【実施例】
【0093】
以下、実施例に基づいて本発明を更に具体的に説明するが本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
【0094】
・X線回折(XRD)の測定方法
XRD測定は以下の条件に基づきおこなった。
装置名:オランダPANalytical社製X’PertPro MPD
光学系仕様 入射側:封入式X線管球(CuKα)
Soller Slit (0.04rad)
Divergence Slit (Valiable Slit)
試料台:XYZステージ
受光側:半導体アレイ検出器(X’ Celerator)
Ni−filter
Soller Slit (0.04rad)
ゴニオメーター半径:240mm
測定条件 X線出力(CuKα):45kV、40mA
走査軸:θ/2θ
走査範囲(2θ):5.0−70.0°
測定モード:Continuous
読込幅:0.05°
計数時間:99.7sec
自動可変スリット(Automatic−DS):1mm(照射幅)
横発散マスク:10mm(照射幅)
なお、X線は円筒管の軸方向に対して垂直な方向に照射した。またX線は、できるだけノイズ等がはいらないように、試料台においた円筒管状の膜複合体と、試料台表面と平行な面とが接する2つのラインのうち、試料台表面ではなく、試料台表面より上部にあるもう一方のライン上に主にあたるようにした。
【0095】
・SEM−EDXの測定方法
装置:
SEM:FE−SEM Hitachi:S−4800
EDX:EDAX Genesis
加速電圧:10kV
倍率5000倍での視野全面(25μm×18μm)を走査し、X線定量分析を行った。
【0096】
(実施例1)
CHA型ゼオライト膜の作成のために、N,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液をUSP4544538の記載を参考に調製した。以下に例を示す。
5.5gの1−アダマンタンアミン(アルドリッチ社製)を75mlのメタノールに溶解し、24.2gの炭酸カリウムを加え、30分攪拌した。これに、10mlのヨードメタンを滴下させ、1昼夜攪拌した。その後塩化メチレンを50ml加えて固体をろ過した。得られた溶液の溶媒をエバポレーターにより除去して固体を得た。この固体に塩化メチレン130ml加えてろ過、溶媒の除去を2回繰り返した。その後、得られた固体をメタノールを用いて再結晶を行い、再結晶された固体をろ過し、ジエチルエーテルで洗浄後、乾燥してN,N,N−トリメチル−1−アダマンタンアンモニウムヨーダイド(TMADI)を得た。その後このTMADIを水に溶解させ、アニオン交換樹脂(三菱化学社製 SA−10A)によりイオン交換し、エバポレーターで濃縮し、N,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド水溶液を得た。滴定により、この水溶液中のN,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシドの濃度は0.75mmol/gであった。また、この水溶液中に含まれるK量は1.84重量%であった。
【0097】
無機多孔質支持体−(CHA型)ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
水熱合成のための反応混合物として、以下のものを調製した。
1mol/L−NaOH水溶液6.9gと水103.6gを混合したものに水酸化アルミニウム(Al
2O
3 53.5重量%含有、アルドリッチ社製)0.43gを加えて撹拌し溶解させ、透明溶液とした。これに有機テンプレートとして、上記のN,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液9.2gを加え(この溶液中にKとして0.17g含有している。)、さらにコロイダルシリカ(日産化学社製 スノーテック−40)10.4gを加えて3時間撹拌し、水熱合成用混合物を調製した。
【0098】
無機多孔質支持体としては(株)ニッカトー製のムライトチューブPM(外径12mm、内径9mm)を80mmの長さに切断した後、外表面を耐水性紙やすりを用いて滑らかにして、超音波洗浄機で洗浄したのち乾燥させたものを用いた。支持体上には水熱合成に先立ち、ディップ法で上記の方法と同様の方法によりSiO
2/Al
2O
3/NaOH/H
2O/TMADOH=1/0.033/0.1/40/0.1のゲル組成で160℃、2日間水熱合成して結晶化させた0.5μm程度のCHA型ゼオライトの種結晶を付着させた。
【0099】
この種結晶を約1重量%水中に分散させたものに支持体を所定時間浸した後、100℃で5時間以上乾燥させて種結晶を付着させた。付着した種結晶の重量は約3g/m
2であった。この種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で48時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体−ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で5時間以上乾燥させた。乾燥後、テンプレート焼成前のゼオライト(以下as−madeということがある)の状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過量を測定したところ透過量は0ml/(m
2・分)であった。
テンプレート焼成前のゼオライト(as−made)の膜複合体を電気炉で550℃、10時間焼成した。このときの昇温速度と降温速度はともに0.5℃/分とした。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は120g/m
