(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5756585
(24)【登録日】2015年6月5日
(45)【発行日】2015年7月29日
(54)【発明の名称】組合せレーザおよび荷電粒子ビーム・システム
(51)【国際特許分類】
H01J 37/317 20060101AFI20150709BHJP
H01J 37/244 20060101ALI20150709BHJP
B23K 26/00 20140101ALI20150709BHJP
B23K 26/12 20140101ALI20150709BHJP
B23K 26/36 20140101ALI20150709BHJP
B23K 15/00 20060101ALI20150709BHJP
【FI】
H01J37/317 D
H01J37/244
B23K26/00 P
B23K26/12
B23K26/36
B23K15/00 508
【請求項の数】48
【全頁数】32
(21)【出願番号】特願2013-503967(P2013-503967)
(86)(22)【出願日】2011年4月7日
(65)【公表番号】特表2013-524466(P2013-524466A)
(43)【公表日】2013年6月17日
(86)【国際出願番号】US2011031644
(87)【国際公開番号】WO2011127327
(87)【国際公開日】20111013
【審査請求日】2014年1月16日
(31)【優先権主張番号】61/321,539
(32)【優先日】2010年4月7日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】501419107
【氏名又は名称】エフ・イ−・アイ・カンパニー
(74)【代理人】
【識別番号】100103171
【弁理士】
【氏名又は名称】雨貝 正彦
(72)【発明者】
【氏名】マーカス・ストロー
(72)【発明者】
【氏名】マーク・ダブリュー・ウトロート
(72)【発明者】
【氏名】エヌ・ウィリアム・パーカー
【審査官】
佐藤 仁美
(56)【参考文献】
【文献】
特開平06−260130(JP,A)
【文献】
特開2001−345360(JP,A)
【文献】
国際公開第2010/006188(WO,A2)
【文献】
特開平11−154479(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 15/00−15/10、
G01N 23/00−23/227、
H01J 37/00−37/02、37/05、37/09−37/18、
37/21、37/24−37/244、
37/252−37/36、
H01L 21/64−21/66
(57)【特許請求の範囲】
【請求項1】
真空室と、
前記真空室内において加工物を支持する加工物支持具と、
イオンを発生させるイオン源および前記イオンを成形してビームにする集束カラムを含むイオン・ビーム・システムであって、前記加工物の位置における前記ビームの直径が1ミクロン未満であるイオン・ビーム・システムと、
電子を発生させる源および前記電子を成形してビームにする集束カラムを含む電子ビーム・システムであって、前記加工物の位置における前記ビームの直径が1ミクロン未満である電子ビーム・システムと、
前記真空室内の前記加工物に対して動作するレーザ・システムであり、レンズを含み、加工物から材料を除去するのに十分な大きさのエネルギーを有するパルス・レーザ・ビームを発生させるレーザ・システムであって、前記レーザ・ビームと、少なくとも一方の前記荷電粒子ビームとが前記試料上の同じ位置に入射するように、集束要素によって前記レーザ・ビームを前記試料上に集束させるレーザ・システムと
前記荷電粒子ビームの衝突によって前記加工物から放出された2次粒子を検出する第1の検出器と、
レーザ・ビーム・ミリングによって生み出された粒子によって前記第1の検出器が飽和しないように前記レーザ・ビームを前記試料上に集束させる前に前記第1の検出器の作動を停止させ、前記レーザ・ビーム・ミリングが完了し、レーザ・ミリングによって生み出された前記粒子が消散した後に前記第1の検出器を再び作動させるように構成された第1の検出器コントローラと
を備える荷電粒子ビーム・システム。
【請求項2】
前記第1の検出器の作動を停止させることが、前記第1の検出器の捕集面に撥ね返すバイアス電圧を印加し、それによってレーザ・ビーム・ミリングによって生み出された粒子の捕集を防ぐことを含む、請求項1に記載の荷電粒子ビーム・システム。
【請求項3】
前記第1の検出器の作動を停止させることが、前記第1の検出器内の1つまたは複数の内部電圧をオフにし、それによって前記第1の検出器の利得を低減させまたはなくすことを含む、請求項1に記載の荷電粒子ビーム・システム。
【請求項4】
前記第1の検出器の作動を停止させることが、前記第1の検出器まで粒子が透過することを防ぐために、前記加工物と前記第1の検出器の間に取り付けられた1つまたは複数の偏向電極に電圧を印加することを含む、請求項1に記載の荷電粒子ビーム・システム。
【請求項5】
前記第1の検出器を作動させることが、前記第1の検出器の捕集面に引き付けるバイアス電圧を印加し、それによって前記荷電粒子ビームの衝突によって前記加工物から放出された前記粒子を前記捕集面に引き付けることを含む、請求項1に記載の荷電粒子ビーム・システム。
【請求項6】
前記第1の検出器が、検出対象の粒子が一対の検出器作動停止板間を通り抜けなければならないように前記一対の検出器作動停止板の後方に配置された検出器を含み、荷電粒子が前記検出器に衝突する代わりに前記検出器作動停止板に引き付けられるように、一方の検出器作動停止板を負電位にバイアスし、もう一方の検出器作動停止板を正電位にバイアスすることによって、前記検出器の作動を停止させることができる、請求項1に記載の荷電粒子ビーム・システム。
【請求項7】
前記検出器作動停止板を前記検出器と実質的に同じ電圧にバイアスすることによって、前記検出器を作動させることができる、請求項6に記載の荷電粒子ビーム・システム。
【請求項8】
前記第1の検出器が、荷電粒子ビーム・カラムの下方の荷電粒子ビーム軸上に配置されたマルチチャンネル・プレートを含み、前記マルチチャンネル・プレートが、検出対象の粒子が一対の作動停止格子を通り抜けなければならないように前記一対の検出器作動停止格子の上方に配置されており、荷電粒子が前記検出器に衝突する代わりに前記検出器作動停止格子に引き付けられるように、一方の検出器作動停止格子を負電位にバイアスし、もう一方の検出器作動停止格子を正電位にバイアスすることによって、前記検出器の作動を停止させることができる、請求項1に記載の荷電粒子ビーム・システム。
【請求項9】
前記第1の検出器が、少なくとも1000倍の信号利得を有する第1の検出器型の検出器である、請求項1〜8のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項10】
前記第1の検出器が、シンチレータ−光電子増倍管検出器、チャンネルトロンまたは固体検出器を含む、請求項1〜9のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項11】
前記第1の検出器型の少なくとも1つの追加の検出器をさらに備える、請求項1〜10のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項12】
前記レーザ・ビーム・ミリングが完了し、レーザ・ミリングによって生み出された前記粒子が消散した後に前記第1の検出器を再び作動させることが、前記レーザ・ビーム・ミリングが完了し、0.1から10μsの遅延期間が終了した後に前記第1の検出器を再び作動させることを含む、請求項1〜11のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項13】
前記レーザ・ビームの衝突によって前記加工物から放出された粒子を検出する第2の検出器型の第2の検出器であって、レーザ・ビーム・ミリングによって生み出された前記粒子によって飽和しない十分に低い利得を有する第2の検出器
をさらに備える、請求項1〜12のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項14】
前記レーザ・ビームを前記試料上に集束させる前に前記第2の検出器を作動させ、前記レーザ・ビーム・ミリングが完了し、レーザ・ミリングによって生み出された前記粒子が消散した後に前記第2の検出器の作動を停止させるように構成された第2の検出器コントローラ
をさらに備える、請求項13に記載の荷電粒子ビーム・システム。
【請求項15】
レーザ・ミリングによって生み出された前記粒子が消散したことを示す前記第2の検出器からの信号を受け取るとすぐに前記第1の検出器を再び作動させるように、前記第1の検出器コントローラが構成された、請求項13または14に記載の荷電粒子ビーム・システム。
【請求項16】
レーザ・ミリングによって生み出された前記粒子が消散し、0.1から10μsの遅延期間が終了したことを示す前記第2の検出器からの信号を受け取るとすぐに前記第1の検出器を再び作動させるように、前記第1の検出器コントローラが構成された、請求項13または14に記載の荷電粒子ビーム・システム。
【請求項17】
前記第2の検出器型が、100倍以下の利得を有する検出器である、請求項13〜16のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項18】
前記第2の検出器がファラデー・カップを含む、請求項13〜17のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項19】
前記第2の検出器が、前記レーザ・ビームの焦点の近くに取り付けられた、請求項13〜18のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項20】
前記第2の検出器型の少なくとも1つの追加の検出器を備える、請求項13〜19のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項21】
前記第2の検出器型の少なくとも1つの追加の検出器を備え、前記第2の検出器型の少なくとも1つの追加の検出器が、前記レーザ・ビームの焦点の近くであって、前記第2の検出器の位置とは反対側の位置に配置された、請求項20に記載の荷電粒子ビーム・システム。
【請求項22】
前記第2の検出器と前記第2の検出器型の前記少なくとも1つの追加の検出器とのうちの一方の検出器を負電圧にバイアスし、もう一方の検出器を正電圧にバイアスして、前記試料の表面に平行な電場を生み出すことによって、前記第2の検出器を作動させる、請求項21に記載の荷電粒子ビーム・システム。
【請求項23】
前記レーザ・システムが前記真空室の外側に配置され、前記レーザ・ビームが、透過性の窓を通って前記真空室に入る、請求項1〜22のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項24】
前記レーザ・ビーム集束要素が放物面鏡である、請求項1〜23のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項25】
前記レーザ・ビーム集束要素がレンズである、請求項1〜24のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項26】
