【実施例】
【0084】
以下、実施例により本発明をさらに詳細に説明するが、これらは例示的なものであって、本発明をなんら限定するものではない。例中の%及び部は、特にことわらないかぎり重量基準である。
【0085】
実施例1
4−(4’−アミノフェニル)−アゾベンゼンスルホン酸27.7部を水500部に加え、水酸化ナトリウムで溶解する。35%塩酸32部を加え、次に亜硝酸ナトリウム6.9部を加え、1時間攪拌する。これに特許文献6実施例1に記載の下記式(38)の化合物24.5部を含む溶液を滴下しpH3〜4でカップリングを完結させ、塩化ナトリウムで晶析させることにより下記式(39)で示されるジスアゾ化合物を得た。
【化43】
【化44】
得られたジスアゾ化合物に35%塩酸32部を、次に亜硝酸ナトリウム6.9部を加え、25〜30℃で2時間攪拌し、ジアゾ化する。一方、6−(4’−アミノベンゾイル)アミノ−1−ナフトール−3−スルホン酸31.0部を水200部に加え、炭酸ナトリウムで弱アルカリ性として溶解し、この液に先に得られたモノアゾ化合物のジアゾ化物をpH8〜10を保って注入し、攪拌して、カップリング反応を完結させる。塩化ナトリウムで塩析し、濾過して前記式(9)で示されるトリスアゾ化合物45部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は575nmであった。
【0086】
実施例2
4−アミノベンゼンスルホン酸18.3部を水500部に加え、水酸化ナトリウムで溶解し、冷却し10℃以下で、35%塩酸32部を加え、次に亜硝酸ナトリウム6.9部を加え、5〜10℃で1時間攪拌した。そこへ上記式(38)の化合物24.5部を含む溶液を滴下しpH3〜4でカップリングを完結させ下記式(40)のモノアゾ化合物を含む溶液を得る。
【化45】
得られたモノアゾ溶液に再度35%塩酸32部を、次に亜硝酸ナトリウム6.9部を加え、25〜30℃で2時間攪拌し、ジアゾ化し、これに2,5−ジメチルアニリン12.1部、炭酸ナトリウムを加えpH3としてカップリングを完結させた。得られた溶液から塩化ナトリウムで塩析し、濾過して下記式(41)のジスアゾ化合物を得た。
【化46】
化合物(39)の代わりに得られたジスアゾ化合物(41)を用いる以外は実施例1と同様にジアゾ化、カップリング、晶析して前記式(10)で示されるトリスアゾ化合物46.0部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は568nmであった。
【0087】
実施例3
4−アミノベンゼンスルホン酸18.3部を水500部に加え、水酸化ナトリウムで溶解し、冷却し10℃以下で、35%塩酸32部を加え、次に亜硝酸ナトリウム6.9部を加え、5〜10℃で1時間攪拌した。そこへ下記式(42)で示される化合物23部を含む溶液を加え、pH3〜4でカップリングを完結させ下記式(43)のモノアゾ化合物を含む溶液を得る。
【化47】
【化48】
化合物(40)の代わりに得られたモノアゾ化合物(43)を用いる以外は実施例2と同様にジアゾ化、カップリング、晶析して前記式(10)で示されるトリスアゾ化合物40部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は566nmであった。
【0088】
実施例4
6−(4’−メトキシフェニル)アミノ−1−ナフトール−3−スルホン酸34.5部を水200部に加え、炭酸ナトリウムで弱アルカリ性として溶解した液に実施例3で使用したジスアゾ化合物のジアゾ液をpH8〜10を保つように加え、攪拌して、カップリング反応を完結させる。塩化ナトリウムで塩析し、濾過して前記式(12)で示されるトリスアゾ化合物37部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は580nmであった。
【0089】
実施例5
出発原料の4−アミノベンゼンスルホン酸18.3部の代わりに2−アミノ−5−メトキシベンゼンスルホン酸20.9部に変更する以外は実施例2と同様にして下記式(44)のジスアゾ化合物を得た。
【化49】