2であった。SEM観察から膜厚は約15μmであった。
【0100】
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。XRD測定は前記の条件によりおこなった。また照射幅を自動可変スリットによって1mmに固定して測定し、Materials Data, Inc.のXRD解析ソフトJADE 7.5.2(日本語版)を用いて可変スリット→固定スリット変換を行ってXRDパターンを得た。(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=2.9であり、rhombohedral settingにおける(1,1,1)面への配向が推測された。
【0101】
また短冊状に切断した無機多孔質支持体−CHA型ゼオライト膜複合体をSEMで観測した結果、表面に結晶が緻密に生成していた。
また、SEM−EDXにより、ゼオライト膜のSiO
2/Al
2O
3モル比を測定したところ、22であった。
(実施例2)
無機多孔質支持体CHA型ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
【0102】
水熱合成のための反応混合物として、以下のものを調製した。
1mol/L−NaOH水溶液10.5gと1mol/L−KOH水溶液7.0gと水100.0gを混合したものに水酸化アルミニウム(Al
2O
3 53.5重量%含有、アルドリッチ社製)0.88gを加えて撹拌し溶解させ、透明溶液とした。これに有機テンプレートとして、N,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)2.95gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック−40)10.5gを加えて2時間撹拌し、水熱合成用混合物を調製した。
【0103】
無機多孔質支持体としては実施例1と同様に処理したものを用いた。支持体上には水熱合成に先立ち、実施例1と同様に粒径0.5μm程度のCHA型ゼオライトの種結晶を付着させた。付着した種結晶の重量は約5g/m
2であった。
実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で48時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体−ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で5時間以上乾燥させた。乾燥後のas−madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過量を測定したところ透過量は0ml/(m
2・min)であった。テンプレート焼成前のゼオライトの膜複合体を電気炉で500℃、5時間焼成した。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は120g/m
2であった。SEM観察から膜厚は約15μmであった。
【0104】
生成したゼオライト膜のXRDを測定したところ、CHA型ゼオライトが生成していることがわかった。XRD測定は実施例1と同様に行った。生成した膜のXRDと種結晶として使用した粉末のCHA型ゼオライト(USP4544538号公報においてSSZ−13と一般に呼称されるゼオライト、以下SSZ−13として表わす。)であるSSZ−13のXRDの比較を
図2に示す。
図2において、a)は実施例2の膜の、b)はSSZ−13のXRDを示す。また、図中の*は支持体由来のピークである。生成した膜のXRDでは、粉末のCHA型ゼオライトであるSSZ−13のXRDにくらべ2θ=17.9°付近のピークの強度が顕著に大きいことがわかる。粉末のCHA型ゼオライトであるSSZ−13の(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.2に対し、生成した膜の(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=12.6であり、rhombohedral settingにおける(1,1,1)面への配向が推測された。
【0105】
また、SEM−EDXにより、ゼオライト膜のSiO
2/Al
2O
3モル比を測定したところ、17であった。
【0106】
(実施例3)
無機多孔質支持体−CHA型ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
【0107】
水熱合成のための反応混合物として、以下のものを調製した。
1mol/L−NaOH水溶液10.5gと1mol/L−KOH水溶液7.0gと水100.4gを混合したものに水酸化アルミニウム(Al
2O
353.5重量%含有、アルドリッチ社製)0.88gを加えて撹拌し溶解させ、透明溶液とした。これに有機テンプレートとして、N,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)2.37gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック−40)10.5gを加えて2時間撹拌し、水熱合成用混合物を調製した。
【0108】
無機多孔質支持体としては実施例1と同様に処理したものを用いた。支持体上には水熱合成に先立ち、実施例1と同様に粒径2μm程度のCHA型ゼオライトの種結晶を付着させた。付着した種結晶の重量は約2g/m
