて異常測度を算出する(ステップS8)。
【0055】
次に、異常測度算出部203は、全ベクトルにおいて異常測度算出が終了しているか否か判定する(ステップS9)。異常測度算出部203は、全ベクトルにおいて異常測度算出が終了している場合、ステップS11へ処理を移行する。異常測度算出部203は、全ベクトルにおいて異常測度算出が終了していない場合、ステップS10へ処理を移行する。
【0056】
基準ベクトル算出部202は、ステップS9にて、異常測度算出部203が、全ベクトルにおいて異常測度算出を終了していないと判定した場合、次の特徴ベクトルに注目する(ステップS10)。そして、基準ベクトル算出部202は、ステップS6へ処理を移行する。
【0057】
閾値算出部204は、ステップS9にて、異常測度算出部203が、全ベクトルにおいて異常測度算出を終了していると判定した場合、算出された異常測度に基づいて、閾値を算出する(ステップS11)。その後、本フローチャートの処理を終了する。
【0058】
図6に示したステップの処理について詳細に説明する。
【0059】
ステップS2において、特徴ベクトル抽出部201は、各センサ信号の正準化を行う。例えば、特徴ベクトル抽出部201は、指定された期間の平均と標準偏差を用いて、平均が0、分散が1となるようにセンサ信号を変換する。特徴ベクトル抽出部201は、例えば、異常予兆診断時に同じ変換ができるよう、各センサ信号の平均と標準偏差を記憶装置に記憶しておく。あるいは、特徴ベクトル抽出部201は、例えば、各センサ信号の指定された期間の最大値と最小値を用いて最大が1、最小が0となるようにセンサ信号を変換してもよい。あるいは、特徴ベクトル抽出部201は、最大値と最小値の代わりに予め設定した上限値と下限値を用いてもよい。特徴ベクトル抽出部201は、異常予兆診断時に同じ変換ができるよう、各センサ信号の最大値と最小値または上限値と下限値を記憶装置に記憶しておく。センサ信号の正準化は、単位およびスケールの異なるセンサ信号を同時に扱うためのものである。
【0060】
ステップS3において、特徴ベクトル抽出部201は、時刻毎に特徴ベクトル抽出を行う。特徴ベクトルは、正準化したセンサ信号をそのまま並べて特徴ベクトルとしてもよい。また、特徴ベクトルは、ある時刻に対して±1,±2,…のウィンドウを設け、「ウィンドウ幅(3,5,…)×センサ数」を特徴ベクトルとしてもよい。この場合、特徴ベクトル抽出部201は、データの時間変化を表す特徴を抽出することができる。また、特徴ベクトルは、離散ウェーブレット変換(DWT: Discrete Wavelet Transform)を施して、周波数成分に分解して特徴ベクトルとしてもよい。さらに、ステップS3において、特徴ベクトル抽出部201は、特徴選択を行う。最低限の処理として、分散が非常に小さいセンサ信号および単調増加するセンサ信号を除く必要がある。また、相関解析による無効信号を削除することも考えられる。これは、多次元時系列信号に対して相関解析を行い、相関値が1に近い複数の信号があるなど、極めて類似性が高い場合に、これらは冗長だとして、この複数の信号から重複する信号を削除し、重複しないものを残す方法である。このほか、ユーザが削除するセンサ信号を指定するようにしてもよい。また、長期変動が大きい特徴を除くことも考えられる。長期変動が大きい特徴を用いることは正常状態の状態数を多くすることにつながり、学習データの不足を引き起こすためである。例えば、1周期期間毎の平均と分散を算出し、それらのばらつきによって長期変動の大きさを推定できる。
【0061】
ステップS4〜S7において、基準ベクトル算出部202は、例えば、局所部分空間法(LSC: Local Sub-space Classifier)や投影距離法(PDM: Projection Distance Method)によって、基準ベクトルを算出する。
【0062】
図7は、局所部分空間法を説明する図である。局所部分空間法は、注目ベクトルqのk−近傍ベクトルを用いてk−1次元のアフィン部分空間A1を作成する方法である。
図7には、k=3の場合の例を示している。なお、
図7に示す実線の四角および点線の四角は、学習データを示す。点線の四角は、アフィン部分空間A1の向こう側にある学習データ(ベクトル)を示している。
【0063】
図7に示すx1〜x3は、k−近傍ベクトルを示し、
図6のステップS6において選択された特徴ベクトルの例を示している。指定する数は、kの値である。
図7に示すように、異常測度は、
図7に示す投影距離A2で表されるため、注目ベクトルqに最も近いアフィン部分空間A1上の点Xbを求めればよい。評価データqとそのk−近傍ベクトルXi(i=1,…,k)からbを算出するには、qをk個並べた行列QとXiを並べた行列Xから、次の式(1)に示す相関行列Cを求める。
【0065】
そして、次の式(2)により、線形結合の係数bを計算する。ここまでが、ステップS7における基準ベクトルの算出にあたる。
【0067】
異常測度dは、qとXbの間の距離であるから、次の式(3)で表される。
【0069】
なお、
図5ではk=3の場合を説明したが、特徴ベクトルの次元数より十分小さければいくつでもよい。k=1の場合は、最近傍法と等価の処理になる。
【0070】
投影距離法は、選択された特徴ベクトルに対し独自の原点をもつ部分空間すなわちアフィン部分空間(分散最大の空間)を作成する方法である。ステップS6において指定する数はいくつでも良いが、大きすぎるとベクトルの選択、部分空間の算出ともに時間がかかってしまうので数十から数百とするとよい。アフィン部分空間の算出方法について説明する。まず、選択された特徴ベクトルの平均μと共分散行列Σを求め、次にΣの固有値問題を解いて値の大きい方から予め指定したr個の固有値に対応する固有ベクトルを並べた行列Uをアフィン部分空間の正規直交基底とする。rは特徴ベクトルの次元より小さくかつ選択データ数より小さい数とする。あるいはrは固定した数とせず、固有値の大きい方から累積した寄与率が予め指定した割合を超えたときの値としてもよい。異常測度は、注目ベクトルのアフィン部分空間への投影距離とする。
【0071】
この他、注目ベクトルqのk−近傍ベクトルの平均ベクトルまでの距離を異常測度とする局所平均距離法や、ガウシアンプロセスなどを用いてもよい。
【0072】
ステップS11における閾値を設定する方法について説明する。閾値算出部204は、学習期間の全特徴ベクトルの異常測度を昇順にソートし、予め指定した1に近い比率に到達する値を求める。閾値算出部204は、求めた値を基準としてオフセットを加える、定数倍するなどの処理により閾値を算出する。オフセット0、倍率を1とすれば、求めた値が閾値となる。算出した閾値は、図示していないが、学習データと対応付けて記録しておく。
【0073】
上記に示したように、注目ベクトルの近傍ベクトルを用いて基準ベクトルを作成することにより、状態が複雑に変化する設備に対しても適切な基準により精度の高い異常測度を算出することが可能である。学習データの交差検証により算出された異常測度に基づいて閾値を算出するため、誤報を抑制することができる。
【0074】
異常予兆検知部103の異常検知フェーズでの処理の流れを説明する。