前記レーザ・ビームを前記試料上に導く平面鏡をさらに備える、請求項25に記載の荷電粒子ビーム・システム。
【請求項27】
前記レンズが、前記レーザ・システムと前記鏡の間に配置された、請求項26に記載の荷電粒子ビーム・システム。
【請求項28】
前記レーザ・ビームと前記荷電粒子ビームが軸と焦点の両方を共有する、請求項1〜27のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項29】
前記レーザ集束要素の位置を調整して、前記レーザ・ビームを前記試料上に配置し、前記レーザ・ビームを前記試料上に集束させることができる、請求項1〜28のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項30】
前記レーザ・ビーム集束要素が、少なくとも一方の前記荷電粒子ビームの経路上に配置されており、前記少なくとも一方の荷電粒子ビームが前記集束要素を通過して前記試料に到達することを可能にするために、前記レーザ・ビーム集束要素が、前記集束要素を貫通する穴を有する、請求項1〜29のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項31】
前記集束要素が、前記レーザ・ビームのパターン形成および/または走査を可能にするテレセントリック・レンズである、請求項1〜30のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項32】
前記レーザ・ビームが、光ファイバを使用することなく前記試料室内に導かれる、請求項1〜31のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項33】
前記レーザが超短パルス・レーザを備える、請求項1〜32のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項34】
真空室と、
前記真空室内において加工物を支持する加工物支持具と、
荷電粒子を発生させる荷電粒子源および前記荷電粒子を成形してビームにする集束カラムを含む荷電粒子ビーム・システムであって、前記加工物の位置における前記ビームの直径が1ミクロン未満である荷電粒子ビーム・システムと、
前記真空室内の前記加工物に対して動作するレーザ・システムであって、レンズを含み、レーザ・ビーム・ミリングによって加工物から材料を除去するのに十分な大きさのエネルギーを有するパルス・レーザ・ビームを発生させるレーザ・システムと
を備え、
前記レーザ・ビームと、少なくとも一方の前記荷電粒子ビームとが前記試料上の同じ位置に入射するように、前記真空室内の集束要素によって前記レーザ・ビームを前記試料上に集束させ、
さらに、
前記荷電粒子ビームの衝突によって前記加工物から放出された2次粒子を検出する第1の検出器と、
レーザ・ビーム・ミリングによって生み出された粒子によって前記第1の検出器が飽和しないように前記レーザ・ビームを前記試料上に集束させる前に前記第1の検出器の作動を停止させ、前記レーザ・ビーム・ミリングが完了し、レーザ・ミリングによって生み出された前記粒子が消散した後に前記第1の検出器を再び作動させるように構成された第1の検出器コントローラと
を備える荷電粒子ビーム・システム。
【請求項35】
前記レーザ・ビームの衝突によって前記加工物から放出された粒子を検出する第2の検出器であって、レーザ・ビーム・ミリングによって生み出された前記粒子によって飽和しない十分に低い利得を有する第2の検出器
をさらに備える、請求項34に記載の荷電粒子ビーム・システム。
【請求項36】
前記レーザ・ビームを前記試料上に集束させる前に前記第2の検出器を作動させ、前記レーザ・ビーム・ミリングが完了し、レーザ・ミリングによって生み出された前記粒子が消散した後に前記第2の検出器の作動を停止させるように構成された第2の検出器コントローラ
をさらに備える、請求項35に記載の荷電粒子ビーム・システム。
【請求項37】
レーザ・ミリングによって生み出された前記粒子が消散したことを示す前記第2の検出器からの信号を受け取るとすぐに前記第1の検出器を再び作動させるように、前記第1の検出器コントローラが構成された、請求項35または36に記載の荷電粒子ビーム・システム。
【請求項38】
前記レーザ・システムが前記真空室の外側に配置され、前記ビームが、透過性の窓を通って前記真空室に入る、請求項35〜37のいずれか一項に記載の荷電粒子ビーム・システム。
【請求項39】
加工物をレーザ加工する方法であって、
荷電粒子ビーム・システムおよびレーザ・システムを含むシステム内に加工物を装填するステップと、
前記加工物上に荷電粒子ビームを導くステップと、
前記荷電粒子ビームの衝突によって前記加工物から放出された2次粒子を第1の検出器を使用して検出することによって、前記加工物を画像化するステップと、
前記第1の検出器の作動を停止させるステップと、
前記レーザ・システムを使用してパルス・レーザ・ビームを発生させ、前記レーザ・ビームを前記加工物上に集束させるステップであって、前記パルス・レーザ・ビームが、レーザ・ビーム・ミリングによって加工物から材料を除去するのに十分な大きさのエネルギーを有し、所望の量の材料が除去されるまで前記レーザ・ビームを前記加工物上に集束させるステップと、
レーザ・ミリングによって生み出された粒子が消散した後に前記第1の検出器を再び作動させるステップと、
前記荷電粒子ビームを再び導いて前記加工物を画像化するステップと
を含む方法。
【請求項40】
前記第1の検出器の作動を停止させた後に、前記レーザ・ビームの衝突によって前記加工物から放出された粒子を第2の検出器を使用することによって検出すること
をさらに含む、請求項39に記載の方法。
【請求項41】
レーザ・ミリングによって生み出された粒子が消散した後に前記第1の検出器を再び作動させることが、レーザ・ミリングによって生み出された粒子が消散したことを示す前記第2の検出器からの信号を受け取るとすぐに前記第1の検出器を再び作動させることを含む、請求項40に記載の方法。
【請求項42】
前記第1の検出器が前記加工物を画像化するときに前記第2の検出器の作動を停止させ、前記第1の検出器の作動を停止させた後に前記第2の検出器を作動させる、請求項40に記載の方法。
【請求項43】
前記第1の検出器の作動を停止させることが、レーザ・ビーム・ミリング中に生み出された荷電粒子が前記第1の検出器に引き付けられないように、前記第1の検出器上に電荷を配することを含む、請求項39〜42のいずれか一項に記載の方法。
【請求項44】
前記第2の検出器の作動を停止させることが、前記荷電粒子ビームの衝突によって前記加工物から放出された荷電粒子が前記第2の検出器に引き付けられないように、前記第2の検出器上に電荷を配することを含み、前記第2の検出器を作動させることが、レーザ・ビーム・ミリング中に生み出された荷電粒子が前記第2の検出器に引き付けられるように、前記第2の検出器上に電荷を配することを含む、請求項42に記載の方法。
【請求項45】
所望の量の材料が除去されるまで前記レーザ・ビームを前記加工物上に集束させることが、ミリングの終点に達したことを示す信号を前記第2の検出器から受け取るまで、前記レーザ・ビームを前記加工物上に集束させることを含む、請求項40〜44のいずれか一項に記載の方法。
【請求項46】
ミリングの終点に達したことを示す前記信号が、前記レーザ・ミリングによって除去している材料の変化を示す信号を含む、請求項45に記載の方法。
【請求項47】
前記加工物を画像化することが、前記荷電粒子ビームを使用したラスタ走査を開始し、前記レーザ・ビームを発射する準備が整うまで継続し、次いで前記荷電粒子ビームの前記走査を停止することを含み、レーザの準備が整ったら、所望の期間、前記試料上に前記ビームを集束させ、前記荷電粒子ビームを再び導いて前記加工物を画像化することが、走査を停止した同じ座標から前記走査を再開することを含む、請求項39〜46のいずれか一項に記載の方法。
【請求項48】
前記一連のステップが100μs未満で完了する、請求項47に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、参照により本明細書に組み込まれている、2010年4月7日に出願した米国仮出願第61/321,539号の優先権を主張するものである。
【0002】
本発明は、レーザ・ビーム・システムを荷電粒子ビーム・システムと組み合わせることに関する。
【背景技術】
【0003】
荷電粒子ビーム・システムは、集積回路、磁気記録ヘッド、フォトリソグラフィ・マスクなどの小型デバイスの製造、修復および検査を含むさまざまな用途に使用されている。荷電粒子ビームにはイオン・ビームおよび電子ビームが含まれる。
【0004】
集束ビーム中のイオンは一般に、表面から材料を物理的に追い出すことによって微細機械加工するのに十分な運動量を有する。電子はイオンよりもはるかに軽いため、電子ビームは一般に、エッチング剤蒸気と基板の間の化学反応を誘起することによって材料を除去することに限定される。イオン・ビームおよび電子ビームはともに、最も優れた光学顕微鏡によって達成することができる倍率および分解能よりも大きな倍率および高い分解能で表面を画像化する目的に使用することができる。
【0005】
ガリウム液体金属イオン源(liquid metal ion source)(LMIS)を使用するイオン・ビーム・システムは、高い精度で画像化し、ミリング(milling)し、付着させ、解析する能力を有するため、製造工程において幅広く使用されている。例えばガリウム液体金属イオン源(LMIS)を使用するFIBシステム内のイオン・カラムは、5から7ナノメートルの横方向の分解能を提供しうる。イオン・ビームは、画像化目的で使用されたときでも試料表面を傷つけることがあるため、イオン・ビーム・カラムはしばしば電子ビーム・カラムと組み合わされて、デュアル・ビーム・システムとして使用される。このようなシステムはしばしば、ターゲットに対する損傷を最小限に抑えつつ高分解能画像を提供することができる走査電子顕微鏡(SEM)と、加工物を変更する目的および画像を形成する目的に使用することができる集束ビーム・システム、成形ビーム・システムなどのイオン・ビーム・システムとを含む。液体金属集束イオン・ビームと電子ビームとを含むデュアル・ビーム・システムはよく知られている。そのようなシステムには例えば、本発明の譲受人である米オレゴン州HillsboroのFEI Companyから販売されているQuanta 3D FEG(商標) Systemなどが含まれる。例えば、イオン・ビームを使用して切削により集積回路にトレンチを形成し、次いで電子ビームを使用して、露出したトレンチの壁の画像を形成することができる。
【0006】
残念なことに、高精度のミリングまたは試料除去ではしばしば、あるトレードオフを回避することができない。液体金属イオン源の加工速度はビーム中の電流によって制限される。電流を増大させると、ビームを小さなスポットに集束させることがより困難になる。ビーム電流を小さくすれば分解能を高くすることが可能になるが、そうすると腐食速度が低下し、したがって生産用途および実験室における加工時間が長くなる。ビーム電流を増大させることによって加工速度を高めると加工精度が低下する。
【0007】