2であった。種結晶に用いた粒径2μm程度のCHA型ゼオライトは、セイケム社の25重量%N,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液を用いて、SiO
2/Al
2O
3/NaOH/KOH/H
2O/TMADOH=1/0.066/0.15/0.1/100/0.1のゲル組成で160℃、2日間水熱合成をして結晶化させたものをろ過、水洗、乾燥したものである。
実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で48時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体−ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で5時間以上乾燥させた。乾燥後のas−madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過量を測定したところ透過量は0ml/ (m
2・min)であった。テンプレート焼成前のゼオライトの膜複合体を電気炉で500℃、5時間焼成した。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は130g/m
2であった。
【0109】
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。XRD測定は実施例1と同様に行った。生成した膜のXRDの結果から、2θ=17.9°付近のピークの強度が顕著に大きいことがわかる。生成した膜の(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=1.0であった。
【0110】
また、SEM−EDXにより、ゼオライト膜のSiO
2/Al
2O
3モル比を測定したところ、20であった。
【0111】
(実施例4)
無機多孔質支持体として多孔質アルミナチューブ(外径12mm、内径9mm)を用いた以外は、実施例3と同様に行って、無機多孔質支持体−CHA型ゼオライト膜複合体を作成した。
生成したCHA型ゼオライト膜のXRDの結果から、(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=1.2であった。また、SEM−EDXにより、ゼオライト膜のSiO
2/Al
2O
3モル比を測定したところ、17であった。
【0112】
(実施例5)
無機多孔質支持体−CHA型ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
【0113】
水熱合成のための反応混合物として、以下のものを調製した。
1mol/L−NaOH水溶液32gと1mol/L−KOH水溶液48gと水457gを混合したものに水酸化アルミニウム(Al
2O
3 53.5重量%含有、アルドリッチ社製)4.0gを加えて撹拌し溶解させ、ほぼ透明溶液とした。これに有機テンプレートとして、N,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)13.5gを加え、さらにコロイダルシリカ (日産化学社製 スノーテック−40)48gを加えて2時間撹拌し、水熱合成用混合物を調製した。
【0114】
無機多孔質支持体としては実施例1と同様に処理したものを用いた。支持体上には水熱合成に先立ち、粒径2μm程度のCHA型ゼオライトの種結晶を付着させた以外は実施例1と同様の処理を行った。付着した種結晶の重量は約5g/m
2であった。
実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してこのテフロン(登録商標)製内筒を1Lのステンレス製オートクレーブに入れ、オートクレーブを密閉し昇温に5時間をかけたのち、160℃で48時間、自生圧力下で加熱した。反応の間、200rpmで回転する撹拌翼によって反応混合物を混合した。所定時間経過後、放冷した後に支持体−ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で4時間以上乾燥させた。乾燥後のas−madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過量を測定したところ透過量は0ml/(m
2・min)であった。テンプレート焼成前のゼオライトの膜複合体を電気炉で500℃、5時間焼成した。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は120g/m
2であった。
【0115】
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。XRD測定は実施例1と同様に行った。生成した膜のXRDを
図3に示す。図中の*は支持体由来のピークである。
生成した膜のXRDでは粉末のCHA型ゼオライトであるSSZ−13のXRDにくらべ2θ=9.6°付近のピークの強度が顕著に大きいことがわかる。生成した膜の(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=6.8とCOLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERに記載の粉末のCHAのXRDの比((2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=2.5にくらべ著しく大きく、rhombohedral settingにおける(1,0,0)面への配向が推測された。また、SEM−EDXにより、ゼオライト膜のSiO