図8は、異常予兆検知部103の異常検知フェーズにおける処理の流れを示したフローチャートである。異常予兆検知部103は、例えば、ユーザの異常検知指示に応じて、
図8のフローチャートの処理を実行する。
【0075】
まず、特徴ベクトル抽出部201は、設備12または稼働情報DB101から、診断対象のセンサ信号を入力する(ステップS21)。
【0076】
次に、特徴ベクトル抽出部201は、入力したセンサ信号ごとに正準化処理を行う(ステップS22)。
【0077】
次に、特徴ベクトル抽出部201は、ステップS22にて正準化したセンサ信号から、特徴ベクトルの抽出を行う(ステップS23)。特徴ベクトル抽出部201は、
図6のステップS2の処理と同様にして、学習データの正準化に用いたものと同じパラメータを用いてセンサ信号の正準化を行い、また、
図6のステップS3の処理と同様にして、特徴ベクトルの抽出を行う。従って、特徴ベクトル抽出部201は、ステップS3において特徴選択を実行した場合、同じ特徴を選択する。ここで、抽出された特徴ベクトルを、学習データと区別するために観測ベクトルと呼ぶこととする。
【0078】
次に、基準ベクトル算出部202は、学習データの特徴ベクトルの中から、観測ベクトルに近い順に予め指定された数の特徴ベクトルを選択する(ステップS24)。
【0079】
次に、基準ベクトル算出部202は、ステップS24にて選択した特徴ベクトルを用いて基準ベクトルを作成する(ステップS25)。
【0080】
次に、異常測度算出部203は、観測ベクトルの基準ベクトルまでの距離に基づいて異常測度を算出する(ステップS26)。
【0081】
次に、異常検出部205は、学習フェーズにおいて算出した閾値と、ステップS26にて算出した異常測度とを比較して、ステップS26にて算出した異常測度が閾値より大きければ異常予兆の判定をし、そうでなければ正常と判定する(ステップS27)。その後、本フローチャートを終了する。
【0082】
現象パターン抽出部104について詳細に説明する。
図9は、現象パターン抽出部104の詳細な機能ブロックの一例を示した図である。
図9に示すように、現象パターン抽出部104は、残差ベクトル算出部301と、分布密度算出部302と、孤立度ベクトル算出部303と、現象パターン算出部304とを有している。
図9には、異常予兆検知部103も示してある。
【0083】
残差ベクトル算出部301は、異常予兆検知部103における処理の基準ベクトルと観測ベクトルとの差を算出する。
【0084】
分布密度算出部302は、2つのセンサ信号の総当たりで学習データの2次元分布密度を算出する。
【0085】
孤立度ベクトル算出部303は、分布密度算出部302によって算出された分布密度に基づいて、評価データの各センサの孤立度を算出する。
【0086】
現象パターン算出部304は、残差ベクトル算出部301で算出された残差ベクトルと、孤立度ベクトル算出部303で算出された孤立度ベクトルとに基づいて、現象パターンを算出する。
【0087】
現象パターン抽出部104の動作には、異常予兆検知部103の動作に合わせて、「学習」と「異常検知」の2つのフェーズがある。現象パターン抽出部104は、「学習」フェーズ時には、分布密度算出部302にて分布密度を算出する。「異常検知」フェーズ時には、残差ベクトル算出部301にて残差ベクトルを算出し、孤立度ベクトル算出部303にて孤立度ベクトルを算出し、現象パターン算出部304にて現象パターンを算出する。
【0088】
図10は、分布密度算出部302の学習フェーズにおける処理の流れを示したフローチャートである。分布密度算出部302は、例えば、ユーザの学習指示に応じて、
図10のフローチャートの処理を実行する。
【0089】
まず、分布密度算出部302は、学習期間の特徴ベクトルを入力する(ステップS31)。
【0090】
次に、分布密度算出部302は、最初の特徴に注目する(ステップS32)。最初の特徴とは、特徴ベクトルの最初の要素であり、例えば、
図3に示すセンサ1の列に対応する。
【0091】
次に、分布密度算出部302は、注目した特徴において、最大値(MAX)と最小値(MIN)を求める(ステップS33)。
【0092】
次に、分布密度算出部302は、求めた最小値から最大値を、指定された数Nで分割する際の刻み幅Sを算出する(ステップS34)。幅Sは、「S=(MAX−MIN)/N」で計算できる。
【0093】
次に、分布密度算出部302は、最小値と最大値から外側に範囲を広げて分布密度算出の処理範囲を算出する(ステップS35)。広げる範囲は、例えば、MINを「MIN−S×M」に変更し、MAXを「MAX+S×M」に変更する。ここで、Mは、予め決められた1以上の整数とする。
【0094】
次に、分布密度算出部302は、学習期間の全データについて特徴値(注目する特徴の値)に対応するビン番号(BNO)を算出する(ステップS36)。ビン番号は、BNO=INT((F−MIN)/(MAX−MIN))によって計算できる。ただし、INT(X)は、Xの整数部を示す。
【0095】
次に、分布密度算出部302は、全特徴においてステップS33〜S36の処理を行ったか否か判定する(ステップS37)。分布密度算出部302は、全特徴においてステップS33〜S36の処理を行った場合、ステップS39へ処理を移行する。分布密度算出部302は、全特徴においてステップS33〜S36の処理を行っていない場合、ステップS38へ処理を移行する。
【0096】
分布密度算出部302は、ステップS37にて、全特徴においてステップS33〜S36の処理を行っていないと判定した場合、次の特徴に注目する(ステップS38)。そして、分布密度算出部302は、ステップS33へ処理を移行する。
【0097】
分布密度算出部302は、ステップS37にて、全特徴においてステップS33〜S36の処理を行ったと判定した場合、特徴2個の最初の組合せに注目する(ステップS39)。2個の特徴は、同じものであってもよい。
【0098】
次に、分布密度算出部302は、分布密度算出用の2次元配列を確保し、すべての要素を「0」にセットする(ステップS40)。配列のサイズは、N+2Mである。
【0099】
次に、分布密度算出部302は、学習データの全データについて、2個の特徴のビン番号に対応する配列の要素に1を加算する(ステップS41)。この処理により、特徴2個による2次元の頻度分布(ヒストグラム)が算出される。
【0100】
次に、分布密度算出部302は、ステップS41にて算出した頻度分布を画像に変換して保存する(ステップS42)。変換方法については後述する。
【0101】
次に、分布密度算出部302は、特徴2個の全ての組合せにおいてステップS40〜S42の処理を行ったか否か判定する(ステップS43)。分布密度算出部302は、全特徴の組み合わせにおいてステップS40〜S42の処理を行った場合、分布密度算出の処理を終了する。分布密度算出部302は、全特徴の組み合わせにおいてステップS40〜S42の処理を行っていない場合、ステップS44へ処理を移行する。
【0102】
分布密度算出部302は、ステップS43にて、全特徴の組み合わせにおいてステップS40〜S42の処理を行っていないと判定した場合、次の組み合わせに注目する(ステップS44)。
【0103】
なお、分布密度算出部302は、図示はしていないが、2次元配列のサイズおよびステップS35で算出した各特徴の最小値と最大値を記憶装置に記憶しておく。