また、ビーム電流を大きくしたとしても、微細機械加工用途によっては、集束イオン・ビームによるミリングが依然として容認できないほどに低速であることがある。フェムト秒レーザを使用したミリングなど他の技法を使用して材料をより高速に除去することもできるが、それらの技法の分解能は、一般的なLMIS FIBシステムの分解能よりもはるかに低い。レーザは一般に、荷電粒子ビームよりもはるかに高い速度で基板にエネルギーを供給することができ、そのため、レーザの材料除去速度(レーザ・パルス繰返し速度1kHzで一般に最大7×10
6μm
3/s)は一般に荷電粒子ビームの材料除去速度(ガリウムFIBで一般に0.1から3.0μm
3/s)よりもはるかに高い。レーザ・システムは、レーザ・アブレーションを含む異なるいくつかの機構を使用して微細機械加工を達成する。レーザ・アブレーションでは、小さな体積に急速に供給されたエネルギーによって基板から原子が爆発的に放出される。本明細書では、レーザ・ビームを使用して基板から材料を高速に除去するそのような方法を総称してレーザ・ビーム・ミリングと呼ぶ。
【0008】
図1は、表面から材料を除去している先行技術のレーザの略
図10である。レーザ・ビーム13を発生させている高出力パルス・レーザ12を、ステージ15によって支持されたターゲット材料14上に集束させ、レーザ・フルエンス(fluence)がその材料のアブレーションしきい値を超えると、ターゲット材料の化学結合が切れ、材料は砕けて、一般に中性原子、分子およびイオンの混合物である高エネルギーの破片群となり、材料表面の上方にプラズマ・プルーム(plasma plume)16を形成する。材料は、高エネルギーのプラズマ、ガスおよび固体片の混合物として反応領域を出るため、アブレーション・プロセスは、材料の爆発的な蒸発に似ており、これは、レーザ・ビーム13が集束する点から上方へ材料破片18を押し上げる。
【0009】
荷電粒子ビーム加工と比べると、レーザ・アブレーションは、比較的に大量の材料を非常に迅速に除去することができ、材料除去速度はGa FIBの10
6倍を超える。しかしながら、レーザの波長は、荷電粒子ビーム中の荷電粒子の波長よりもはるかに長い。ビームを集束させることができるサイズは、一つにはビームの波長によって制限されるため(特に回折限界光学部品)、レーザ・ビームの最小スポット・サイズは一般に荷電粒子ビームの最小スポット・サイズよりも大きい。したがって、荷電粒子ビームは一般にレーザ・ビームよりも大きな分解能を有し、極めて小さな構造物を微細機械加工することができるが、ビーム電流が限定され、微細機械加工工程が容認できないほどに低速になることがある。一方、レーザ微細機械加工は一般にはるかに高速だが、分解能は本来的に、そのより長いビーム波長による回折限界によって制限される。
【0010】
荷電粒子ビーム・システムをレーザ・ビーム・システムと組み合わせると、両方のシステムの利点を示すことができる。例えば、高分解能LMIS FIBをフェムト秒レーザと組み合わせると、同じシステム内でのミリング用途の範囲を広げるために、レーザ・ビームを使用して材料を高速に除去し、イオン・ビームを使用して高精度の微細機械加工を達成することができる。電子ビーム・システムを単独でまたはFIBとともに組み込むと、試料の非破壊的な画像化が可能になる。
【0011】
集束イオン・ビーム加工をレーザ機械加工と組み合わせることは、例えば、本発明の譲受人に譲渡された、参照により本明細書に組み込まれているStraw他の「Charged Particle Beam Masking for Laser Ablation Micromachining」という名称の米国特許出願第12/324296号(2008年11月26日)に記載されている。米国特許出願第12/324296は、この背景技術の項に含まれていることによって先行技術であるとは認められない。
【0012】
光ファイバを使用してレーザを荷電粒子ビーム・システムに結合することは知られている。しかしながら、光ファイバを使用して、超短レーザ・パルス(すなわち10psよりも短いパルス)を送達することはできない。これは、弱く結合された単一モード・ファイバでは、群速度分散によってパルス持続時間に問題が生じ、一方で、レーザ・パルスに十分に結合された単一モード・ファイバは、比較的に低エネルギーの超短パルスによって達成可能な高いピーク出力によって損傷を受けるからである。
【0013】
求められているのは、FIB、SEMなどの荷電粒子ビーム・システム内にレーザ・ビームを、レーザ・ビームが荷電粒子ビームと同じ位置に入射し、荷電粒子ビームと軸を共有し、または荷電粒子ビームに隣接するように導入する改良された方法および装置である。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】米国仮出願第61/321,539号
【特許文献2】米国特許出願第12/324296号
【特許文献3】米国特許出願第61/079,304号
【発明の概要】
【発明が解決しようとする課題および課題を解決するための手段】
【0015】
本発明の目的は、荷電粒子ビーム・システム内にレーザ・ビームを導入する改良された方法および装置を提供することにある。本発明の好ましい実施形態によれば、透過性の「窓」を通して荷電粒子システムの真空室内にレーザ・ビームを導入し、そのレーザ・ビームを、1つもしくは複数のレンズおよび/または1つもしくは複数の放物面鏡によって試料上に、好ましくはレーザ・ビームと荷電粒子ビームが同じ位置に入射するように集束させることができる。好ましいいくつかの実施形態では、荷電粒子ビームを通す穴であって、荷電粒子ビームとレーザ・ビームが軸と焦点の両方を共有するようにする穴を有するように、この集束レンズまたは集束鏡を形成することができる。
【0016】
本発明の他の目的は、試料表面のレーザ・ミリングによって生み出された荷電粒子によって画像化検出器(「1型」検出器)が飽和することを防ぐ方法を提供することにある。
【0017】
本発明の他の目的は、レーザ・ミリング中およびレーザによって生み出されたプラズマ・プルームが消散している間だけ作動する第2の検出器セット(「2型」検出器)を提供することにある。2型検出器からの出力信号を使用して、レーザ・ミリング・プロセスの終点検出を提供することができ、さらに、画像化検出器を再び作動させ、レーザが別のパルスを試料に発射する準備が整うまで画像化ラスタを継続するのに十分な程度までプラズマ・プルームが消散したことを示す信号を提供することができる。
【0018】
以上では、以下の本発明の詳細な説明をより十分に理解できるように、本発明の特徴および技術上の利点をかなり広く概説した。以下では、本発明の追加の特徴および利点を説明する。開示される着想および特定の実施形態を、本発明の同じ目的を達成するために他の構造を変更しまたは設計するベースとして容易に利用することができることを当業者は理解すべきである。さらに、このような等価の構造は、添付の特許請求の範囲に記載された本発明の趣旨および範囲を逸脱しないことを当業者は理解すべきである。
【0019】
次に、本発明および本発明の利点のより完全な理解のため、添付図面に関して書かれた以下の説明を参照する。
【図面の簡単な説明】
【0020】
【
図1】表面の材料を除去している先行技術のレーザの略図である。
【
図2】本発明の好ましい一実施形態に基づく組合せSEMおよびレーザの略図である。
【
図3A】本発明の好ましい一実施形態に基づくデュアル・ビームFIB/SEMと共焦点レーザの組合せを示す図である。
【
図3B】本発明の好ましい一実施形態に基づくデュアル・ビームFIB/SEMと共焦点レーザの組合せを示す図である。
【
図4A】
図3A−3Bの実施形態とともに使用するレーザ集束レンズ位置決めアセンブリを示す図である。
【
図4B】
図3A−3Bの実施形態とともに使用するレーザ集束レンズ位置決めアセンブリを示す図である。
【
図5】
図4A−4Bのレンズ位置決めアセンブリの断面を示す図である。
【
図6】荷電粒子の源と試料の間に配置された放物面鏡を実装することによってレーザ・ビームが荷電粒子ビームと組み合わされた、本発明の好ましい他の実施形態を示す図である。
【
図7】荷電粒子ビームに隣接して放物面鏡が配置された本発明の好ましい他の実施形態を示す図である。
【
図8】荷電粒子の源と試料の間に平面鏡が配置された本発明の好ましい他の実施形態を示す図である。
【
図9】穴を有するレンズが平面鏡の下方に配置され、したがってレンズがレーザ・ビームを試料上に集束させ、同時に荷電粒子の通過を依然として許す、本発明の好ましい他の実施形態を示す図である。
【
図10】荷電粒子ビームに隣接して平面鏡が配置された本発明の好ましい他の実施形態を示す図である。
【
図11】材料を高速に除去するレーザを、材料をさらに加工するFIBおよび材料除去プロセスを複数の1型検出器を用いて監視するSEMと組み合わせた、本発明の好ましい一実施形態に基づくシステムを示す図である。
【
図13】材料を高速に除去するレーザを、材料をさらに加工するFIBおよび材料除去プロセスを複数の1型検出器および2型検出器を用いて監視するSEMと組み合わせた、本発明の好ましい一実施形態に基づくシステムを示す図である。
【
図15】軸外れ1型検出器の好ましい一実施形態内の検出器作動停止板(detector deactivating plate)の動作を示す図である。
【
図16】軸外れ1型検出器の好ましい他の実施形態内の検出器作動停止格子(detector deactivating grid)の動作を示す図である。
【
図16A】
図16の好ましい実施形態内の検出器アセンブリの軸に沿った電圧の概略的なグラフである。
【
図16B】
図16の好ましい実施形態内の検出器アセンブリの端面図である。
【
図17】荷電粒子カラムの下方に配置された1型検出器の好ましい一実施形態内の検出器作動停止板の動作を示す図である。
【
図18】荷電粒子カラムの下方に配置された1型検出器の好ましい他の実施形態内の検出器作動停止格子の動作を示す図である。
【
図18A】
図18の好ましい実施形態内の検出器アセンブリの軸に沿った電圧の概略的なグラフである。
【
図19】画像化中の1型検出器の作動および2型検出器の作動停止を示す図である。
【
図20】レーザ・パルシング中およびプラズマ・プルームの消散中の1型検出器の作動停止および2型検出器の作動を示す図である。
【
図21】試料のレーザ・アブレーションと試料の画像化の間の干渉を示す、先行技術のシステムの1型検出器からの画像を示す図である。
【
図22】
図21の中央部のクローズアップ画像を示す図である。
【
図23】
図21−22よりも高いレーザ・フルエンスでの試料のレーザ・アブレーションと試料の画像化の間の干渉を示す、先行技術のシステムの1型検出器からの画像を示す図である。
【
図24】
図23の中央部のクローズアップ画像を示す図である。
【
図25】
図21−22に示した好ましい実施形態での検出器の飽和の影響の概略的なグラフである。
【
図26】
図23−24に示した例での検出器の飽和の影響の概略的なグラフである。
【
図27】レーザ・アブレーションの間、1型検出器が動作を停止するために試料のレーザ・アブレーションと試料の画像化の間の干渉を示さない、本発明の好ましい実施形態に基づくシステム内の1型検出器からのシミュレーションされた画像を示す図である。
【発明を実施するための形態】
【0021】
添付図面は、本発明の理解を助けることが意図されており、特に明記しない限り、一律の尺度では描かれていない。これらの図面では、さまざまな図に示されている同一の構成要素またはほぼ同一の構成要素が、同様の符号によって示されている。見やすくするため、全ての図面の全ての構成要素に符号が付けられているわけではない。