2/Al
2O
3モル比を測定したところ、17であった。
【0116】
(実施例6)
無機多孔質支持体−CHA型ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
【0117】
水熱合成のための反応混合物として、以下のものを調製した。
1mol/L−NaOH水溶液30.1gと水66.0gを混合したものに水酸化アルミニウム(Al
2O
3 53.5重量%含有、アルドリッチ社製)0.057gを加えて撹拌し溶解させ、ほぼ透明溶液とした。これに有機テンプレートとして、N,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)12.7gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック−40)23.6gを加えて2時間撹拌し、水熱合成用混合物を調製した。
【0118】
無機多孔質支持体としては実施例1と同様に処理したものを用いた。支持体上には水熱合成に先立ち、実施例1と同様に0.5μm程度のCHA型ゼオライトの種結晶を付着させた。付着した種結晶の重量は約3g/m
2であった。
実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で48時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体−ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で4時間以上乾燥させた。乾燥後のas−madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過量を測定したところ透過量は0ml/ (m
2・min)であった。テンプレート焼成前のゼオライトの膜複合体を電気炉で500℃、5時間焼成した。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は100g/m
2であった。
【0119】
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。XRD測定は実施例1と同様に行った。生成した膜のXRDを
図4に示す。図中の*は支持体由来のピークである。
生成した膜のXRDにおいて(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=1.7であり、(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.3であった。
【0120】
このように、生成した膜のXRDピークに特異な強度を示すものはなかった。これから例えば、生成した膜がrhombohedral settingにおける(1,0,0)面、(1,1,1)面のいずれにも配向していないことが推測される。
また、SEM−EDXにより、ゼオライト膜のSiO
2/Al
2O
3モル比を測定しようとしたが、出発の反応混合物のSiO
2/Al
2O
3モル比が500であることからゼオライト膜のSiO
2/Al
2O
3モル比も非常に高くなることから、正確な値が得られなかった。ゼオライト膜のSEM−EDXでは通常、SiO
2/Al
2O
3モル比の測定限界値が100程度と考えられるため、少なくともこのゼオライト膜のSiO
2/Al
2O
3モル比は100以上であると推測される。
【0121】
(実施例7)
実施例1で得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いてパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
【0122】
パーベーパレーションに用いた装置の概略図を
図1に示す。
図1において5のゼオライト膜複合体は9の真空ポンプによって内側が減圧され、4の被分離液が接触している外側と圧力差が約1気圧になっている。この圧力差によって4の被分離液中透過物質の水が5のゼオライト膜複合体に浸透気化して透過する。透過した物質は7のトラップで捕集される。一方、酢酸は5のゼオライト膜の外側に滞留する。一定時間ごとに4の被分離液の濃度を測定し、その濃度を用いて各時間の分離係数を算出した。
【0123】
トラップに捕集した透過液、被分離液の組成分析はガスクロマトグラフによって行った。透過開始から約5時間程度で安定してくるので、約5時間後の透過成績を示す。
透過流束は4.0kg/(m
2・h)、分離係数は384、透過液中の水の濃度は99.74重量%であった。測定結果を表1に示す。
【0124】
(実施例8)
実施例2で得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
透過流束は4.8kg/(m
2・h)、分離係数は544、透過液中の水の濃度は99.81重量%であった。測定結果を表1に示す。
また、分離を長時間継続し、透過流束の経時変化を調べた。開始から約10時間後の変化を開始60分後の透過流束を1としてプロットしたものを
図5に示した。これから透過流束は約5時間後はほぼ安定していることがわかる。
【0125】
(実施例9)
実施例2で得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により80℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
透過流束は6.0kg/(m
2・h)、分離係数は649、透過液中の水の濃度は99.84重量%であった。測定結果を表1に示す。