【0104】
ステップS42における、画像変換方法の例を説明する。まず、分布密度算出部302は、配列要素の最大値すなわち最大頻度を求める。画像サイズは、配列サイズと同じとし、各要素の値から対応する座標の画素値を、例えば、255×配列の要素値/最大頻度とする。255は、画素値を8ビットで表す場合の最大値であり、この値を用いれば、そのままビットマップ形式で保存できる。あるいは、画素値を255×LOG(配列の要素値+1)/LOG(最大頻度+1)とする。ただし、LOG(X)はXの対数を表す。このような変換式を用いれば、最大頻度が大きい場合も非ゼロの頻度に非ゼロの画素値を対応させることが可能になる。
【0105】
上記処理により得られた画像は、2次元の特徴空間上で密度が高いところが高い画素値で表されているため、分布密度画像と呼ぶこととする。
【0106】
図11は、分布密度画像の例を示した図である。
図11には、あるセンサa,bの2次元分布密度が示してある。
図11では、画素値「0」を白、画素値「255」を黒で表したグレイスケールの画像を示している。
【0107】
画像の作成方法は、上記方法に限定されない。例えば、分布密度算出部302は、単純な頻度分布ではなく、1個のデータにガウス分布や他の重みつきフィルタを割り当て、それを重畳するようにしてもよい。あるいは、分布密度算出部302は、上記方法で得た画像に所定サイズの最大値フィルタをかけたり、平均フィルタ、その他の重みつきフィルタをかけたりしてもよい。また、2次元分布密度は、必ずしも画像形式で保存する必要はなく2次元配列をテキスト形式で保存してもよい。
【0108】
異常検知フェーズでの残差ベクトル算出部301について詳細に説明する。残差ベクトルは、
図8のステップS23における観測ベクトルと、ステップS25における基準ベクトルとの差である。残差ベクトル算出部301は、全て正の値になるよう、要素ごとに2乗しておいてもよい。また、
図6のステップS3において、±1,±2,…のウィンドウを設けた場合は、ウィンドウ幅分加算して、センサ毎にまとめてもよい。残差ベクトルは、異常測度に対して、各センサがどれだけ寄与しているかを表すものである。
【0109】
異常検知フェーズでの孤立度ベクトル算出部303について詳細に説明する。
図12は、孤立度ベクトル算出部303の異常検知フェーズにおける処理の流れを示したフローチャートである。孤立度ベクトル算出部303は、例えば、ユーザの異常検知指示に応じて、
図12のフローチャートの処理を実行する。
【0110】
まず、孤立度ベクトル算出部303は、設備12または稼働情報DB101から、診断対象のセンサ信号を入力する(ステップS51)。
【0111】
次に、孤立度ベクトル算出部303は、全センサの孤立度を0にリセットする(ステップS52)。
【0112】
次に、孤立度ベクトル算出部303は、最初のセンサに注目し、これをセンサiとする(ステップS53)。
【0113】
次に、孤立度ベクトル算出部303は、最初のセンサに注目し、これをセンサjとする(ステップS54)。
【0114】
次に、孤立度ベクトル算出部303は、センサiおよびjの分布密度画像について、センサiおよびjの信号値に対応する座標の画素値を読み込む(ステップS55)。
【0115】
次に、孤立度ベクトル算出部303は、画素値が「0」であれば、センサiの孤立度に1を加算する(ステップS56)。
【0116】
次に、孤立度ベクトル算出部303は、センサjにおいて、全てのセンサに注目したか否か判定する(ステップS57)。孤立度ベクトル算出部303は、センサjにおいて、全てのセンサに注目した場合、ステップS59へ処理を移行する。孤立度ベクトル算出部303は、センサjにおいて、全てのセンサに注目していない場合、ステップS58へ処理を移行する。
【0117】
孤立度ベクトル算出部303は、ステップS57にて、センサjにおいて、全てのセンサに注目していないと判定した場合、次のセンサをセンサjとする(ステップS58)。そして、孤立度ベクトル算出部303は、ステップS55へ処理を移行する。
【0118】
孤立度ベクトル算出部303は、ステップS57にて、センサjにおいて、全てのセンサに注目したと判定した場合、センサiにおいて、全てのセンサに注目したか否か判定する(ステップS59)。孤立度ベクトル算出部303は、センサiにおいて、全てのセンサに注目した場合、孤立度ベクトルの算出処理を終了する。孤立度ベクトル算出部303は、センサiにおいて、全てのセンサに注目していない場合、ステップS60へ処理を移行する。
【0119】
孤立度ベクトル算出部303は、ステップS59にて、センサiにおいて、全てのセンサに注目していないと判定した場合、次のセンサをセンサiとする(ステップS60)。
【0120】
この処理により、各センサについて時刻毎に孤立度が算出される。孤立度は、2次元分布上で対応するセンサの信号値が学習データにない場合に高くなる。孤立度ベクトル算出部303は、各センサの孤立度を全センサ分まとめて、孤立度ベクトルとする。
【0121】
異常検知フェーズでの現象パターン算出部304について詳細に説明する。残差ベクトルおよび孤立度ベクトルは、時刻毎に算出される。現象パターン算出部304は、算出された残差ベクトルおよび孤立度ベクトルを時間方向において累積して統合し、現象パターンとする。累積する時間は、異常予兆検知された期間とするか、異常検知された時刻から予め定められた時間遡った期間とする。本実施例では、残差ベクトルと孤立度ベクトルとを統合しているが、どちらか一方でもかまわない。残差ベクトルおよび孤立度ベクトルは、故障のモードによって大きく変化することが予想されるため、保守作業内容を推定するのに有効であると考えられる。
【0122】
現象パターン抽出部104の別の現象パターン抽出動作について説明する。
図13は、現象パターン抽出部104の別の現象パターン抽出動作例を説明する図である。
図13の例では、現象パターン抽出部104は、センサ信号をBOF(Bug of Features)と呼ばれる手法で次元の低いヒストグラム特徴に変換して現象パターンとしている。なお、
図13(A)には、センサi,jのセンサ信号の例が示してある。
【0123】
現象パターン抽出部104は、過去のセンサ信号を用い、時刻毎に全てのセンサ値を並べたベクトルを多数準備する。これらをk−means法などの教師なしクラスタリングによりクラスタ分類の基準を作成しておく。現象パターン抽出部104は、現象パターン抽出の際には、例えば、
図13(A)の点線枠A11に示すように、異常検知時刻から予め定められた時間遡った期間のセンサ信号を切り出し、
図13(B)に示すように、各時刻の特徴ベクトルをクラスタ分類し、
図13(C)に示すように分類結果のヒストグラムを算出する。ヒストグラムは、センサ信号の状態およびその変化を要約した特徴となっており、関連する保守作業内容を推定するのに有効であると考えられる。なお、
図13(B)のP1〜P3は、次元を示し、センサ数に対応する。また、
図13(B)の丸は、一時刻における特徴ベクトルを示し、四角は、クラスタリングの中心を示す。また、
図13(C)のヒストグラムは、
図13(A)の点線枠A11におけるセンサ信号の現象パターンを示している。