【0022】
本発明の好ましい実施形態は、荷電粒子ビーム・システム内に超短パルス・レーザを導入する改良された装置を提供する。レーザを荷電粒子ビーム・システムと組み合わせると、独立型のシステムにはないいくつかの利点が得られる。例えば、高分解能液体金属イオン源(LMIS)FIBをフェムト秒レーザと組み合わせると、同じシステム内でのミリング用途の範囲を広げるために、レーザ・ビームを使用して材料を高速に除去し、イオン・ビームを使用して高精度の微細機械加工を達成することができる。本発明の好ましい実施形態は、レーザ・ビームを荷電粒子ビームと組み合わせるために室光学部品内で使用することができるいくつかの方法を提供する。後述するいくつかの実施形態では、レーザ・ビームを透過させる材料から形成された窓を通して真空室内にレーザ・ビームを導入する。レーザが真空室内に配置された他の好ましい実施形態も本発明の範囲に含まれる。
【0023】
当業者は、特に本明細書に提供された図を検討することによって、多くの代替実施形態を容易に認識するであろうが、この詳細な説明は本発明の好ましい実施形態を例示するものであり、本発明の範囲は、添付の特許請求の範囲によってのみ限定される。本発明の好ましい方法または装置は多くの新規の態様を有する。本発明は、目的の異なる異なる方法または装置として実施することができるため、全ての実施形態に全ての態様が存在する必要はない。さらに、記載された実施形態の態様の多くは別々に特許を受けることができる。
【0024】
図2は、荷電粒子ビーム・カラム201およびレーザ204の組合せを備える本発明の好ましい一実施形態200を示す。
図2の略図に示されているように、レーザ204からのレーザ・ビーム202は、真空室208内に配置されたレンズ206によって集束して収束レーザ・ビーム220となる。レーザ・ビーム202は窓210を通って真空室に入る。
図2の実施形態では、荷電粒子ビーム212に隣接して配置された単一のレンズ206または一群のレンズ(図示せず)を使用してレーザ・ビーム220を、レーザ・ビーム220が試料214の位置216に衝突するときにレーザ・ビーム220が(荷電粒子ビーム集束カラム201によって生み出された)荷電粒子ビーム212と同じ位置に入射し、荷電粒子ビーム212と焦点を共有し、または荷電粒子ビーム212に隣接するような態様で集束させる。
【0025】
図3Aおよび3Bは、デュアル・ビームFIB/SEMと共焦点レーザの組合せを備える本発明の好ましい一実施形態300を示す。
図2と同様に、レーザ(図示せず)からのレーザ・ビーム302は、真空室308内に配置されたレンズ306によって集束する。
図3の実施形態では、レーザ・ビーム302の位置決めおよび集束を、レンズ位置決めアセンブリ(lens positioning assembly)320(「LPA」)によって制御することができ、LPA320を使用してレンズ306の位置(X、YおよびZ)を調整することができる。LPA管324およびレンズ306を通過するように、レーザによって生み出されたビームをLPA窓322を通して導くことができる。電子ビーム・カラム316および集束イオン・ビーム・カラム317によって生み出された荷電粒子ビームを、試料314上のレーザ・ビーム302と同じ位置に入射させることができる。
【0026】
図4A−4BはLPA320をより詳細に示す一実施形態400を示す。真空室の外壁(破線432によって示されている)にLPAの調整ヘッド430を取り付けることができる。XYZポジショナ434を使用して、X軸(436)、Y軸(437)およびZ軸(438)に沿ったレンズおよびレンズ管アセンブリの位置を調整することができる。図示の実施形態では、手動調整ノブ442および444を使用して、X軸およびY軸に沿ったレンズ・アセンブリの位置を調整することができ、回転アジャスタ446を手動で回転させて、レンズをZ軸に沿って内側および外側へ移動させることができる。XおよびYの調整は、レーザ・ビームが一方または両方の荷電粒子ビームと同じ位置に入射するように、レーザ・ビームを試料上に配置することを可能にする。Zの調整は、ビームを試料上に正確に集束させることを可能にする。さらに
図5を参照すると、ベローズ(bellows)568がZ調整を可能にし、同時にレンズ管アセンブリ内を真空に維持する。
図4A−4Bには手動調整手段を示したが、知られている方法を使用した自動調整も可能であることを当業者は認識するであろう。
【0027】
図5はLPA320の断面を示す。レーザ・ビーム302は窓322および管324を通って進む。調整ヘッド430は、ボルト562によって真空室432の外壁に取り付けることができる。調整ヘッドと真空室の外壁との間の接続部分を密封するために、Oリングまたは同様のシールのための空洞564を設けることができる。同様に、ベローズ568の上部および下部のOリング563が、レンズ管アセンブリの内部に対する真空シールを提供する。
【0028】
図6は、本発明の好ましい他の実施形態600を示す。荷電粒子ビーム612の源(カラム601)と試料614の間に配置された放物面鏡607を実装することによって、レーザ・ビーム602を荷電粒子ビーム612と組み合わせることができる。放物面鏡607は、荷電粒子ビーム612が放物面鏡を通り抜け、試料に到達することを可能にする穴605を有することが好ましい。(レーザ604によって生み出され、窓610を通って室608に入った)レーザ・ビーム602は、鏡607によって反射し、同時に、レーザ・ビーム602と荷電粒子ビーム612が軸および焦点を共有するような態様で試料614上へ集束することになる。
【0029】
図7は、カラム701によって生み出された荷電粒子ビーム712に隣接して放物面鏡707を配置することができる本発明の好ましい他の実施形態700を示す。この場合、鏡707が穴を有する必要はないであろう。(レーザ704によって生み出され、窓710を通って室708に入った)レーザ・ビーム702を反射させ、レーザ・ビーム702が荷電粒子ビーム712と同じ位置に入射し、荷電粒子ビーム712と焦点を共有するか、または荷電粒子ビーム712に隣接するような態様で試料714上に集束させることができる。
【0030】
図8に示す好ましい他の実施形態800では、荷電粒子ビーム812の源(カラム801)と試料814の間に平面鏡807を配置することができる。この場合も、鏡807は、荷電粒子ビーム812が鏡807を通り抜け、試料814に到達することを可能にする穴805を有することが好ましい。この場合には、(レーザ804によって生み出され、窓810を通って室808に入った)レーザ・ビーム802を、鏡807に到達する前にレンズ806によって(または一群のレンズによって)集束させることができる。レンズ806(または一群のレンズ)に対して、鏡807は、レンズ806と試料814の表面のレンズの焦点との間に配置されることが好ましい。したがって、この場合も、レーザ・ビーム802と荷電粒子ビーム812は軸と焦点の両方を共有することになる。
【0031】
図9の好ましい実施形態900では、穴915を有するレンズ906を(やはり穴905を有する)平面鏡907の下方に配置することができ、レンズ906はしたがって、(レーザ904によって生み出され、窓910を通って室908に入った)レーザ・ビーム902を試料914上に集束させ、同時に、(カラム901によって生み出された)荷電粒子ビーム912の通過を依然として許す。この構成も、レーザ・ビーム902と荷電粒子ビーム912が軸と焦点の両方を共有することを可能にする。
【0032】
図10に示す好ましい実施形態1000では、(カラム1001によって生み出された)荷電粒子ビーム1012に隣接して平面鏡1007を配置することができる。この場合、鏡1007に穴は必要ない。(レーザ1004によって生み出され、窓1010を通って室1008に入った)レーザ・ビーム1002は、レーザ1004と鏡1007の間または鏡1007と試料1014の間に配置されたレンズ1006によって試料1014上に集束することが好ましい。レンズ1006をレーザ1004と鏡1007の間に配置する場合、好ましくは、鏡1007を、レンズ1007と試料表面1014のレンズの焦点との間に配置すべきである。この実施形態では、試料表面において、レーザ・ビーム1002を荷電粒子ビーム1012と同じ位置に入射させ、荷電粒子ビーム1012と焦点を共有させることができ、または荷電粒子ビーム1012に隣接させることができる。
【0033】
好ましい他の実施形態では、荷電粒子ビームに隣接して配置されたレンズまたは一群のレンズがテレセントリック・レンズ(telecentric lens)(fシータ(f−theta))であることが好ましい。レーザ源とレンズの間に配置された走査鏡または一群の走査鏡と組み合わせると、この構成は、レーザ・ビームのパターン形成および/または走査を提供することができる。
【0034】
鏡と試料の間にレンズのない鏡構成を含む前述のどの好ましい実施形態でも、レーザ・ビームのパターン形成および/または走査を提供するような方式で鏡を遠隔操作で動かすことができる。アライメントまたはパターン形成/走査に対する追加の自由度を提供するために、追加の鏡を追加することができる。さらに、レーザ・ビームと試料の間の最終光学要素としてレンズまたは一群のレンズを含む前述のどの好ましい実施形態でも、レーザ・ビームのパターン形成および/または走査を提供するような方式でレンズを遠隔操作で動かすことができる。
【0035】
図11は、材料を高速に除去するための(レーザ1106によって生み出された)集束レーザ・ビーム1118を、材料をさらに加工するための(FIBカラム1104によって生み出された)集束イオン・ビーム(FIB)1152および材料除去プロセスを監視するための(SEMカラム1102によって生み出された)電子ビーム1150と組み合わせる、本発明の好ましい一実施形態に基づくシステム1100を示す。レーザ1106が鏡1110に向かってレーザ・ビーム1108を導き、鏡1110はレーザ・ビーム1108を反射させて反射ビーム1112を形成し、反射ビーム1112は透過性の窓1114を通して真空室1150内に導かれる。「透過性」とは、この窓が、使用している特定のタイプのレーザの波長に対して透過性であることを意味する。鏡1110(または同種の反射要素)を使用して、試料1120上のレーザ・ビーム1118の位置を調整することもできる。レンズ1116が、レーザ・ビーム1112(実質的に平行とすることができる)を集束させて、試料1120の表面または試料1120の表面付近に焦点を有する集束レーザ・ビーム1118とする。レーザ・ビーム1118は、機械加工中の試料1120の材料のアブレーションしきい値よりも大きなフルエンスで機能することができることが好ましい。本発明の実施形態は、十分なフルエンスを供給する、既存のまたは今後開発される任意のタイプのレーザを使用することができる。ある好ましいレーザは、ナノ秒ないしフェムト秒の短パルス・レーザ・ビームを提供する。適当なレーザには例えば、Ti:サファイア発振器もしくは増幅器、ファイバ・ベースのレーザ、またはイッテルビウムもしくはクロムがドープされた薄ディスク・レーザ(thin disk laser)などがある。
【0036】
アブレーションしきい値は基板材料の固有の特性であり、当業者は、さまざまな材料に対するアブレーションしきい値を、経験的にまたは文献から容易に決定することができる。例えば、シリコン基板の単一パルス・アブレーションしきい値は約170mJ/cm