【0126】
(実施例10)
実施例2で得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(10/90重量%)から水を選択的に透過させる分離を行った。
透過流束は1.4 kg/(m
2・h)、分離係数は1411、透過液中の水の濃度は99.33重量%であった。測定結果を表1に示す。
【0127】
(実施例11)
実施例3で得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
透過流束は5.6kg/(m
2・h)、分離係数は230、透過液中の水の濃度は99.57重量%であった。測定結果を表1に示す。
【0128】
(実施例12)
実施例4で得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/2−プロパノール水溶液(30/70重量%)から水を選択的に透過させる分離を行った。
透過流束は7.7kg/(m
2・h)、分離係数は3000、透過液中の水の濃度は99.92重量%であった。測定結果を表2に示す。
【0129】
(実施例13)
実施例5で得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
透過流束は4.6kg/(m
2・h)、分離係数は64、透過液中の水の濃度は98.46重量%であった。測定結果を表1に示す。
【0130】
(実施例14)
実施例6で得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
透過流束は0.9kg/(m
2・h)、分離係数は26、透過液中の水の濃度は96.30重量%であった。測定結果を表1に示す。約3時間で透過流束、分離係数、透過液中の水の濃度が安定したのでこの値は約3時間後の値である。
【0131】
(実施例15)
水熱合成のための反応混合物として、以下のものを調製した以外は実施例2と同様にして無機多孔質支持体−CHA型ゼオライト膜複合体を作成した。用いた水熱合成のための反応混合物は、1mol/L−NaOH水溶液12.9gと1mol/L−KOH水溶液8.6gと水92.4gを混合したものに水酸化アルミニウム(Al
2O
353.5重量%含有、アルドリッチ社製)1.16gを加えて撹拌し溶解させ、ほぼ透明溶液とし、これに有機テンプレートとして、N,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)2.91gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック−40)12.9gを加えて2時間撹拌して調製した。得られた膜複合体の焼成後の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は150g/m
2であった。
XRD測定を実施例1と同様に行った。
生成した膜の(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=12.8であった。
また、SEM−EDXにより、ゼオライト膜のSiO
2/Al
2O
3モル比を測定したところ、15であった。
【0132】
(実施例16)
実施例15で得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。透過流束は4.5kg/(m
2・h)、分離係数は180、透過液中の水の濃度は99.43重量%であった。測定結果を表1に示す。
【0133】
(実施例17)
実施例2と同様にして得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/2−プロパノール溶液(10/90重量%)から水を選択的に透過させる分離を行った。
透過流束は4.0kg/(m
2・h)、分離係数は36000、透過液中の水の濃度は99.97重量%であった。測定結果を表2に示す。
【0134】
(実施例18)
実施例2と同様にして得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/2−プロパノール溶液(30/70重量%)から水を選択的に透過させる分離を行った。
透過流束は5.8kg/(m
2・h)、分離係数は31000、透過液中の水の濃度は99.99重量%であった。測定結果を表2に示す。
【0135】
(実施例19)
実施例2と同様にして得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により50℃の水/2−プロパノール溶液(30/70重量%)から水を選択的に透過させる分離を行った。
透過流束は2.5kg/(m
2・h)、分離係数は29000、透過液中の水の濃度は99.99重量%であった。測定結果を表2に示す。
【0136】
(実施例20)
実施例2と同様にして得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により50℃の水/テトラヒドロフラン溶液(50/50重量%)から水を選択的に透過させる分離を行った。
透過流束は3.1kg/(m
2・h)、分離係数は3100、透過液中の水の濃度は99.97重量%であった。測定結果を表2に示す。
【0137】
(実施例21)
実施例2と同様にして得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により40℃の水/アセトン溶液(50/50重量%)から水を選択的に透過させる分離を行った。
透過流束は1.6kg/(m