【0124】
関連情報紐付部105について詳細に説明する。関連情報紐付部105は、診断モデル作成フェーズにて、稼働情報DB101に記憶された過去のセンサ信号と、保守履歴情報DB102に記憶された保守履歴情報との紐付を行う。
【0125】
図14は、センサ信号と保守履歴情報の紐付を説明する図である。関連情報紐付部105は、保守履歴情報DB102の保守履歴情報に、保守作業に至る原因となったアラームの情報が含まれる場合は、その作業日の前で最も近いアラームの時刻を起点に一定期間遡ってセンサ信号を切り出して紐付けする。
【0126】
例えば、保守履歴情報DB102の保守履歴情報に、保守作業M1に至る原因となったアラーム情報が含まれ、その発生時刻がt1であったとする。この場合、関連情報紐付部105は、
図14に示すように、アラーム時刻t1から一定期間遡ったセンサ信号群g1を、稼働情報DB101から抽出し、保守作業M1と紐付ける。
【0127】
なお、
図14には、現象パターン抽出部104によって、センサ信号群g1,…,gnから抽出された現象パターンP1,…,Pnが示してある。すなわち、現象パターン抽出部104は、保守履歴情報により紐付けられたセンサ信号群の現象パターンを抽出する。
【0128】
上記では、保守作業とセンサ信号とを紐付けたが、アラームの発生時刻とセンサ信号とを紐付けてもよい。
【0129】
また、保守履歴情報DB102にアラームの発生日時が記憶されず、保守作業日が保守履歴情報DB102に記憶される場合は、関連情報紐付部105は、保守作業日を起点に一定期間遡ってセンサ信号を切り出し、紐付けしてもよい。
【0130】
作業キーワード抽出部106について詳細に説明する。作業キーワード抽出部106は、診断モデル作成フェーズにて動作し、保守作業提示フェーズでは動作しない。
【0131】
図15は、作業キーワードの抽出を説明する図である。作業キーワード抽出部106は、
図15(A)に示すように、保守履歴情報DB102から、保守作業報告書(
図15(A)では文書)と、コストとを抽出する。作業キーワード抽出部106は、抽出した文章にIDを付与する。IDは、例えば、保守作業報告書の数分存在する。
【0132】
作業キーワード抽出部106は、抽出した文書を基に、出現する単語を調べ、それぞれの文書における単語の有無を、
図15(B)の矢印A21に示すように、「0」または「1」で表したベクトルに変換する。また、作業キーワード抽出部106は、
図15(B)の矢印A21に示すように、コストを付随値とする。作業キーワード抽出部106は、矢印A21に示すベクトルと、矢印A22に示す付随値との関係を解析することにより、各単語の重要度を算出し、
図15(C)に示すように、重要度付辞書を作成する。
【0133】
解析方法には、各単語の重要度を直接計算する方法と、ベクトルから付随値への回帰モデルを仮定し、回帰係数から重要度を算出する方法がある。前者の例には、次の式(4)で算出されるスムージング平均法がある。
【0135】
ここで、p
jは単語jの重要度、fは仮想的に増加させる語彙の頻度であり、aはその付随値として付随値の中央値とする。分子の右辺は単語jが含まれる文書の付随値の合計、分母の右辺は単語jが含まれる文書の数である。
【0136】
回帰モデルを仮定する方法の例には、LASSO回帰、Supervised Latent Dirichlet Allocation(sLDA)、特異値分解と回帰を組み合わせた手法がある。
【0137】
以上いずれかの方法により、重要なキーワードを抽出することができ、扱いの難しい自由記述のテキストをキーワードの観点で整理することができる。例えば、作業キーワード抽出部106は、作成した重要度付辞書を参照し、重要度の上位から、作業キーワードを所定数抽出する。または、作業キーワード抽出部106は、所定値以上の重要度を持った作業キーワードを抽出してもよい。
【0138】
付随値としては、まずコストまたはダウンタイムとすることが考えられる。これらの情報は、保守作業に密接にかかわる情報であるから、保守履歴情報として記録されている可能性が高く、かつキーワードが重要かそうでないかに直結する。すなわちコストが高いほど、あるいはダウンタイムが長いほど、重大な故障であり、予兆が検知された時点で保守作業を知ることができた場合の効果が大きい。また、コストまたはダウンタイムを付随値としてキーワード抽出を行った場合、保守作業提示とともにコスト予測またはダウンタイム予測を同時に出力可能である。
【0139】
また、付随値として、異常測度またはその累積値を用いることも考えられる。この場合、センサ信号に基づいて異常予兆が検知される故障に関連するキーワードが抽出できる。
【0140】
また、付随値として、特定の単語の有無を用いることも考えられる。例えば、「交換」「調整」などの処置に関する単語の有無を用いれば、交換対象となる部品名、調整対象となるユニット名などの抽出が可能となる。
【0141】
これらの処理を行う前に、頻度が低い単語を除く、逆に一定以上、例えば90%以上の文書に含まれる単語を除く、日時は除く、会社名、人名は除くなどの処理を行っておけばより意味のあるキーワードが抽出されることを期待できる。もちろん、辞書抽出の後に同様の操作を行ってもかまわない。
【0142】
現象パターン分類基準作成部107について詳細に説明する。現象パターン分類基準作成部107は、教師あり学習手法を用いて、現象パターンを分類するための分類基準を作成する。現象パターン分類基準作成部107は、現象パターン抽出部104にて抽出された現象パターンと、その現象パターンのもととなるセンサ信号を紐付けた保守履歴情報に含まれる作業キーワードとに基づいて(学習して)、現象パターンを分類するための分類基準を作成する。なお、保守履歴情報に含まれる作業キーワードは、作業キーワード抽出部106によって抽出される。また、現象パターン分類基準作成部107は、診断モデル作成フェーズにて動作し、保守作業提示フェーズでは動作しない。
【0143】
まず、現象パターン分類基準作成部107は、関連情報紐付部105にて得られる結果を用いて分類基準作成用の学習データを作成する。学習データは、特徴量と教師ラベルとからなる。特徴量は、現象パターン抽出部104で抽出された現象パターンである。教師ラベルは、抽出された現象パターンのもととなるセンサ信号に紐付けられた保守履歴情報に含まれる作業キーワードである。
【0144】
例えば、
図14に示す現象パターンP1,…,Pnが、学習データの特徴量となる。また、
図14に示した現象パターンP1,…,Pnのもととなるセンサ信号群g1,…,gnに対応する保守作業M1,…,Mnの、保守作業報告書から抽出された作業キーワードが、学習データの教師ラベルとなる。
【0145】
なお、教師ラベルは、作業キーワードの組合せをコード化してそれを教師ラベルとしてもよい。このような学習データを入力として教師あり学習を行うと、現象パターンを作業キーワード別に分類するための分類基準が作成される。教師あり学習手法としては、SVM(Support Vector Machine)、判別分析法、部分空間法、決定木法、ナイブベイズ法、フレキシブルナイブベイズ法など様々な手法があり、どの手法を用いてもよい。このように、作業キーワードを教師として現象パターンを分類することにより、予兆を検知して現象パターンを抽出したあと、一位候補の確率が高い保守作業提示が可能である。逆に、現象パターンの分類基準を人手で決めた場合、その分け方が保守作業推定に有効なものとは限らないため、同じような確率で複数の候補が提示されてしまうことになりかねない。