上記式(43)の代わりに得られたジスアゾ化合物(44)を用いる以外は実施例4と同様にしてジアゾ化、カップリング、晶析して前記式(13)で示されるトリスアゾ化合物30部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は580nmであった。
【0090】
実施例6
6−フェニルアミノ−1−ナフトール−3−スルホン酸31.5部を水200部に加え、炭酸ナトリウムで弱アルカリ性として溶解した液に上記式(44)のジスアゾ化合物を実施例2と同様にジアゾ化して得られたジアゾ液をpH8〜10を保つように加え、攪拌して、カップリング反応を完結させる。塩化ナトリウムで塩析し、濾過して前記式(14)で示されるトリスアゾ化合物43部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は577nmであった。
【0091】
実施例7
2−アミノ−5−メトキシベンゼンスルホン酸20.9部を水500部に加え、水酸化ナトリウムで溶解し、冷却し10℃以下で、35%塩酸32部を加え、次に亜硝酸ナトリウム6.9部を加え、5〜10℃で1時間攪拌した。そこへ下記式(45)で示される化合物24.5部を含む溶液を滴下しpH3〜4でカップリングを完結させ、下記式(46)のモノアゾ化合物を含む溶液を得る。
【化50】
【化51】
得られたモノアゾ溶液に再度35%塩酸32部を、次に亜硝酸ナトリウム6.9部を加え、25〜30℃で2時間攪拌し、ジアゾ化し、これに2,5−ジメチルアニリン12.1部、炭酸ナトリウムを加えpH3としてカップリングを完結させた。得られた溶液から塩化ナトリウムで塩析し、濾過して下記式(47)のジスアゾ化合物を得た。
【化52】
6−(4’−メトキシフェニル)アミノ−1−ナフトール−3−スルホン酸34.5部を水200部に加え、炭酸ナトリウムで弱アルカリ性として溶解した液に上記式(47)のジスアゾ化合物を実施例2と同様にジアゾ化して得られたジアゾ液をpH8〜10を保つように加え、攪拌して、カップリング反応を完結させる。塩化ナトリウムで塩析し、濾過して前記式(15)で示されるトリスアゾ化合物37部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は581nmであった。
【0092】
実施例8
2−アミノ−5−メトキシベンゼンスルホン酸20.9部を水500部に加え、水酸化ナトリウムで溶解し、冷却し10℃以下で、35%塩酸32部を加え、次に亜硝酸ナトリウム6.9部を加え、5〜10℃で1時間攪拌した。そこへ2,5−ジメチルアニリン12.1部、炭酸ナトリウムを加えpH3としてカップリングを完結させて得られるモノアゾ化合物をジアゾ化し、実施例1に倣って上記式(38)とカップリングし、下記式(48)のジスアゾ化合物を得た。
【化53】
6−フェニルアミノ−1−ナフトール−3−スルホン酸31.5部を水200部に加え、炭酸ナトリウムで弱アルカリ性として溶解した液に上記式(48)のジスアゾ化合物を実施例2と同様にジアゾ化して得られたジアゾ液をpH8〜10を保つように加え、攪拌して、カップリング反応を完結させる。塩化ナトリウムで塩析し、濾過して前記式(16)で示されるトリスアゾ化合物33部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は581nmであった。
【0093】
実施例9
上記式(46)のモノアゾ化合物をジアゾ化し、実施例1に倣って上記式(38)とカップリングし、下記式(49)のジスアゾ化合物を得た。
【化54】
6−フェニルアミノ−1−ナフトール−3−スルホン酸31.5部を水200部に加え、炭酸ナトリウムで弱アルカリ性として溶解した液に上記式(49)のジスアゾ化合物を実施例2と同様にジアゾ化して得られたジアゾ液をpH8〜10を保つように加え、攪拌して、カップリング反応を完結させる。塩化ナトリウムで塩析し、濾過して前記式(17)で示されるトリスアゾ化合物28部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は590nmであった。
【0094】
実施例10