2であり、そのため、本発明の好ましい実施形態に従ってシリコンを微細機械加工するためには、好ましくは、レーザ・フルエンスをこの値よりもわずかに大きくすべきである。ある好ましいレーザ・ビームは、10nJから1mJの範囲のエネルギーおよび0.1J/cm
2から100J/cm
2の範囲のフルエンスを有する。シリコン基板をミリングする好ましい一実施形態では、レーザ・ビームのフルエンスが190mJ/cm
2、パルス持続時間が150フェムト秒、スポット・サイズが2μmである。他の実施形態では、レーザ・ビームのパルス・エネルギーが50nJ、フルエンスが0.4J/cm
2である。
【0037】
試料1120は一般に精密ステージ(図示せず)上に配置される。この精密ステージは、X−Y平面内で試料を平行移動させることができることが好ましく、さらに、Z軸に沿って加工物を平行移動させることができ、加えて、3次元構造を製造する際の融通性を最大にするために試料を傾けることおよび試料を回転させることができるとより好ましい。システム1100は任意選択で、電子ビーム・カラム1102、イオン・ビーム・カラム1104またはその両方など、1つまたは複数の荷電粒子ビーム・カラムを含み、それらの荷電粒子ビーム・カラムを使用して、レーザ・アブレーション・プロセスを監視するために試料を画像化し、または(FIBミリングなどの)他の加工作業もしくは他の画像化作業を実施することができる。イオン・ビーム・カラム1104は一般にイオン・ビーム1152を形成し、イオン・ビーム1152は、試料表面1120のレーザ・ビーム1118の焦点または焦点付近に集束させることができる。FIBカラム1104はさらに、イオン・ビーム1152で基板表面を走査して、画像化および/またはFIBミリングを実行することができる。システム1100はさらに、電子ビーム1150または集束イオン・ビーム1152の存在下で基板1120と反応する前駆体ガスを供給するガス注入システム1130を含むことができる。
【0038】
先行技術においてよく知られているように、電子ビーム・カラム1102は、電子を生み出す電子源(図示せず)と、試料表面1120のSEM画像化に使用することができる微小な焦点を結ぶ集束電子ビーム1150を形成する電子−光学レンズ(図示せず)とを備える。偏向コイルまたは偏向板(図示せず)によって、電子ビーム1150を試料1120の表面に配置することができ、または電子ビーム1150で試料1120の表面を走査することができる。これらのレンズおよび偏向コイルの動作は電源/制御ユニット(図示せず)によって制御される。これらのレンズおよび偏向ユニットは、電場、磁場または電場と磁場の組合せを使用することにより電子ビームを操作することができることに留意されたい。
【0039】
試料室1150は、真空コントローラ(図示せず)の制御下にある高真空機械式ポンピング・システムを使用して試料室から排気するための1つまたは複数のガス出口を含むことが好ましい。試料室1150はさらに、そこを通して所望の圧力でガスを室に導入することができる1つまたは複数のガス入口を含むことが好ましい。
【0040】
レーザ・ビーム1118は一般にパルス・レーザ・ビームであり、繰返し速度は100Hzから10kHzの間であることが好ましく、500Hzから1500Hzの間であるとより好ましい。レーザの動作中に、レーザ・ビーム1118の衝突によって、試料1120の表面から、中性原子、分子、電子およびイオンの混合物1124が飛び出し、試料表面1120の上方にプラズマ・プルーム1126を形成する。この材料は、高エネルギーのプラズマ、ガスおよび固体片の混合物として反応領域を出るため、アブレーション・プロセスは材料の爆発的な蒸発に似ており、レーザ・ビーム1118が集束する点から上方へ材料破片1124を押し上げる。
【0041】
多数の電子およびイオン(プラズマ・プルーム)のこの突然の生成が、結果的に、画像化に使用する荷電粒子検出器を飽和させることがある。荷電粒子ビーム・システムは一般に、荷電粒子ビームが試料に衝突することによって生み出された2次粒子を検出する1つまたは複数の検出器を使用する。これらの検出器はしばしば高い信号利得を特徴とし、試料を高速に画像化するのに十分な高い信号対雑音比を提供するためには一般に、この高い信号利得が必要である。アブレーション・プロセスによって生み出された荷電粒子の比較的に大きな束は、結果的に、これらの2次粒子画像化検出器をかなりの期間(例えば>10μs)飽和させる。この飽和の結果、アーチファクト(例えば白いスポットまたは筋(streak))が生じることがあり、それらのアーチファクトは、レーザ・ミリングと同時に撮影された基板の画像の質を低下させる。
【0042】
本発明の好ましい実施形態の1つの目的は、ここでは「1型検出器」と称する荷電粒子検出器のこの飽和を防ぐことである。1型検出器は、荷電粒子ビームの衝突によって試料から放出された2次電子、2次イオンまたは後方散乱電子のうちの1つまたは複数を検出するように構成された(一般に1000倍を超える利得を有する)検出器と定義される。これらの信号電流は一般に、レーザ・ビーム1118によって生み出される電子およびイオンの電流1124よりも数桁小さい。したがって、レーザ・アブレーションによる粒子電流1124に1型検出器がさらされた場合には、1型検出器に対する信号飽和および/または損傷が起こりうることを出願人は見出した。したがって、本発明の好ましい実施形態の目的は、システム1100などの一般的な荷電粒子画像化および/または荷電粒子加工システム内に見られる複数の1型検出器に対するこの信号飽和および/または損傷を防ぐことである。
【0043】
図11では、複数の1型検出器が検出器1132、1136および1140を含む。第1の1型検出器1132は、FIBビーム1152、電子ビーム1150およびレーザ・ビーム1118の側方に位置することが好ましく、第1の1型検出器1132は、レーザ・ビーム1118が試料1120に衝突することによって生み出された電子および/またはイオンの一部にさらされる。適当な検出器タイプの例には、シンチレータ−光電子増倍管検出器、チャンネルトロンまたは固体(PINダイオード)検出器が含まれる。別の1型検出器1136はSEMカラム1102の底面に位置することが好ましい。検出器1136は例えば、電子ビーム1150を試料1120の方へ通過させるための中心穴を有するチャンネル型電子倍増管プレートを含むことができる。別の1型検出器1140は、SEMカラム1102内に取り付けられることが好ましい。検出器1140は例えば、シンチレータ−光電子増倍管検出器を含むことができる。一般的なシステム1100は、それぞれの位置1132、1136および1140に1つまたは複数の1型検出器を含むことができる。検出器1132、1136および1140はそれぞれ、ケーブル1134、1138および1142によって1型検出器コントローラ1152に接続されていることが好ましい。1型検出器コントローラ1152は、システム内にレーザ・ビーム1118またはプラズマ・プルーム1126が存在しないときに1型検出器を作動させることを可能にし、さらに、レーザ・パルスを発する直前に1型検出器の作動を停止させることを可能にする。これについては、
図12を参照して後により詳細に説明する。
【0044】
1型検出器の作動を停止させるのにはさまざまな方法を使用することができ、それらの方法には、限定はされないが、以下の方法が含まれる:
1)1型検出器の捕集面に撥ね返すバイアス電圧(repelling bias voltage)を印加し、それによって粒子の捕集を防ぐ方法、
2)1型検出器の捕集面の近くにまたは1型検出器の捕集面に渡って取り付けられたスクリーン構造物または格子構造物に撥ね返すバイアス電圧を印加し、それによって粒子の捕集を防ぐ方法、
3)1型検出器内の1つまたは複数の内部電圧(例えば光電子増倍管上のバイアス電圧またはチャンネルトロンもしくはマルチチャンネル・プレートを横切るバイアス電圧)をオフにし、それによって検出器の利得を低減させまたはなくす方法、あるいは
4)検出器の捕集面まで粒子が透過することを防ぐために、試料と1型検出器の間に取り付けられた1つまたは複数の偏向電極に電圧を印加する方法。
【0045】
1型検出器を作動させる方法は本質的に、上記の可能な方法とは反対のことを行うことになり、その結果、全ての場合に、1型検出器は再び、試料からの2次粒子および/または後方散乱粒子を捕集することができるようになる。1型検出器の作動停止状態と作動状態とを高速に切り替えることができるように、1型検出器の作動および作動停止を可能にする方法および構造のサイクル・タイムは短いことが好ましい。1型検出器の一般的な作動時間および作動停止時間は100nsから10μsの範囲にあり、100nsから2μsの間にあるとより好ましい。
図15−18は、軸から外して配置された1型検出器と荷電粒子カラムの下方に配置された1型検出器の両方について、検出器の作動停止および作動のための例示的な構造および電圧を示す。
【0046】
図12は、複数の1型検出器を備える
図11の好ましい実施形態の動作の流れ
図1200を示す(分かりやすくするため、検出器を作動させる方法および検出器の作動を停止させる方法の詳細は示されていない)。ブロック1202で、複数の1型検出器のうちの1つまたは複数の1型検出器の作動、ビームのアンブランキング(unblanking)および走査ラスタの開始によって、新たな画像化/レーザ加工プロセスを開始する。ブロック1204で、試料表面を横切ってビームが(一般にあるラスタ・パターンに従って)移動すると、表面から、2次粒子および/または後方散乱粒子が放出され、それらの粒子は1型検出器(1つまたは複数)によって捕集されて、SEM動作中の2次電子(SE)信号および/または後方散乱電子(BSE)信号、FIB動作中の2次イオン(SI)信号などの画像化信号(1つまたは複数)を提供する。判断ブロック1206は、
図11のレーザ1106などのレーザの状態を監視して、そのレーザがレーザ・ビームを発射する準備が整ったかどうかを判定する。一般的なパルス・レーザは、それぞれのレーザ・パルスの後に回復するための最短時間を有し、この回復時間がレーザの最大繰返し速度を決定する。直前のパルスから回復すると、そのレーザが再びレーザ・ビームを発射する準備が整う。ある場合には発射頻度を最大にすることが求められ、その場合には、レーザの準備が整うと、システム(
図1のシステム1100など)は最短の遅延でブロック1208に移行することになる。別の場合には、次のレーザ・パルスを発射する前に追加の画像化が求められることがあり、その場合、システムは、ブロック1208に移行する前に、レーザが再びレーザ・ビームを発射する準備が整った後も、さらにある期間、ブロック1204に留まることになる。レーザがレーザ・ビームを発射する準備が整い、オペレータまたはシステムがレーザ・ビームの発射を望んだら、走査ラスタを停止し、1型検出器(1つまたは複数)の作動を停止させる。しかしながら、これらの両方の条件が満たされるまで、システムは、ブロック1204で、1つまたは複数の1型検出器を使用して画像データを取得し続ける。この時点で、荷電粒子ビームを(任意選択で)ブランキングしてもよい。
【0047】
作動の停止によって、プラズマ・プルーム(
図11のプルーム1126など)の潜在的に有害な影響から1型検出器が保護されたら、ブロック1210で、1つまたは連続する複数のレーザ・ビーム・パルスを試料に発射することができる。