【0146】
現象パターン分類部108は、現象パターン分類基準作成部107にて作成された分類基準に従って、現象パターン抽出部104にて抽出された現象パターンを分類する。この処理により、現象パターンにラベルが付加される。現象パターン分類基準作成部107にて学習に用いたデータについて、教師ラベルと異なるラベルが付加される場合もある。区別するために、ここで付加されるラベルを「診断ラベル」と呼ぶこととする。
【0147】
診断モデル作成部109について詳細に説明する。診断モデル作成部109は、現象パターン分類部108によって分類された現象パターンと、現象パターンのもととなるセンサ信号を紐付けた保守履歴情報に含まれる作業キーワードとに基づいて、保守作業者に提示する作業キーワードを推定するための診断モデルを作成する。診断モデル作成部109は、診断モデル作成フェーズにて動作し、保守作業提示フェーズでは動作しない。
【0148】
図16は、診断モデルを説明する図である。診断モデルは、横軸に作業キーワード401を有し、縦軸に現象パターン402を有するマトリックスであって、ある現象パターンに対して、各作業キーワード401の処置が正しい確率が計算されたものである。
図16の例では、処置に関するキーワード401aと、処置対象に関するキーワード401bとの組合せについて確率が算出されている。
【0149】
キーワード401a,401bの組合せは、現象パターン分類部108で用いた「教師ラベル」に対応する。現象パターン402の分け方は、現象パターン分類部108にて付加された「診断ラベル」に従う。例えば、
図16の現象パターン402に示すタイプA、タイプBなどは、診断ラベル1種に1個対応付けられた名前である。
【0150】
診断モデル作成部109は、診断モデルを作成するため、まず、横軸項目数×縦軸項目数の2次元マトリクスを準備し、全ての要素を0にリセットする。横軸は教師ラベル、縦軸は診断ラベルに対応するため、基本的には横軸と縦軸の項目数は等しい。診断モデル作成部109は、現象パターン分類基準作成部107にて学習に用いたデータについて、診断ラベルと教師ラベルが交差する要素をカウントアップする。全てのデータについて処理が行われると、2次元の頻度分布が得られる。全ての要素を横方向の合計で割り、確率として記録する。このようにして、診断モデルを作成することにより、ある診断ラベルに対して一つの保守作業に絞り込むことはせず、他の可能性も示すことができ、誤りを減らすことができる。
【0151】
保守作業提示部110は、現象パターン分類部108によって分類された現象パターンに基づいて、診断モデル作成部109にて作成された診断モデルを参照し、保守作業者に提示する作業キーワードを抽出して提示する。例えば、保守作業提示部110は、保守作業提示フェーズにおいて、現象パターン分類部108にて得られた診断ラベルに基づいて、診断モデルを参照して、各作業キーワードの確率を求め、確率が0でない保守作業を確率が高い順に確率つきで提示する。
【0152】
図17は、情報処理装置11のハードウェア構成例を示した図である。情報処理装置11は、例えば、
図17に示すような、CPU(Central Processing Unit)等の演算装置501と、RAM(Random Access Memory)などの主記憶装置502と、HDD(Hard Disk Drive)等の補助記憶装置503と、有線又は無線により通信ネットワークと接続するための通信インタフェース(I/F)504と、マウス、キーボード、タッチセンサーやタッチパネルなどの入力装置505と、液晶ディスプレイなどの表示装置506と、DVD(Digital Versatile Disk)などの持ち運び可能な記憶媒体に対する情報の読み書きを行う読み書き装置507と、によって実現することができる。
【0153】
例えば、
図2の異常予兆検知部103、現象パターン抽出部104、関連情報紐付部105、作業キーワード抽出部106、現象パターン分類基準作成部107、現象パターン分類部108、診断モデル作成部109、および保守作業提示部110の機能は、補助記憶装置503などから主記憶装置502にロードされた所定のプログラムを演算装置501が実行することで実現される。稼働情報DB101および保守履歴情報DB102は、例えば、演算装置501が主記憶装置502または補助記憶装置503を利用することで実現される。情報処理装置11の通信は、例えば、演算装置501が通信I/F504を利用することで実現される。
【0154】
なお、上記の所定のプログラムは、例えば、読み書き装置507により読み取られた記憶媒体からインストールされてもよいし、通信I/F504を介してネットワークからインストールされてもよい。
【0155】
また、情報処理装置11の一部またはすべての機能は、例えば、演算装置、記憶装置、駆動回路などを備えるASIC(Application Specific Integrated Circuit)を備えるコントローラー基板等により実現してもよい。
【0156】
また、上述した情報処理装置11の機能構成は、情報処理装置11の構成を理解容易にするために、主な処理内容に応じて分類したものである。構成要素の分類の仕方や名称によって、本願発明が制限されることはない。情報処理装置11の構成は、処理内容に応じて、さらに多くの構成要素に分類することもできる。また、1つの構成要素がさらに多くの処理を実行するように分類することもできる。また、各構成要素の処理は、1つのハードウェアで実行されてもよいし、複数のハードウェアで実行されてもよい。
【0157】
また、上述したフローチャートの各処理単位は、情報処理装置11の処理を理解容易にするために、主な処理内容に応じて分割したものである。処理単位の分割の仕方や名称によって、本願発明が制限されることはない。情報処理装置11の処理は、処理内容に応じて、さらに多くの処理単位に分割することもできる。また、1つの処理単位がさらに多くの処理を含むように分割することもできる。
【0158】
このように、第1の実施の形態によれば、情報処理装置11は、保守履歴情報に含まれる自由記述のテキストデータに基づき作業に関連するキーワードを抽出するため、保守履歴情報をキーワードに基づいて整理することができ、取扱いの難しいテキスト情報の有効活用が可能となる。また、情報処理装置11は、センサ信号から現象パターンを抽出し、作業内容の視点でセンサデータを分類して診断モデルを作成するため、信頼性の高い診断モデルを作成でき、設備12の診断を的確に行うことができる。また、情報処理装置11は、異常予兆検知と同時に現象パターンを抽出し、診断モデルを用いて保守作業を提示するため、予兆の段階で保守作業内容を提示するシステムを実現できる。
【0159】
なお、診断対象となるデータは、現在のセンサ信号でなく、例えば、稼働情報DB101に記憶された過去のセンサ信号であってもよい。例えば、過去の一定期間において、設備の異常予兆を検知し、診断を行ってもよい。