2−アミノ−5−メトキシベンゼンスルホン酸20.9部を水500部に加え、水酸化ナトリウムで溶解し、冷却し10℃以下で、35%塩酸32部を加え、次に亜硝酸ナトリウム6.9部を加え、5〜10℃で1時間攪拌した。そこへ下記式(50)で示される化合物24.5部を含む溶液を滴下しpH3〜4でカップリングを完結させ、下記式(51)のモノアゾ化合物を含む溶液を得る。
【化55】
【化56】
得られたモノアゾ溶液に再度35%塩酸32部を、次に亜硝酸ナトリウム6.9部を加え、25〜30℃で2時間攪拌し、ジアゾ化し、これに2,5−ジメチルアニリン12.1部、炭酸ナトリウムを加えpH3としてカップリングを完結させた。得られた溶液から塩化ナトリウムで塩析し、濾過して下記式(52)のジスアゾ化合物を得た。
【化57】
6−(4’−メトキシフェニル)アミノ−1−ナフトール−3−スルホン酸34.5部を水200部に加え、炭酸ナトリウムで弱アルカリ性として溶解した液に上記式(52)のジスアゾ化合物を実施例2と同様にジアゾ化して得られたジアゾ液をpH8〜10を保つように加え、攪拌して、カップリング反応を完結させる。塩化ナトリウムで塩析し、濾過して前記式(18)で示されるトリスアゾ化合物33部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は578nmであった。
【0095】
2−アミノ−5−メトキシベンゼンスルホン酸20.9部を水500部に加え、水酸化ナトリウムで溶解し、冷却し10℃以下で、35%塩酸32部を加え、次に亜硝酸ナトリウム6.9部を加え、5〜10℃で1時間攪拌した。そこへ2,5−ジメチルアニリン12.1部、炭酸ナトリウムを加えpH3としてカップリングを完結させて得られるモノアゾ化合物をジアゾ化し、実施例1に倣って上記式(50)とカップリングし、下記式(53)のジスアゾ化合物を得た。
【化58】
6−(4’−メトキシフェニル)アミノ−1−ナフトール−3−スルホン酸34.5部を水200部に加え、炭酸ナトリウムで弱アルカリ性として溶解した液に上記式(53)のジスアゾ化合物を実施例2と同様にジアゾ化して得られたジアゾ液をpH8〜10を保つように加え、攪拌して、カップリング反応を完結させる。塩化ナトリウムで塩析し、濾過して前記式(19)で示されるトリスアゾ化合物36部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は584nmであった。
【0096】
実施例12
出発原料の2−アミノ−5−メトキシベンゼンスルホン酸20.9部の代わりに4−アミノ−3−スルホ安息香酸21.7部に変更する以外は実施例7と同様にして前記式(20)で示されるトリスアゾ化合物30部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は582nmであった。
【0097】
実施例13
5−アセチルアミノ−2−アミノベンゼンスルホン酸18.9部を水500部に加え、水酸化ナトリウムで溶解し、冷却し10℃以下で、35%塩酸32部を加え、次に亜硝酸ナトリウム6.9部を加え、5〜10℃で1時間攪拌した。そこへ前記式(38)で示される化合物24.5部を含む溶液を滴下しpH3〜4でカップリングを完結させ、下記式(54)のモノアゾ化合物を含む溶液を得る。
【化59】
得られたモノアゾ溶液に再度35%塩酸32部を、次に亜硝酸ナトリウム6.9部を加え、25〜30℃で2時間攪拌し、ジアゾ化し、これに3−メチルアニリン10.7部、炭酸ナトリウムを加えpH3としてカップリングを完結させた。得られた溶液から塩化ナトリウムで塩析し、濾過して下記式(55)のジスアゾ化合物を得た。
【化60】
6−(4’−アミノ−3’−スルホフェニル)アミノ−1−ナフトール−3−スルホン酸41.0部を水200部に加え、炭酸ナトリウムで弱アルカリ性として溶解した液に上記式(55)のジスアゾ化合物を実施例2と同様にジアゾ化して得られたジアゾ液をpH8〜10を保つように加え、攪拌して、カップリング反応を完結させる。塩化ナトリウムで塩析し、濾過して前記式(21)で示されるトリスアゾ化合物18部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は572nmであった。
【0098】
実施例14