図11の実施形態に関しては、ブロック1212で、所定の遅延期間、好ましくは0.1から10μsの遅延期間が終了した後に、ブロック1214に進む。この遅延期間は、プラズマ・プルームが試料から分散または消散することを可能にし、それによって1型検出器を前述のように保護する。本明細書で使用されるとき、プルームの分散または消散という表現は、レーザ・ビーム・ミリングによって生み出された粒子の一部が依然として存在する場合であっても、プルーム中の粒子によって1型検出器が飽和したり、かつ/または損傷したりすることがもはやない程度までプルームが分散または消散したことを言うために使用される。この遅延期間の後、ブロック1214で、1型検出器を再び作動させ、ブロック1208で走査ラスタを停止したX−Y位置からラスタを再開することによって、システムを画像化モードに復帰させる。判断ブロック1216は、走査ラスタの完了に向けた進捗を監視し、ラスタが完了していない場合にはブロック1204に戻り、ラスタが完了した場合にはブロック1218へ進み、終了となる。好ましい実施形態では、検出器の作動を停止させ、レーザ・パルスを試料に導き、プルームが消散するのを待ち、検出器を再び作動させるこの全プロセスにかかる時間は数マイクロ秒、例えば100μs未満でしかない。実際、レーザ・ミリングを実施しているときに試料の画像を見ているオペレータには、このミリングと荷電粒子ビームを用いた画像化が同時に行われているように見えることが好ましい。
【0048】
図13は、本発明の好ましい一実施形態に基づくシステム1300を示す。システム1300は、
図11のシステムと同じように構成されているが、複数の「2型」検出器1360および1364が追加されており、これらの2型検出器は、対応するそれぞれのケーブル1362および1366によって2型検出器コントローラ1378に接続されている。2型検出器は、飽和および/または損傷の危険なしにプラズマ・プルーム1126からの電子およびイオンを捕集することができる(
図20参照)。一般的な2型検出器は、1型検出器よりもはるかに低い利得(一般に1倍から100倍)を有するファラデー・カップ(Faraday cup)または他のタイプの検出器を含むことができる。好ましい一実施形態では、試料位置における立体角を十分に大きくして、プルーム1126からの電子および陰イオンのかなりの部分を(試料に対する正バイアスを用いて)捕集するために、レーザ・ビーム1118の焦点の近くに第1の2型検出器1360を取り付ける。このような検出器の取付けおよび位置決めは先行技術において知られており、プルームからの電子および陰イオンのかなりの部分が、プルームを正確に特徴づけられることを可能にする十分に大きな部分であることを当業者は認識するであろう。
【0049】
第2の2型検出器1364は検出器1360から離して取り付けることができ、プルーム1126からの陽イオンのかなりの部分を捕集するために負にバイアスすることができる。2型検出器は、後述するように、レーザ・アブレーション・プロセスの終点の検出を可能にすることができる。
【0050】
画像化中、2型検出器は、2次電子もしくは2次イオンまたは後方散乱電子を捕集しないことが好ましい。2型検出器による捕集は、画像化に対する高い信号対雑音比を低下させると考えられるためである。したがって、プルーム1126がないときには、2型検出器の作動は停止されており、1型検出器は作動していることが好ましい。反対に、レーザ・パルスの直前、およびレーザ・パルス後の試料の上方にプラズマ・プルームが依然として存在している間は、
図11−12を参照して上で論じたようにして1型検出器の作動を停止させることが望ましい。2型検出器を作動させてプラズマ・プルームからの信号を捕集すると、以下のようないくつかのタイプの情報を提供することができる:
1)試料の上方にプラズマ・プルームが存在することを示す信号、したがって飽和および/または損傷から1型検出器を保護するために1型検出器を作動させることが望ましくない条件の存在を示す信号、
2)1型検出器の再作動および試料の画像化の再開を可能にするレベルまでプラズマ・プルームが消散したことを示す信号、
3)レーザ・アブレーション・プロセスがその下の材料層など所定の終点までのミリングを完了したとオペレータまたはシステムが判定することを可能にする終点判定信号など。
【0051】
レーザ機械加工とともに使用される終点判定プロセスは、本発明の譲受人に譲渡された、参照により本明細書に組み込まれている「Method and Apparatus for Laser Machining」という名称の米国特許出願第61/079,304号(2009年7月9日)に記載されている。1つのタイプの終点信号は、加工中の試料を解析する光電子収率分光(photoelectron yield spectroscopic)(PYS)信号とすることができる。PYSでは、レーザ・ビームが光電子の放出を誘起し、それらの光電子を、複数の2型検出器のうちの1つまたは複数の2型検出器が捕集して、1レーザ・パルスごとに生み出される電子およびイオンの数に関する情報を提供することができる。この数は、その時点でレーザによって除去されている材料を示し、したがって終点判定信号および/または解析ツールの役目を果たしうる。
【0052】
2型検出器は、
図20を参照して後に論じるように、プラズマ・プルームからの電子またはイオンを捕集するためのバイアス電圧を印加することによって作動させることができる。2型検出器の作動の停止は、
図20を参照して後に論じるように、この捕集バイアス電圧を除くことによって達成することができる。
【0053】
図14は、1型検出器と2型検出器の両方をそれぞれ複数備える
図13の好ましい実施形態の動作の流れ
図1400を示す(分かりやすくするため、個々の1型検出器および2型検出器を作動させる方法およびそれらの検出器の作動を停止させる方法の詳細は示されていない)。ブロック1402で、複数の1型検出器のうちの1つまたは複数の1型検出器の作動、2型検出器の作動停止、ビームのアンブランキングおよび走査ラスタの開始によって、新たな画像化/レーザ加工プロセスを開始する。ブロック1404で、試料表面を横切ってビームが(一般にあるラスタ・パターンに従って)移動すると、表面から、2次粒子および/または後方散乱粒子が放出され、それらの粒子は1型検出器(1つまたは複数)によって捕集されて、SEM動作中の2次電子(SE)信号および/または後方散乱電子(BSE)信号、FIB動作中の2次イオン(SI)信号などの画像化信号(1つまたは複数)を提供する。判断ブロック1406は、レーザの状態を監視して、そのレーザがレーザ・ビームを発射する準備が整ったかどうかを判定する。レーザがレーザ・ビームを発射する準備が整い、オペレータまたはシステムがレーザ・ビームの発射を望んだら、ブロック1408へ進む。両方の条件が満たされるまで、システムは、ブロック1404で、1つまたは複数の1型検出器を使用して画像データを取得し続けることができる。
【0054】
ブロック1408で、走査ラスタを停止し、1型検出器(1つまたは複数)の作動を停止させ、複数の2型検出器のうちの1つまたは複数の2型検出器を作動させることができる。この時点で、荷電粒子ビームを(任意選択で)ブランキングしてもよい。作動の停止によって、プラズマ・プルームの潜在的に有害な影響から1型検出器が保護されたら、ブロック1410で、1つまたは連続する複数のレーザ・ビーム・パルスを試料に発射することができる。
図13の実施形態に関しては、ブロック1412で、所定の遅延期間、好ましくは0.1から10μsの遅延期間が終了した後に、システムは動作を再開する。さらに、このシステムは、2型検出器の出力(1つまたは複数)も監視して、プラズマ・プルームが分散したかどうかを検出する。
【0055】
好ましい一実施形態では、(1)レーザ・パルスが発射されてから所定の最短遅延期間が経過したことと、(2)2型検出器によってプラズマが検出されなかったことの両方が起こったときにだけ、システムはブロック1414に進む。この最短遅延期間は、プラズマが分散したとの誤った信号を2型検出器が発した場合に1型検出器を保護するバックアップとして使用することができる。これらの条件がともに満たされたら、ブロック1414で、複数の1型検出器のうちの1つまたは複数の1型検出器を再び作動させ、2型検出器の作動を停止させ、ブロック1408で走査ラスタを停止したX−Y位置からラスタを再開することによって、システムを画像化モードに復帰させる。判断ブロック1416は、走査ラスタの完了に向けた進捗を監視し、ラスタが完了していない場合にはブロック1404に戻り、ラスタが完了した場合にはブロック1418へ進み、終了となる。前述の方法と同様に、好ましい実施形態では、1型検出器の作動を停止させ、2型検出器を作動させ、レーザ・パルスを試料に導き、プルームが消散するのを待ち、2型検出器の作動を停止させ、1型検出器を再び作動させるこの全プロセスにかかる時間は数マイクロ秒、例えば100μs未満でしかない。実際、レーザ・ミリングを実施しているときに試料の画像を見ているオペレータには、このミリングと荷電粒子ビームを用いた画像化が同時に行われているように見えることが好ましい。
【0056】
図15は、軸外れ1型検出器(
図11および13の検出器1132など)の好ましい一実施形態内に検出器作動停止板1508および1510を含む検出器アセンブリの好ましい一実施形態1500を示す。検出器アセンブリ1500は、検出器作動停止板1508および1510の後方に配置された検出器1502を備え、検出器作動停止板1508および1510は、対応するそれぞれのケーブル1514および1516によって1型検出器コントローラ1152(
図11および13に示されている)に接続されている。検出器1502は、ケーブル1512によって1型コントローラに接続されている。検出器アセンブリ1504内の板1508および1510は平板とすることができ、または円弧を含むことができ、図示されているように正および負のバイアス電圧が印加されている。
【0057】
検出器1502への電子およびイオンの透過を、電子(または陰イオン)軌道1532およびイオン軌道1530によって示されているようにして実質的に低減させまたは防ぐことによって、検出器板1508および1510は1型検出器作動停止機能を実行することができる。板1510上の負電圧は、
図11および13のプラズマ・プルーム1126などのプラズマ・プルームからの陽イオンを捕集する。板1508上の正電圧は、プラズマ・プルームからの電子および陰イオンを捕集する。その結果、プラズマ・プルームからの中性粒子だけが検出器1502に衝突しうる。この中性束は、プラズマ・プルームを見通す線上に位置しないように検出器1502の入口を構成することによって、低減させまたは実質的に排除することができる。この軸外れ1型検出器を作動させるには、板1508上の電圧および板1510上の電圧を、検出器1502の入口の電圧と実質的に等しくなるように設定することが考えられる。
【0058】
図16は、軸外れ1型検出器(
図11および13の検出器1132など)の他の実施形態内の検出器作動停止格子1608および1610の動作を示す1600。検出器アセンブリ1604は、検出器作動停止格子1608および1610の後方に配置された検出器1602を備え、検出器作動停止格子1608および1610は、対応するそれぞれのケーブル1614および1616によって1型検出器コントローラ1152(
図11および13に示されている)に接続されている。検出器1602は、ケーブル1612によって1型コントローラに接続されている。