【0160】
また、稼働情報DB101および保守履歴情報DB102は、情報処理装置11の外部装置で実現してもよい。例えば、稼働情報DB101および保守履歴情報DB102は、ネットワーク14に接続された記憶装置で実現してもよい。
【0161】
また、設備12が、機種や号機によって複数存在する場合、情報処理装置11は、機種や号機ごとにおいて、診断モデルを作成することもできる。そして、情報処理装置11は、機種や号機ごとにおいて、設備12の異常予兆検知および診断を行うことができる。例えば、関連情報紐付部105は、機種や号機ごとにおいてセンサ信号と保守履歴情報とを紐付け、診断モデル作成部109は、機種や号機ごとにおいて診断モデル作成する。
【0162】
また、異常予兆検知部103は、センサ信号から異常予兆を検知するとしたが、異常を検知するようにしてもよい。例えば、異常予兆検知部103は、センサ信号が異常と判断される閾値を算出すればよい。
【0163】
[第2の実施の形態]
次に、第2の実施の形態について説明する。第1の実施の形態では、設備から出力されるセンサ信号に基づき異常検知し、過去の保守履歴情報を用いて異常診断したが、第2の実施の形態では、さらに、設備から出力されるイベント信号も用いて異常診断する。
【0164】
図18は、第2の実施の形態に係る情報処理装置11の機能ブロックの一例を示した図である。
図18に示すように、情報処理装置11は、稼働情報DB601と、保守履歴情報DB602と、異常予兆検知部603と、現象パターン抽出部604と、現象パターン分類基準作成部605,611と、現象パターン分類部606,612と、診断モデル作成部607,613と、アラーム予測部608と、関連情報紐付部609と、作業キーワード抽出部610と、保守作業提示部614とを有している。
【0165】
稼働情報DB601は、設備12から出力されるセンサ信号およびイベント信号を記憶する。
【0166】
保守履歴情報DB602は、設備12の保守に関する情報を記憶する。
【0167】
異常予兆検知部603は、センサ信号に基づいて、設備12の異常予兆を検知する。
【0168】
現象パターン抽出部604は、センサ信号から現象パターンを抽出する。
【0169】
現象パターン分類基準作成部605は、イベント信号に含まれるアラームを教師として、現象パターンを分類するための分類基準を作成する。イベント信号に含まれるアラームには、例えば、設備12の油圧低下、水圧低下、水温情報、始動渋滞などがある。
【0170】
現象パターン分類部606は、現象パターン分類基準作成部605によって作成された分類基準に基づいて、センサ信号から抽出された現象パターンを分類する。
【0171】
診断モデル作成部607は、現象パターンの分類結果から、アラームを予測するための診断モデルを作成する。
【0172】
アラーム予測部608は、現象パターンの分類結果と診断モデルとを用いてアラームを予測する。
【0173】
関連情報紐付部609は、センサ信号と保守履歴情報とを紐付ける。
【0174】
作業キーワード抽出部610は、テキストデータである保守作業報告書とその付随値とから、作業キーワードを抽出する。
【0175】
現象パターン分類基準作成部611は、作業キーワードを教師として、現象パターンを分類するための分類基準を、アラームごとに作成する。
【0176】
現象パターン分類部612は、センサ信号から抽出された現象パターンを、現象パターン分類基準作成部611にて作成された分類基準に基づいて分類する。
【0177】
診断モデル作成部613は、現象パターンの分類結果から、保守作業者に提示する作業キーワードを推定するための診断モデルを、アラームごとに作成する。
【0178】
保守作業提示部614は、現象パターンの分類結果と診断モデル作成部613にて作成された診断モデルを用いて、保守作業者に保守作業内容を提示するための作業キーワードを推定し、これを基に保守作業候補を提示する。
【0179】
図18に示す稼働情報DB601、保守履歴情報DB602、関連情報紐付部609、作業キーワード抽出部610、現象パターン分類基準作成部611、現象パターン分類部612、診断モデル作成部613、および保守作業提示部614は、
図2に示した稼働情報DB101、保守履歴情報DB102、関連情報紐付部105、作業キーワード抽出部106、現象パターン分類基準作成部107、現象パターン分類部108、診断モデル作成部109、および保守作業提示部110に対応する。ただし、
図18に示す稼働情報DB601、保守履歴情報DB602、関連情報紐付部609、作業キーワード抽出部610、現象パターン分類基準作成部611、現象パターン分類部612、診断モデル作成部613、および保守作業提示部614は、アラームごとに分類基準および診断モデルを作成するところが
図2と異なる。例えば、
図18に示す情報処理装置11は、油圧低下、水圧低下、水温情報、始動渋滞などのアラームごとにおいて、第1の実施の形態で説明した分類基準および診断モデルを作成する。また、
図18に示す情報処理装置11は、アラームを教師として作成した分類基準(現象パターン分類基準作成部605にて作成された分類基準)によって、センサ信号の現象パターンを分類し、分類した現象パターンに基づいて、診断モデル作成部613で作成された診断モデルを参照し、保守作業を提示する。
【0180】
図18に示す情報処理装置11の動作には、蓄積された過去のセンサ信号とイベント信号と保守履歴情報とを用いて診断モデルを作成する「診断モデル作成フェーズ」と、センサ信号に基づき異常予兆を検知し、診断モデルを用いてアラームを予測し、保守作業の提示を行う「保守作業提示フェーズ」の二つのフェーズがある。
【0181】
診断モデル作成フェーズにおける処理の流れを説明する。まず、異常予兆検知部603は、過去のセンサ信号を用いて異常予兆検知を行う。次に、現象パターン抽出部604は、同じセンサ信号を用いて現象パターンを抽出する。次に、現象パターン分類基準作成部605は、イベント信号に含まれるアラームを教師とし、現象パターンを分類するための分類基準を作成する。次に、現象パターン分類部606は、現象パターン分類基準作成部605にて作成された分類基準を用いて、センサ信号から抽出された現象パターンを分類する。次に、診断モデル作成部607は、現象パターンの分類結果からアラームを予測するための診断モデルを作成する。次に、関連情報紐付部609は、稼働情報DB101に記憶されている過去のセンサ信号およびイベント信号と、保守履歴情報DB102に記憶されている保守履歴情報との紐付けを行う。次に、作業キーワード抽出部610は、保守履歴情報に基づき作業キーワードを抽出する。次に、現象パターン分類基準作成部611は、関連情報紐付部609が紐付けた紐付情報を用い、作業キーワードを教師とし、現象パターンを分類するための分類基準を、アラームごとに作成する。次に、現象パターン分類部612は、対応するアラームの分類基準を用い、センサ信号から抽出された現象パターンを分類する。次に、診断モデル作成部613は、関連情報紐付部609が紐付けた紐付情報を用い、現象パターンの分類結果から、保守作業者が保守作業を行うための作業キーワードを推定するための診断モデルをアラームごとに作成する。
【0182】