化合物(21)10部に水200部、水酸化ナトリウム8部を加え、80℃で2時間攪拌した後、塩化ナトリウムで塩析し、濾過して前記式(22)で示されるトリスアゾ化合物7部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は578nmであった。
【0099】
実施例15
出発原料の5−アセチルアミノ−2−アミノベンゼンスルホン酸18.9部の代わりに2−アミノ−5−ニトロベンゼンスルホン酸20.8部に変更する以外は実施例13と同様にして前記式(23)で示されるトリスアゾ化合物30部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は582nmであった。
【0100】
実施例16
6−メチルアミノ−1−ナフトール−3−スルホン酸25.3部を水200部に加え、炭酸ナトリウムで弱アルカリ性として溶解した液に前記式(55)のジスアゾ化合物を実施例2と同様にジアゾ化して得られたジアゾ液をpH8〜10を保つように加え、攪拌して、カップリング反応を完結させる。塩化ナトリウムで塩析し、濾過して前記式(24)で示されるトリスアゾ化合物33部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は562nmであった。
【0101】
実施例17
出発原料の2−アミノ−5−メトキシベンゼンスルホン酸20.9部の代わりに4−アミノ−2−メチルベンゼンスルホン酸19.7部に変更する以外は実施例6と同様にして前記式(25)で示されるトリスアゾ化合物44部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は578nmであった。
【0102】
実施例18
出発原料の2−アミノ−5−メトキシベンゼンスルホン酸20.9部の代わりに5−アミノイソフタル酸酸18.1部に変更する以外は実施例5と同様にして前記式(26)で示されるトリスアゾ化合物49部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は580nmであった。
【0103】
実施例19
出発原料の2−アミノ−5−メトキシベンゼンスルホン酸20.9部の代わりに5−アミノ−2−(6,8−ジスルホ−2H−ナフトトリアゾール−2−イル)安息香酸43部に変更する以外は実施例5と同様にして前記式(27)で示されるトリスアゾ化合物49部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は582nmであった。
【0104】
実施例20
出発原料の2−アミノ−5−メトキシベンゼンスルホン酸20.9部の代わりに6−アミノナフタレン−1,3−ジスルホン酸30.2部に変更する以外は実施例6と同様にして前記式(28)で示されるトリスアゾ化合物44部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は579nmであった。
【0105】
実施例21
出発原料の2−アミノ−5−メトキシベンゼンスルホン酸20.9部の代わりに7−アミノナフタレン−1,3−ジスルホン酸30.2部、2次カップラーを3−メチルアニリンから2,5−ジメチルアニリンに変更する以外は実施例13と同様にして前記式(29)で示されるトリスアゾ化合物を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は585nmであった。
【0106】
実施例22
特許文献6実施例1に記載の化合物(22)で示されるモノアゾ化合物用いる以外は実施例6と同様にして得られるトリスアゾ化合物を75℃に加熱し、水酸化ナトリウムを5重量%となるように添加して1時間撹拌した。その後、塩酸でpH8に中和、塩化ナトリウムで晶析することにより前記式(30)で示されるトリスアゾ化合物20部を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は596nmであった。
【0107】
実施例23
出発原料の2−アミノ−5−メトキシベンゼンスルホン酸20.9部の代わりに6−アミノ−4−(3−スルホプロポキシ)ナフタレン−2−スルホン酸36.1部に変更する以外は実施例5と同様にして前記式(31)で示されるトリスアゾ化合物を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は590nmであった。