【0059】
図16Aでは、検出器アセンブリ1604の軸に沿った電圧の概略的なグラフ1660が、格子1608上の正電圧と格子1610上の負電圧の組み合わせが、陽イオン(軌道1630)ならびに電子および陰イオン(軌道1632)の透過をどのようにして防ぐのかを示している。電子および陰イオンは、格子1610を通過する前に方向を反転させるように示されており、これらの負に帯電した粒子の一部は正にバイアスされた格子1608に衝突しうる。格子1608から放出された2次粒子または後方散乱粒子は、格子1610上の負バイアスのため検出器1602の入口に到達することができない。プラズマ・プルームからの中性粒子だけが検出器1602に衝突しうる。
図15の検出器アセンブリと同様に、この中性束は、プラズマ・プルームを見通す線上に位置しないように検出器1602の入口を構成することによって、低減させまたは実質的に排除することができる。この軸外れ1型検出器1604を作動させるには、両方の格子1608および1610上の電圧を、検出器1602の入口の電圧と実質的に等しくなるように設定することが考えられる。
【0060】
図16Bには、検出器1604内を見た端面図が示されている。入口開口1606を通して第1の格子1608だけが見える。
【0061】
図17は、荷電粒子カラムの底面の下方に配置された1型検出器(
図11および13の検出器1136など)の好ましい一実施形態内の検出器作動停止板1708および1710の動作を示す。1型検出器アセンブリ1700は、検出器作動停止板1708および1710の上方に配置された(一般的なデュアル・シェブロン(dual−chevron)構成の)一対のマルチチャンネル・プレート(MCP)1704および1706を備え、検出器作動停止板1708および1710は、対応するそれぞれのケーブル1714および1716によって1型検出器コントローラ1152(
図11および13に示されている)に接続されている。MCP1704および1706は、対応するそれぞれのケーブル1712および1713によって1型コントローラに接続されている。MCP1704の上方には荷電粒子カラムの下端1702が示されている。本発明のこの好ましい実施形態のさらなる重大な利点は、プラズマ・プルームからの汚染物質がカラムの底面、さらにはカラムの内部に付着することが相当に低減する可能性があることである。このタイプの汚染は時に抵抗性の付着物を形成し、そのような付着物は帯電し、荷電粒子ビームを偏向させることがある。
【0062】
試料1780からの電子およびイオンのMCP1706への透過を大幅に低減させまたは防ぐ1型検出器作動停止機能が、電子軌道1732およびイオン軌道1730によって示されている。板1710上の負電圧は、
図11および13のプルーム1126などのプラズマ・プルームからの陽イオンを捕集する。板1708上の正電圧は、プラズマ・プルームからの電子および陰イオンを捕集する。プラズマ・プルームからの中性粒子だけがMCP1706に衝突しうる。この軸外れ1型検出器1704を作動させるには、両方の板1708および1710上の電圧を、検出器1706の入口の電圧と実質的に等しくなるように設定することが考えられる。
【0063】
図18は、荷電粒子カラムの下方に配置された
図11および13の検出器1136などの1型検出器の好ましい他の実施形態内の検出器作動停止格子1808および1810の動作を示す。1型検出器アセンブリ1800は、検出器作動停止格子1808および1810の上方に配置された(一般的なデュアル・シェブロン構成の)一対のマルチチャンネル・プレート(MCP)1804および1806を備え、検出器作動停止格子1808および1810は、対応するそれぞれのケーブル1814および1816によって、
図11および13のコントローラ1152などの1型検出器コントローラ(図示せず)に接続されている。MCP1804および1806は、対応するそれぞれのケーブル1812および1813によって1型コントローラに接続されている。MCP1804の上方には荷電粒子カラムの下端1802が示されている。
図17と同様に、本発明のこの好ましい実施形態のさらなる重大な利点は、プラズマ・プルームからの汚染物質がカラムの底面、さらにはカラムの内部に付着することが相当に低減する可能性があることである。
【0064】
図18Aは、1型検出器アセンブリの軸に沿った電圧の概略的なグラフ1860を示しており、このグラフは、格子1808上の正電圧と格子1810上の負電圧の組み合わせが、試料1880からの陽イオン(
図18の軌道1830)ならびに電子および陰イオン(
図18の軌道1832)の透過をどのようにして防ぐのかを示している。電子および陰イオンは、格子1810を通過する前に方向を反転させるように示されている。これらの負に帯電した粒子の一部は正にバイアスされた格子1808に衝突しうる。格子1808から放出された2次粒子または後方散乱粒子は、格子1810上の負バイアスのためMCP1806の入口に到達することができない。プラズマ・プルームからの中性粒子だけがMCP1806に衝突しうる。この軸外れ1型検出器を作動させるには、両方の格子1808および1810上の電圧を、MCP1806の入口の電圧と実質的に等しくなるように設定することが考えられる。
【0065】
荷電粒子カラム内に配置された
図11および13の検出器1140などの1型検出器は、荷電粒子カラム内の(カラムの下端と検出器1140の間の)1または複数の既存の電極を利用して、カラム内の1型検出器の入口から電子およびイオンをそらすことができる。
図15−18は、1型検出器の例示的な好ましい実施形態を示すが、1型検出器を作動させ、1型検出器の作動を停止させる他の構造および方法も本発明の範囲に含まれる。
【0066】
図19は、画像化中の(カラムの底面の下方に配置された)1型検出器の作動および2型検出器の作動停止を示す1900。この図には、
図18の1型検出器ならびに2つの2型検出器1910および1912が示されており、2型検出器1910および1912は、対応するそれぞれのケーブル1950および1952によって2型検出器コントローラ1378(
図13に示されている)に接続されている。画像化中は、
図14のブロック1402に記載されているように、
図19に示すように2型検出器の捕集端に0Vを印加することによって、2型検出器の作動が停止されている。したがって、試料1880と2型検出器1910および1912との間には、電子またはイオンを2型検出器内へ引き入れる電場が存在しない。2次粒子および後方散乱粒子は一般に、1次荷電粒子ビーム1902が試料1880に衝突した位置1908から出現して上方へ移動するため、検出器1910および1912によって捕集されるのは2次粒子および後方散乱粒子のごく一部だけである。2次粒子および/または後方散乱粒子1932のはるかに大部分が格子1808および1810を通過して、MCP1806によって捕集される。
【0067】
図20は、レーザ・パルシング2002中およびプラズマ・プルーム2045の消散中の1型検出器の作動停止および2型検出器の作動を示す、
図19のカラム構成2000を示す。検出器作動停止格子1808および1810は、
図18と同様に、例えば試料1880の表面の位置2008にレーザ・ビーム2002が衝突することによって生み出される電子、陰イオン1832および陽イオン1830の大きな束から(マルチチャンネル・プレート1806および1804を含む)1型検出器を保護するようにバイアスされている。格子1808および1810の作動停止機能は
図18に示したとおりである。2型検出器1910の捕集端に正バイアスが印加されて、プラズマ・プルーム2045からの電子および陰イオン2032を引き付ける。2型検出器1912の捕集端に負バイアスが印加されて、プラズマ・プルーム2045からの陽イオン2030を引き付ける。検出器1910と検出器1912の間の電圧差によって試料1880の表面に平行な電場が生じ、この電場が、2型検出器がない場合(例えば
図11の構成)よりも短い時間でプラズマ・プルーム2045を「払いのける」役割を果たし、したがって、2型検出器を追加すると、1型検出器を保護する(例えば
図14のブロック1412および1414)のに必要な時間が短縮されることによってスループットが向上するというさらなる利点が得られる。2型検出器の他の利点は、1型検出器やレーザ・ビームを集束させるレンズ(
図3A−4Bのレンズ306など)などのシステム内の構造物を、プラズマ・プルームに起因する起こりうる損傷から保護することである。正にバイアスされた2型検出器および負にバイアスされた2型検出器によって捕集された部分のプラズマ・プルームは、それらの検出器および構造物に到達することができず、それらの損傷を引き起こすおそれがない。
【0068】
図21は、試料のレーザ・アブレーションと試料の画像化の間の干渉を示す1型検出器からの画像2100を示す。白い破線の正方形2106で囲われた、画像2100の中央の小領域のクローズアップ画像が
図22に示されている。ビームは、X軸2102に沿って右へ走査し、したがって検出器の飽和に起因する白い筋は水平であり、その筋は、左の画素が最も明るく(レーザ・パルス中)、右へ行くにつれて(プラズマ・プルームが消散するにつれて)消滅する。Y軸(垂直下向き)2104はラスタの低速走査方向である。この例では、レーザ・パルス中またはプラズマ・プルームが消散している間も1型検出器の作動は停止されておらず、そのため、それぞれのレーザ・パルスによって誘起されたプラズマ・プルームからの電子およびイオンが検出器を飽和させる。ビームが、それぞれの走査線に沿って右方向へ水平に走査すると、プラズマ・プルームからの荷電粒子が検出器によって捕集され、それによって白い画素(最大輝度)が2206から始まり右方へ延び、点2208を過ぎると緩やかに消滅する。レーザ・パルスとレーザ・パルスの間に1型検出器は回復し、高信号対雑音比の画像を提供することができようになる。後に説明する
図25は、2つのレーザ・パルスの前、間および後の画像輝度の概略的なグラフである。
【0069】
図23は、前の
図21−22の例よりも高いレーザ・ビーム強度での試料のレーザ・アブレーションと試料の画像化の間の干渉を示す1型検出器からの画像2300を示す。破線の正方形2306で囲われた画像2300の中央の小領域のクローズアップ画像が
図24に示されている。ビームは、X軸2302に沿って右へ走査し、したがって検出器の飽和に起因する白い筋は水平であり、その筋は、左の画素が最も明るく(レーザ・パルス中)、右へ行くにつれて(プラズマ・プルームが消散するにつれて)消滅する。Y軸(垂直下向き)2304はラスタの低速走査方向である。この例では、レーザ・パルス中またはプラズマ・プルームが消散している間も1型検出器の作動は停止されておらず、そのため、それぞれのレーザ・パルスによって誘起されたプラズマ・プルームからの電子およびイオンが検出器を飽和させる。
図21−22の例に比べてレーザ強度が高いため、検出器の飽和の程度はこの図の例の方がはるかに高く、その結果、それぞれのレーザ・パルスの後の1型検出器の回復時間はより長くなる(
図24も参照されたい)。白い画素(最大輝度)は2406から始まり、右方へ遠くまで延び、点2408を過ぎると非常に緩やかに消滅する。
図21−22の状況とは違い、レーザ・パルスとレーザ・パルスの間に1型検出器は十分には回復することができず、したがって画像は全体的に
図21−22の画像よりも明るい。後に説明する
図26は、2つのレーザ・パルスの前、間および後の画像輝度の概略的なグラフである。