保守作業提示フェーズにおける処理の流れを説明する。まず、異常予兆検知部603は、診断対象となるセンサ信号(例えば、現在のセンサ信号)を用いて異常予兆検知を行う。次に、現象パターン抽出部604は、現象パターンを抽出する。次に、現象パターン分類部606は、分類基準を用いて抽出した現象パターンの分類を行う。次に、アラーム予測部608は、現象パターン分類部606の分類結果と、診断モデル作成部607にて作成された診断モデルとを用い、アラーム予測を行う。すなわち、アラーム予測部608は、異常予兆検知部603によって異常予兆が検知され、現象パターン分類部606によって分類された現象パターンが、どのアラームに関連するものか推定する(現象パターンがどのアラームに関するものか確率で示される)。次に、現象パターン分類部612は、確率が0でないと予測されたアラームについての現象パターンを、現象パターン分類基準作成部611によって作成された分類基準を用いて分類する。次に、保守作業提示部614は、現象パターン分類部612によって分類された現象パターンの分類結果と、診断モデル作成部613によって作成された診断モデルを用い、保守作業者に保守作業内容を提示するための作業キーワードの推定を行い、これをもとに保守作業を提示する。
【0183】
なお、保守作業報告書に表れるキーワードは、アラームによって偏りが存在すると考えられる。例えば、油圧低下に関するアラームに対する保守作業報告書には、油圧やその低下に関するキーワードが多く含まれることが考えられる。そこで、
図18の情報処理装置11は、上記したように、アラームごとに診断モデル等を作成し、診断対象となる現象パターンがどのアラームに関するものか予測する。そして、情報処理装置11は、アラーム予測した現象パターンに基づいて診断モデルを参照することにより、保守作業者に正確な作業キーワードを提示することが可能となる。
【0184】
以下に各ブロックの動作について、さらに詳細に説明する。ただし、第1の実施の形態と共通の部分の説明は省略する。なお、異常予兆検知部603、現象パターン抽出部604、および作業キーワード抽出部610における動作は、
図2の異常予兆検知部103、現象パターン抽出部104、および作業キーワード抽出部106と同様である。
【0185】
稼働情報DB601には、
図3で説明した日時101aとセンサ信号101bの他に、イベント信号とイベント信号を記憶した日時とが記憶される。イベント信号には、例えば、アラームの内容を示すコードが含まれている。
【0186】
保守履歴情報DB602には、
図4で説明した保守履歴情報DB102と同様の情報が記憶される。
【0187】
現象パターン分類基準作成部605について説明する。現象パターン分類基準作成部605は、現象パターン分類基準作成部107と同様に、教師あり学習手法を用いて分類基準を作成する。なお、現象パターン分類基準作成部605は、診断モデルフェーズにて動作し、保守作業提示フェーズでは動作しない。
【0188】
まず、現象パターン分類基準作成部605は、特徴量と教師ラベルからなる分類基準作成用の学習データを作成する。特徴量は、現象パターン抽出部604で抽出された現象パターンそのものであり、教師ラベルは、イベント信号から抽出されるアラームのコードである。現象パターンは、アラームより前の時刻で切り出されたセンサ信号から抽出されたものである。このような学習データを入力として教師あり学習を行うと、現象パターンをアラームコード別に分類するための分類基準が作成される。現象パターン分類基準作成部107と同様、教師あり学習手法としてはどのような手法を用いてもよい。
【0189】
現象パターン分類部606は、現象パターン分類基準作成部605にて作成された分類基準に従って、現象パターン抽出部604にて抽出された現象パターンを分類する。この処理により、現象パターンには、ラベルが付加される。現象パターン分類基準作成部605にて使用された教師ラベルを「アラームの教師ラベル」、ここで付加されたラベルを「アラームの診断ラベル」と呼ぶこととする。
【0190】
診断モデル作成部607について説明する。診断モデル作成部607は、現象パターン分類部606によって分類された現象パターンと、イベント信号から抽出されるアラームとに基づいて、現象パターンのアラームを予測するためのアラーム診断モデルを作成する。診断モデル作成部607は、診断モデルフェーズにて動作し、保守作業提示フェーズでは動作しない。
【0191】
図19は、診断モデル作成部607によって作成される診断モデルを説明する図である。診断モデルは、横軸にアラーム701を有し、縦軸に現象パターン702を有するマトリックスであって、ある現象パターンに対して、各アラームの発生の確率が計算されたものである。現象パターン702の分け方は、「アラームの診断ラベル」に従う。縦軸と横軸の決め方以外は、第1の実施の形態における診断モデル作成部109と同様である。
【0192】
アラーム予測部608は、現象パターン分類部606にて得られた「アラームの診断ラベル」に基づいて、診断モデル作成部607にて作成された診断モデルの現象パターン702の欄を参照し、各アラームの確率を求め、確率が0でないアラームを確率が高い順に確率つきで提示する。
【0193】
関連情報紐付部609は、診断モデル作成フェーズにて、稼働情報DB601に記憶されている過去のセンサ信号およびイベント信号と、保守履歴情報DB602に記憶されている保守履歴情報との紐付けを行う。処理方法は、第1の実施の形態と同様であるが、アラームを中心として紐付けを行う。すなわち、関連情報紐付部609は、1件の保守履歴情報について、その作業に至る原因となったアラームを抽出し、その作業日の前で最も近いアラームの時刻を起点に一定期間さかのぼってセンサ信号を切り出して紐付けする。
【0194】
現象パターン分類基準作成部611における処理は、現象パターン分類基準作成部107と同様である。ただし、現象パターン分類基準作成部611は、アラームごとに、保守履歴情報DB602から分類基準作成用の学習データを作成する点が現象パターン分類基準作成部107と異なる。従って、現象パターン分類基準作成部611にて作成される分類基準は、それぞれのアラーム専用のものとなる。
【0195】
現象パターン分類部612は、現象パターン分類基準作成部611にてアラームごとに作成された分類基準に従って、現象パターン抽出部604にて抽出された現象パターンを分類する。この処理により、現象パターンにラベルが付加される。現象パターン分類基準作成部611にて使用された教師ラベルを「作業の教師ラベル」、ここで付加されたラベルを「作業の診断ラベル」と呼ぶこととする。現象パターン分類部612は、診断モデル作成フェーズでは、保守履歴情報DB602から抽出したアラームの情報に基づいて、現象パターン分類基準作成部611にて作成された分類基準を選択して分類を実行する。保守作業提示フェーズでは、アラーム予測部608にて確率が0でないと予測されたアラーム全てについて、個々に現象パターン分類基準作成部611にて作成された分類基準を選択して分類を行い、複数の「作業の診断ラベル」を得る。現象パターン分類部612は、得られた「作業の診断ラベル」に、アラームの確率情報を対応付けておく。
【0196】