【0108】
実施例24
出発原料の2−アミノ−5−メトキシベンゼンスルホン酸20.9部の代わりに2−アミノ−5−(3−スルホプロポキシ)ナフタレン−1,7−ジスルホン酸44.1部に変更する以外は実施例5と同様にして前記式(33)で示されるトリスアゾ化合物を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は586nmであった。
【0109】
実施例25
前記式(33)の化合物の2次カップラーを2,5−ジメチルアニリン12.1部から2,5−ジメトキシアニリン15.3部に代える以外は実施例24と同様にして前記式(34)で示されるトリスアゾ化合物を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は623nmであった。
【0110】
実施例26
前記式(34)の化合物の最終カップラーを6−(4’−メトキシフェニル)アミノ−1−ナフトール−3−スルホン酸34.5部を2−(5−ヒドロキシ−7−スルホナフタレン−2−イル)−2H−ナフトトリアゾール−6,8−ジスルホン酸55.0部に変更する以外は実施例24と同様にして前記式(35)で示されるトリスアゾ化合物を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は557nmであった。
【0111】
実施例27
前記式(35)の化合物の2次カップラーを2,5−ジメチルアニリン12.1部から2−メトキシー5−メチルアニリン13.7部に代える以外は実施例24と同様にして前記式(36)で示されるトリスアゾ化合物を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は596nmであった。
【0112】
実施例28
前記式(34)の化合物の最終カップラーを6−(4’−メトキシフェニル)アミノ−1−ナフトール−3−スルホン酸34.5部を6−(4’−ヒドロキシフェニルアゾ)−1−ナフトール−3−スルホン酸33.4部55.0部に変更する以外は実施例24と同様にして前記式(37)で示されるトリスアゾ化合物を得た。この化合物の20%ピリジン水溶液中の極大吸収波長は606nmであった。
【0113】
実施例29
実施例1で得られた化合物(9)の染料の0.03%および芒硝0.1%の濃度とした45℃の水溶液に、厚さ75μmのポリビニルアルコールを4分間浸漬した。このフィルムを3%ホウ酸水溶液中で50℃で5倍に延伸し、緊張状態を保ったまま水洗、乾燥して偏光膜を得た。
得られた偏光膜の極大吸収波長は585nmであり、偏光率は99.9%であり、高い偏光率を有していた。
【0114】
実施例30〜57
化合物(9)と同様に、実施例2〜28に記載のアゾ化合物を用いて、実施例29と同様にして偏光膜を得た。得られた偏光膜の極大吸収波長及び偏光率を表1に示す。表1に示した通り、これらの化合物を用いて作成した偏光膜は、高い偏光率を有していた。
【0115】
表1
実施例 アゾ化合物の塩 極大吸収波長(nm) 偏光率(%)
29 前記式(9)の化合物 585 99.9
30 前記式(10)の化合物 562 99.9
31 前記式(11)の化合物 558 99.9
32 前記式(12)の化合物 586 99.9
33 前記式(13)の化合物 586 99.9
34 前記式(14)の化合物 575 99.9
35 前記式(15)の化合物 584 99.9
36 前記式(16)の化合物 593 99.9
37 前記式(17)の化合物 593 99.9
38 前記式(18)の化合物 590 99.9
39 前記式(19)の化合物 588 99.9
40 前記式(20)の化合物 586 99.9
41 前記式(21)の化合物 584 99.9
42 前記式(22)の化合物 591 99.9
43 前記式(23)の化合物 590 99.9
44 前記式(24)の化合物 558 99.9
45 前記式(25)の化合物 577 99.9
46 前記式(26)の化合物 589 99.9
47 前記式(27)の化合物 591 99.9
48 前記式(28)の化合物 578 99.9