【0070】
図25は、1型検出器の作動を停止させないときの
図21−22に示したケースでの検出器の飽和の影響の概略的なグラフである。画像輝度(Y軸2504)は時間(X軸2502)の関数としてプロットされている。レーザ・パルス2506の画像飽和とレーザ・パルス2508の画像飽和を所望のスケールで同じグラフ上に示すことができるように、X軸は、データの中断2530を有するように示されている。時刻2506の最初のレーザ・パルスの前の画像輝度2514は飽和していない。輝度曲線の破線部分2516は正しい画像輝度、すなわちレーザ・パルス中およびプラズマ・プルームが消散している間は1型検出器の作動を停止させることができる本発明のさまざまな実施形態を使用していれば表示されたであろう画像輝度を表す。しかしながら、検出器の作動は停止されないため、システム・オペレータに実際に示されるのは不正確な輝度曲線であり、その曲線は、急激な上昇2520、それに続く飽和した複数の画素2522(全ての画素が最大輝度2512を示す)、およびそれに続く輝度の緩やかな低下2524を含み、最終的には飽和していない画像輝度曲線2518となる。その後、輝度曲線は、時刻2508の次のレーザ・パルスまで検出器によって正しく決定されるであろう。レーザ・パルスとレーザ・パルスの間の時間間隔2580は一般に0.5から2.0msである。
【0071】
図26は、1型検出器の作動を停止させないときの
図23−24に示したケースでの検出器の飽和の影響の概略的なグラフである。画像輝度(Y軸2604)は時間(X軸2602)の関数としてプロットされている。レーザ・パルス2606の画像飽和とレーザ・パルス2608の画像飽和を所望のスケールで同じグラフ上に示すことができるように、X軸は、データの中断2630を有するように示されている。時刻2606の最初のレーザ・パルスの前の画像輝度2614は飽和していない。輝度曲線2616の破線部分は正しい画像輝度、すなわちレーザ・パルス中およびプラズマ・プルームが消散している間は1型検出器の作動を停止させることができる本発明のさまざまな実施形態を使用していれば表示されたであろう画像輝度を表す。しかしながら、検出器の作動は停止されないため、システム・オペレータに実際に示されるのは不正確な輝度曲線であり、その曲線は、急激な上昇2620およびそれに続く飽和した複数の画素2622(全ての画素が最大輝度2612を示す)を含む。レーザ・パルスのパワーがより大きいため、
図26は、
図25に見られる飽和期間よりもかなり長い飽和期間を示している。検出器の飽和の程度がより大きいため、飽和していない正しいレベルまでの輝度の低下を示す曲線も、
図26の方がより長く、より緩やかである。曲線2624は最終的に、飽和していない画像輝度曲線2618となる。その後、輝度曲線は、時刻2608の次のレーザ・パルスまで検出器によって正しく決定されるであろう。検出器内の回復が長期間かかる影響で、曲線2618の画像輝度は、平均検出器信号レベルのある増大およびコントラストの低下を示す。レーザ・パルスとレーザ・パルスの間の時間間隔2680は一般に0.5から2.0msである。
【0072】
図27は、1型検出器の作動停止を実施するシステム内の1型検出器からの画像2700を示し、この画像は、試料のレーザ・アブレーションと試料の画像化の間の干渉を示していない。高速走査軸2702は水平右方向であり、低速走査軸2704は垂直下方向である。
図12の流れ図に記載された方法および
図14の流れ図に記載された方法はいずれも、それぞれのレーザ・パルスの直前からプラズマ・プルームが消散した後までの期間、1型検出器の作動を停止させることにより、1型検出器を飽和から保護することを可能にすると思われる。
【0073】
本発明は幅広い適用可能性を有し、上記の例において説明し、示した多くの利点を提供することができる。本発明の実施形態は、具体的な用途によって大きく異なり、全ての実施形態が、これらの全ての利点を提供するわけではなく、本発明によって達成可能な全ての目的を達成するわけではない。上記の説明の多く部分が半導体デバイスまたはウェーハを処理することを対象としているが、本発明は、適当な任意の基板または表面に対して使用することができる。本発明を実施するのに適した粒子ビーム・システムは例えば、本出願の譲受人であるFEI Companyから市販されている。レーザ加工中により正確な終点判定信号を提供するため、2型検出器は、2次イオン質量分析計(SIMS)を備えることができる。図面は、真空システムの外側にあるレーザを示しているが、真空システム内にレーザを有するシステム構成も本発明の好ましい実施形態の範囲に含まれる。
【0074】
以上の本発明の説明は主に、レーザを荷電粒子ビーム・システムと組み合わせる装置を対象としているが、そのような装置を使用する方法も本発明の範囲に含まれることを認識すべきである。さらに、本発明の実施形態は、コンピュータ・ハードウェアによって、ハードウェアとソフトウェアの組合せによって、またはコンピュータ可読の非一時的記憶装置に記憶されたコンピュータ命令によって実現することができることも認識すべきである。本発明の方法は、標準プログラミング技法を使用し、本明細書に記載された方法および図に基づいてコンピュータ・プログラムとして実現することができ、このコンピュータ・プログラムは、コンピュータ・プログラムを含むように構成されたコンピュータ可読の非一時的記憶媒体を含み、そのように構成された記憶媒体は、コンピュータを、予め定義された特定の方式で動作させる。コンピュータ・システムと通信するため、それぞれのプログラムは、高水準手続き型プログラミング言語またはオブジェクト指向プログラミング言語で実現することができる。しかしながら、所望ならば、それらのプログラムを、アセンブラ言語または機械語で実現することもできる。いずれにせよ、その言語は、コンパイルまたは解釈される言語とすることができる。さらに、そのプログラムは、そのプログラムを実行するようにプログラムされた専用集積回路上で実行することができる。
【0075】
さらに、方法論は、限定はされないが、荷電粒子ツールもしくは他の画像化デバイスとは別個の、荷電粒子ツールもしくは他の画像化デバイスと一体の、または荷電粒子ツールもしくは他の画像化デバイスと通信するパーソナル・コンピュータ、ミニコンピュータ、メインフレーム、ワークステーション、ネットワーク化されたコンピューティング環境または分散コンピューティング環境、コンピュータ・プラットホームなどを含む、任意のタイプのコンピューティング・プラットホームで実現することができる。本発明の諸態様は、取外し可能であるか、またはコンピューティング・プラットホームと一体であるかを問わない、ハードディスク、光学式読取りおよび/もしくは書込み記憶媒体、RAM、ROMなどの記憶媒体上または記憶装置上に記憶された機械可読コードであって、プログラム可能なコンピュータが、本明細書に記載された手順を実行するために、その記憶媒体または記憶装置を読んだときに、そのコンピュータを構成し、動作させるために、そのコンピュータが読むことができるように記憶された機械可読コードとして実現することができる。さらに、機械可読コードまたは機械可読コードの一部を、有線または無線ネットワークを介して伝送することができる。本明細書に記載された発明は、マイクロプロセッサまたは他のデータ処理装置と連携して上述の諸ステップを実現する命令またはプログラムを含む、これらのさまざまなタイプのコンピュータ可読記憶媒体、およびその他のさまざまなタイプのコンピュータ可読記憶媒体を含む。本発明はさらに、本明細書に記載された方法および技法に従ってプログラムされたコンピュータを含む。
【0076】
入力データに対してコンピュータ・プログラムを使用して、本明細書に記載された機能を実行し、それによって入力データを変換して出力データを生成させることができる。この出力情報は、ディスプレイ・モニタなどの1つまたは複数の出力装置に出力される。本発明の好ましい実施形態では、変換されたデータが物理的な実在する物体を表し、これには、その物理的な実在する物体の特定の視覚的描写をディスプレイ上に生成することが含まれる。
【0077】
本発明の好ましい実施形態はさらに、粒子ビームを使用して試料を画像化するために、FIB、SEMなどの粒子ビーム装置を利用する。試料を画像化するために使用されるこのような粒子は試料と本来的に相互作用し、その結果、試料はある程度、物理的に変形する。さらに、本明細書の全体を通じて、「計算する」、「決定する」、「測定する」、「生成させる」、「検出する」、「形成する」などの用語を利用した議論は、コンピュータ・システムまたは同様の電子装置の動作および処理に言及し、そのコンピュータ・システムまたは同様の電子装置は、コンピュータ・システム内の物理量として表されたデータを操作し、そのデータを、その同じコンピュータ・システムまたは他の情報記憶装置内、伝送装置内もしくは表示装置内の、物理量として同様に表された他のデータに変換する。
【0078】
以上の議論および特許請求の範囲では、用語「含む(including)」および「備える(comprising)」が、オープン・エンド(open−ended)型の用語として使用されており、したがって、これらの用語は、「...を含むが、それらだけに限定はされない(including,but not limited to)」ことを意味すると解釈すべきである。用語「加工物」、「試料」、「基板」および「試験片」は、特に明記しない限り、相互に交換可能に使用される。用語「集積回路」は、マイクロチップの表面にパターン形成された一組の電子構成部品およびそれらの相互接続(ひとまとめにして内部電気回路要素)を指す。用語「半導体デバイス」は、総称的に、集積回路(IC)を指し、この集積回路(IC)は、半導体ウェーハと一体でも、またはウェーハから切り離されていても、または回路板上で使用するためにパッケージングされていてもよい。本明細書では用語「FIB」または「集束イオン・ビーム」が、イオン光学部品によって集束させたビームおよび整形されたイオン・ビームを含む、平行イオン・ビームを指すために使用される。また、本明細書において、用語「自動」、「自動化された」または類似の用語が使用されるとき、これらの用語は、自動プロセスもしくは自動ステップまたは自動化されたプロセスもしくは自動化されたステップの手動による開始を含むものと理解される。
【0079】
本明細書で特に定義されていない場合、その用語は、その通常の一般的な意味で使用されることが意図されている。添付図面は、本発明の理解を助けることが意図されており、特に明記しない限り、一律の尺度では描かれていない。
【0080】
本発明および本発明の利点を詳細に説明したが、添付の特許請求の範囲によって定義された本発明の趣旨および範囲から逸脱することなく、本明細書に記載された実施形態に、さまざまな変更、置換および改変を加えることができることを理解すべきである。さらに、本出願の範囲が、本明細書に記載されたプロセス、機械、製造、組成物、手段、方法およびステップの特定の実施形態に限定されることは意図されていない。当業者なら本発明の開示から容易に理解するように、本明細書に記載された対応する実施形態と実質的に同じ機能を実行し、または実質的に同じ結果を達成する既存のまたは今後開発されるプロセス、機械、製造、組成物、手段、方法またはステップを、本発明に従って利用することができる。したがって、添付の特許請求の範囲は、その範囲内に、このようなプロセス、機械、製造、組成物、手段、方法またはステップを含むことが意図されている。