診断モデル作成部613について説明する。診断モデル作成部613は、診断モデルフェーズにて動作し、保守作業提示フェーズでは動作しない。
【0197】
図20は、診断モデル作成部613によって作成される診断モデルを説明する図である。診断モデルは、横軸に作業キーワード801を有し、縦軸に現象パターン802を有するマトリックスであって、ある現象パターンに対して、各キーワードの処置が正しい確率が計算されたものである。
図20の例では、処置に関するキーワード801aと、処置対象に関するキーワード801bとの組合せについて確率が算出されている。
【0198】
診断モデル作成部613は、アラームごとに専用の診断モデルを作成する。
図20には、水圧低下に対する診断モデルの例を示している。
【0199】
現象パターン802の分け方は、「作業の診断ラベル」に従う。
図20の例では、処置に関するキーワード801aと処置対象に関するキーワード801bの組合せについて確率が算出される。算出方法は、診断モデル作成部109における処理と同様である。
【0200】
保守作業提示部614は、現象パターン分類部612によって分類された現象パターンに基づいて、診断モデル作成部613にて作成された診断モデルを参照し、各作業キーワードの確率を求める。この処理は、アラーム予測部608にて確率が0でないと予測されたアラーム全てについて、個々に実施する。個々の処理において確率が0でない保守作業が複数抽出される。それらに、例えば、現象パターン分類部612で得られたアラームの確率を掛けて、各保守作業の確率とし、その値が高い順に確率つきで提示する。
【0201】
このように、第2の実施の形態によれば、情報処理装置11は、診断モデルをアラーム診断と作業診断の階層構造としたため、保守作業提示とともに予測アラームの提示を行うことができる。また、情報処理装置11は、ユーザにとって分り易い教師ラベルの数を減らすことができ、精度の高い現象パターンの分類ができるため、より信頼性の高い診断モデルを作成できるようになる。
【0202】
以下、情報処理装置11の診断結果表示に関するGUI(Graphical User Interface)について説明する。なお、設備12は、複数の機種や号機によって形成されているとし、情報処理装置11は、機種や号機ごとにおいて、診断モデルを作成しているものとする。
【0203】
図21は、情報処理装置11の異常検知結果の一覧表示画面の例を示した図である。
図21に示すように、情報処理装置11は、例えば、自身が備える表示装置506または端末装置13の表示装置に、画面901を表示する。
【0204】
画面901に示すように、表示装置には、対象とする設備の通し番号とサイトと号機番号とがリストアップされ、それぞれに対して当日から、一定期間前の(図の例では10日間)異常検知結果が表示される。
図21の丸印は、異常予兆が検知されたことを表す。情報処理装置11は、メンテナンスなど他のイベントを併せて表示するようにしてもよい。スクロールバーの移動によりリストの下部、あるいは過去の情報を参照可能である。いずれかの行をクリックすると、対応する設備の詳細情報が表示される。
【0205】
図22は、選択された設備の詳細を表示する画面例を示した図である。
図22に示すように、選択された設備の画面には、予兆検知結果表示画面1001と、診断結果表示画面1002とがあり、画面上部のタブで切り替えることができる。
【0206】
予兆検知結果表示画面1001には、設備情報と異常検知結果とセンサ信号とに関する情報が表示される。装置情報表示部1003には、対象設備の通し番号とサイトと号機番号とが表示される。日付表示部1004には、日付が表示される。異常検知結果表示ウィンドウ1005には、対応する日付の異常測度、閾値、および異常検知結果の時系列グラフが表示される。
【0207】
ウィンドウの中の上側の黒の実線が異常測度、点線が閾値、下側の黒の実線が異常検知結果(異常の場合1、正常の場合0)を表す。センサ信号表示ウィンドウ1006には、対応する日付のセンサ信号の時系列グラフが表示される。表示対象のセンサ信号は、センサ信号選択ウィンドウ1007での選択により切り替えられる。
【0208】
図示していないが、併せて基準値の時系列グラフを表示してもよい。スクロールバー1008の移動により表示時期を過去にさかのぼることが可能である。終了ボタン1009の押下により、詳細表示画面を消去して異常検知結果一覧表示画面に戻る。
【0209】
図23は、診断結果表示画面1002の画面例を示した図である。
図23に示す装置情報表示部1003と終了ボタン1009は、
図22に示した予兆検知結果表示画面1001と同じである。
【0210】
診断結果表示画面1002には、アラーム診断モデル表示ウィンドウ1010と作業診断モデル表示ウィンドウ1011が含まれる。アラーム診断モデル表示ウィンドウ1010には、診断モデル作成部607にて作成された診断モデルが表示され、選択中の設備の当日の現象パターンの分類結果、すなわちアラームの診断ラベルの欄が強調表示され、もっとも可能性の高いアラームの欄の数値に下線が示される。
【0211】
作業診断モデル表示ウィンドウ1011には、診断モデル作成部613にて作成された診断モデルのうち、もっとも可能性の高いアラーム専用のものが表示され、現象パターンの分類結果、すなわち作業の診断ラベルの欄が強調表示され、もっとも可能性の高い保守作業の欄の数値に下線が示される。
【0212】
スクロールバー1012、1013、1014、1015の移動により、診断モデルの表示範囲を変更することができる。保守作業提示ウィンドウ1016には、アラーム診断モデル表示ウィンドウ1010と作業診断モデル表示ウィンドウ1011との両方の結果を合わせて算出された確率つきの保守作業が確率の高い順に表示される。例えば、保守作業提示ウィンドウ1016には、保守作業候補の例として、「部品X交換90%」が表示されている。「部品X交換90%」は、水圧低下の確率90%と、部品交換Xの確率100%とを乗算して得られる。
【0213】
下線が示された数値をクリックすると、その欄に分類された過去の情報のリストが表示され、そのリストの中の1行をクリックすると、
図22と同様の情報と紐付けられた保守履歴情報が表示される。
【0214】
以上、本発明について実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に多様な変更または改良を加えることが可能であることが当業者には明らかである。また、本発明は、情報処理装置11、情報処理装置11を制御する方法、制御するプログラム、当該プログラムを記憶した記憶媒体として提供することもできる。
【解決手段】現象パターン抽出部104は、設備の過去のセンサ信号の現象パターンを抽出する。関連情報紐付部105は、センサ信号を保守履歴情報に基づいて紐付する。現象パターン分類基準作成部107は、抽出された現象パターンと、現象パターンのもととなるセンサ信号を紐付けた保守履歴情報に含まれる作業キーワードとに基づいて、現象パターンを分類するための分類基準を作成する。現象パターン分類部108は、分類基準に基づいて、現象パターンを分類する。診断モデル作成部109は、分類された現象パターンと、作業キーワードとに基づいて、保守作業者に提示する作業キーワードを推定するための診断モデルを作成する。