49 前記式(29)の化合物 593 99.9
50 前記式(30)の化合物 601 99.9
51 前記式(31)の化合物 587 99.9
52 前記式(32)の化合物 580 99.9
53 前記式(33)の化合物 582 99.9
54 前記式(34)の化合物 631 99.9
55 前記式(35)の化合物 557 99.9
56 前記式(36)の化合物 593 99.9
57 前記式(37)の化合物 608 99.9
【0116】
実施例58〜59
実施例29及び実施例30で得られた偏光膜の両面にポリビニルアルコール水溶液の接着剤を介してトリアセチルセルロースフィルム(TACフィルム;富士写真フィルム社製;商品名TD−80U)をラミネートし、粘着剤を用いてガラスに貼合して偏光板とした。この偏光板を促進キセノンアーク試験機(ワコム社製促進キセノンアーク試験機)で432h光照射し、照射前後の偏光率変化を測定した。偏光率変化率を{(照射前の偏光率)−(照射後の偏光率)}/(照射前の偏光率)で算出した結果、それぞれ0.6%、0.8%であり、優れた耐久性を示していた。
【0117】
比較例1
実施例1の化合物(9)に代えて特許文献2実施例1で示される下記化合物(56)を用いて実施例20と同様に偏光膜を作成し、実施例39と同様にラミネートして偏光板とした。この偏光板を促進キセノンアーク試験機(ワコム社製促進キセノンアーク試験機)で432h光照射し、照射前後の偏光率変化を測定した。偏光率変化率を同様に算出した結果、実施例39,40の偏光板に比べ、4.5%であり大きく耐久性が劣っていた。
【化61】
【0118】
実施例60〜67
実施例33、35、41、46、47、49、52、53で得られた偏光膜を用いて実施例58と同様に偏光板を作成した。この偏光板を促進キセノンアーク試験機(スガ精機社製;SX−75)で200h光照射し、照射前後の偏光率変化を測定した。偏光率変化率を{(照射前の偏光率)−(照射後の偏光率)}/(照射前の偏光率)で算出した結果、それぞれ表2で示す変化であり、優れた耐久性を示していた。
【0119】
表2
実施例 偏光膜 偏光率変化率(%)
60 実施例33の偏光膜 1.8%
61 実施例35の偏光膜 1.7%
62 実施例41の偏光膜 2.0%
63 実施例46の偏光膜 0.9%
64 実施例47の偏光膜 2.5%
65 実施例49の偏光膜 2.0%
66 実施例52の偏光膜 0.6%
67 実施例53の偏光膜 0.8%
比較例2 比較例2の偏光膜 4.4%
【0120】
比較例2
実施例33の化合物に代えて、特許文献5、実施例7の化合物(41)と同様にして作成した偏光膜を実施例33と同様にラミネートした。促進キセノンアーク試験機(スガ精機社製;SX−75)で200h光照射し、光照射前後の偏光度の変化は、それぞれ4.4%であり、実施例化合物に比べ大きく耐久性が劣っていた。
【0121】
実施例68
実施例5で得られた化合物(13)を染料0.2%、シー・アイ・ダイレクト・オレンジ39を0.07%、シー・アイ・ダイレイクト・レッド81を0.02%及び芒硝0.1%の濃度とした45℃の水溶液を用いる以外は実施例20と同様にして偏光膜を作成した。得られた偏光膜の一方の面にTAC膜(膜厚80μm、商品名TD−80U、富士写真フィルム社製)、他方の面に該TAC膜の片側に約10μmのUV(紫外線)硬化型ハードコート層を形成したフィルムをPVA系の接着剤を使用して貼付し、本発明の偏光板を得た。この偏光板の片側にアクリル酸エステル系の粘着剤を付与して粘着層付き偏光板とし、さらにハードコート層の外側に真空蒸着によりAR(反射防止)マルチコート加工を施し、30mm×40mmの大きさにカットし、同じ大きさの透明な片面AR層付きのガラス板に貼付してAR支持体付きの本発明の偏光板(液晶プロジェクタ緑色チャンネル用)を得た。本実施例の偏光板は、極大吸収波長(λmax)570nmであり、500〜580nmにおける単板平均光透過率は45%、直交位の平均光透過率は0.02%であり、高い偏光度を有し本発明の偏光板(液晶プロジェクタ緑色チャンネル用)を得た。本実施例の偏光板は、高い偏光率を有し、かつ高温且つ高湿の状態でも長時間にわたる耐久性を示した。また長時間暴露に対する耐光性も優れていた。