2・h)、分離係数は14600、透過液中の水の濃度は99.99重量%であった。測定結果を表2に示す。
【0138】
(実施例22)
実施例2と同様にして得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/N−メチル−2−ピロリドン溶液(50/50重量%)から水を選択的に透過させる分離を行った。
透過流束は5.6kg/(m
2・h)、分離係数は10300、透過液中の水の濃度は99.95重量%であった。測定結果を表2に示す。
【0139】
(実施例23)
実施例2と同様にして得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/エタノール溶液(86/14重量%)から水を選択的に透過させる分離を行った。
透過流束は1.3kg/(m
2・h)、分離係数は500、透過液中の水の濃度は99.97重量%であった。測定結果を表2に示す。
【0140】
(実施例24)
実施例2と同様にして得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により40℃のメタノール/アセトン溶液(50/50重量%)からメタノールを選択的に透過させる分離を行った。
透過流束は0.1kg/(m
2・h)、分離係数は670、透過液中のメタノールの濃度は99.86重量%であった。測定結果を表2に示す。
【0141】
(比較例1)
比較のため無機多孔質支持体−MOR型ゼオライト膜複合体を、MOR型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製し、実施例7と同様の方法で70℃の水/酢酸混合溶液(50/50重量%)から水を選択的に透過させる分離を行った。
水熱合成のための反応混合物として、以下のものを調製した。
【0142】
水酸化ナトリウム(97.0重量%、純正化学社製)14.9gと水69.5gを混合したものに水酸化アルミニウム(Al
2O
3 53.5重量%含有、Aldrich社製)1.09gを加えて撹拌し溶解させ、透明溶液とした。これにコロイダルシリカ(日産化学社製 スノーテック−40)90.0gを加えて2時間撹拌し、水熱合成用混合物を調製した。
無機多孔質支持体としては実施例1と同様のものを用いた。水熱合成に先立ち、東ソー製MOR型ゼオライトTSZ−640NAAを5重量%水に分散させたスラリーを支持体上に塗りこんでMOR型ゼオライトの種結晶として付着させた。付着した種結晶の重量は約6g/m
2であった。この種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で8時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体−ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で5時間以上乾燥させた。乾燥後のas−madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過量を測定したところ透過量は0ml/(m
2・分)であった。乾燥後の膜複合体の重量と支持体の重量の差から支持体状に結晶化したMOR型ゼオライトの重量は約35g/m
2であった。
【0143】
分離評価の結果、透過流束は0.38kg/(m
2・h)、分離係数は2300、透過液中の水の濃度は99.96重量%であった。
この実施例8と比較例1の結果からCHA膜複合体はMOR膜複合体と同等の高い選択透過性を有し、かつMOR膜複合体の10倍以上の高い透過流束を持つことがわかる。
さらに、実施例8の場合と同様に分離を長時間継続し、透過流束の経時変化を調べた。開始から約10時間後の変化を開始60分後の透過流束を1としてプロットしたものを
図5に示した。実施例8に比べて経時的な低下が大きく、安定性という点でもCHA型ゼオライト膜複合体が優れていることがわかる。
【0144】
(比較例2)
比較のため金属多孔質支持体−CHA型ゼオライト膜複合体を、CHA型ゼオライトを金属メッシュ支持体上に直接水熱合成することで作製し、実施例7と同様の方法で70℃の水/酢酸混合水溶液(50/50重量%)から水を選択的に透過させる分離を行った。
金属メッシュ支持体としては日本精線(株)のTFφ14XL250 NF2M―02S2を約80mmに切断したものを用いた。
水熱合成のための反応混合物として、以下のものを調製した。
1mol/L−NaOH水溶液32.0gと水74.55gを混合したものに水酸化アルミニウム(Al
2O
3 53.5重量%含有、アルドリッチ社製)0.76gを加えて撹拌し溶解させ、ほぼ透明溶液とした。これに有機テンプレートとして、N,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシド(TMADOH)水溶液(TMADAOH25重量%含有、セイケム社製)27.00gを加え、さらにヒュームドシリカ(日本アエロジル社製 アエロジル200)9.6gを加えて2時間撹拌し、水熱合成用混合物を調製した。
【0145】
金属メッシュ支持体には実施例1と同様の処理を行った。支持体上には水熱合成に先立ち、実施例1と同様に0.5μm程度のCHA型ゼオライトの種結晶を付着させた。付着した種結晶の重量は約18g/m
2であった。
実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し160℃で48時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体−ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で4時間以上乾燥させた。乾燥後のas−madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過量を測定したところ透過量は0ml/ (m
2・min)であった。テンプレート焼成前のゼオライトの膜複合体を電気炉で500℃、5時間焼成した。焼成後の膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は280g/m
2であった。
XRDの測定から基材の表面にCHA型ゼオライトが生成していた。XRD測定は実施例1と同様に行った。
生成した膜のXRDにおいて(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.8であり、(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.1であった。
このように、生成した膜のXRDピークに特異な強度を示すものはなかった。これから例えば、生成した膜がrhombohedral settingにおける(1,0,0)面、(1,1,1)面のいずれにも配向していないことが推測される。
【0146】
分離評価の結果、透過流束は0.48kg/(m
2・h)、分離係数は5、透過液中の水の濃度は84.65重量%であった。
この比較例2と実施例3、4、5、6、7、8の結果から金属多孔質支持体―CHA膜複合体はセラミックス無機多孔質支持体―CHA膜複合体と異なり、選択透過性が低く、透過流束も低いことが分かる。(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)、または(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)の値が小さい、金属多孔質支持体―CHA膜複合体ではセラミックス無機多孔質支持体―CHA膜複合体と異なり、緻密な膜が形成されにくいと推測される。
【0147】
(実施例25)
無機多孔質支持体−CHA型ゼオライト膜複合体はCHA型ゼオライトを無機多孔質支持体上に直接水熱合成することで作製した。
水熱合成のための反応混合物として、以下のものを調製した。
1mol/L−KOH水溶液126gに水酸化アルミニウム(Al
2O
3 53.5重量%含有、アルドリッチ社製)5.7gを加えて撹拌し溶解させ、ほぼ透明溶液とした。これにコロイダルシリカ(日産化学社製 スノーテック−40)27gを加えて2時間撹拌し、水熱合成用混合物を調製した。
【0148】
無機多孔質支持体としては実施例1と同様に処理したものを用いた。支持体上には水熱合成に先立ち、実施例1と同様に0.2μm程度のCHA型ゼオライトの種結晶を付着させた。付着した種結晶の重量は約3g/m
2であった。
この0.2μm程度のCHA型ゼオライトの種結晶は以下のように合成した。触媒化成社製のSiO
2/Al
2O
3比が7のY型ゼオライト10gを、KOH5gを水100gに溶かした水溶液に加え、2時間攪拌した。この反応混合物をテフロン(登録商標)製内筒に入れてオートクレーブを密閉し100℃7日間加熱した。その後、放冷し、ろ過、水洗してCHA型ゼオライトを得た。
実施例1と同様にこの種結晶を付着させた支持体を上記反応混合物の入ったテフロン(登録商標)製内筒に垂直方向に浸漬してオートクレーブを密閉し140℃で108時間、自生圧力下で加熱した。所定時間経過後、放冷した後に支持体−ゼオライト膜複合体を反応混合物から取り出し洗浄後100℃で4時間以上乾燥させた。乾燥後のas−madeの状態で円筒管状の膜複合体の一端を封止し、他の一端を真空ラインに接続することで管内を減圧とし、真空ライン設置した流量計で空気の透過量を測定したところ透過量は0ml/(m
2・min)であった。この膜複合体の重量と支持体の重量の差から支持体上に結晶化したCHA型ゼオライトの重量は50g/m
2であった。
【0149】
生成した膜のXRDを測定したところ、CHA型ゼオライトが生成していることがわかった。生成した膜のXRDにおいて(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.3であり、(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)=0.1であった。
【0150】
このように、生成した膜のXRDピークに特異な強度を示すものはなかった。これから例えば、生成した膜がrhombohedral settingにおける(1,0,0)面、(1,1,1)面のいずれにも配向していないことが推測される。
また、SEM−EDXにより、ゼオライト膜のSiO
2/Al
2O
3比を測定したところ6であった。
【0151】
(実施例26)
実施例25で得られた無機多孔質支持体−CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/2−プロパノール水溶液(30/70重量%)から水を選択的に透過させる分離を行った。
透過流束は3.9kg/(m
2・h)、分離係数は21、透過液中の水の濃度は90重量%であった。測定結果を表2に示す。
(実施例27)
実施例25で得られた無機多孔質支持体-CHA型ゼオライト膜複合体を用いて実施例7と同様にパーベーパレーション法により70℃の水/酢酸水溶液(50/50重量%)から水を選択的に透過させる分離を行った。
【0152】
透過流束は2.0kg/(m
2・h)、分離係数は12、透過液中の水の濃度は92.28重量%であった。測定結果を表1に示す。
【0153】
【表1】
【0154】
【表2】