特許第5761528号(P5761528)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱マテリアル株式会社の特許一覧

特許5761528透明酸化物膜及びその製造方法並びに酸化物スパッタリングターゲット
<>
  • 特許5761528-透明酸化物膜及びその製造方法並びに酸化物スパッタリングターゲット 図000003
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】5761528
(24)【登録日】2015年6月19日
(45)【発行日】2015年8月12日
(54)【発明の名称】透明酸化物膜及びその製造方法並びに酸化物スパッタリングターゲット
(51)【国際特許分類】
   C23C 14/08 20060101AFI20150723BHJP
   C04B 35/453 20060101ALI20150723BHJP
【FI】
   C23C14/08 K
   C04B35/00 P
【請求項の数】4
【全頁数】11
(21)【出願番号】特願2012-49505(P2012-49505)
(22)【出願日】2012年3月6日
(65)【公開番号】特開2013-185176(P2013-185176A)
(43)【公開日】2013年9月19日
【審査請求日】2014年9月25日
(73)【特許権者】
【識別番号】000006264
【氏名又は名称】三菱マテリアル株式会社
(74)【代理人】
【識別番号】100120396
【弁理士】
【氏名又は名称】杉浦 秀幸
(72)【発明者】
【氏名】近藤 佑一
(72)【発明者】
【氏名】張 守斌
【審査官】 今井 淳一
(56)【参考文献】
【文献】 国際公開第2006/129410(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C23C 14/08
C04B 35/453
(57)【特許請求の範囲】
【請求項1】
全金属成分量に対して、Alを3〜13at%、Siを21〜59at%、Mgを10〜48at%含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物であり、波長400〜750nmの可視光域での屈折率平均値が、1.9以下であり、前記可視光域での透過率平均値が90%以上であり、非晶質であることを特徴とする透明酸化物膜。
【請求項2】
請求項1に記載の透明酸化物膜において、
水蒸気透過率が0.03g/(m・day)以下であることを特徴とする透明酸化物膜。
【請求項3】
請求項1又は2に記載の透明酸化物膜を製造するためのスパッタリングターゲットであって、
全金属成分量に対して、Alを3〜8at%、Siを11〜27at%、Mgを5〜18at%含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物焼結体からなることを特徴とする酸化物スパッタリングターゲット。
【請求項4】
請求項1又は2に記載の透明酸化物膜を製造する方法であって、
請求項3に記載の酸化物スパッタリングターゲットを用い、酸素を含有させた不活性ガス雰囲気中及び基板を加熱した状態の少なくとも一方の環境下で、直流電流を投入してスパッタすることを特徴とする透明酸化物膜の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶表示素子やエレクトロルミネッセンス表示素子、電気泳動方式表示素子、トナー表示素子などの電子ペーパーやフィルム型太陽電池などに用いられるガスバリア層、及び化合物半導体による薄膜太陽電池の透明電極層上のガスバリア層として利用される酸化亜鉛系のガスバリア性に優れる透明酸化物膜及びその製造方法並びに酸化物スパッタリングターゲットに関するものである。
【背景技術】
【0002】
従来、液晶表示素子やエレクトロルミネッセンス表示素子、電気泳動方式表示素子、トナー表示素子などの電子ペーパーやフィルム型太陽電池などに用いられるガスバリア層、及び化合物半導体による薄膜太陽電池(例えば、CIGS(Cu−In−Ga−Se)系太陽電池)の透明電極層上のガスバリア層として、透明酸化物膜をスパッタリング法で作製する技術が知られている。
【0003】
例えば、特許文献1では、酸化スズと、Si、Ge、Alからなる群から選ばれる少なくとも1種の添加元素とを含有し、該添加元素は、添加元素とSnの含有量の総和に対して15原子%〜63原子%の割合で含まれ、結晶相の構成に、添加元素の金属相、該添加元素の酸化物相、該添加元素とSnの複合酸化物相のうちの1種以上が含まれ、該添加元素の酸化物相、及び、該添加元素とSnの複合酸化物相が、平均粒径50μm以下の大きさで分散している酸化物焼結体をスパッタリングターゲットとして用い、直流パルシング法を利用したスパッタリング法により、樹脂フィルム基材の表面に透明酸化物膜を形成する方法が提案されている。
【0004】
この方法で得られた透明酸化物膜は、酸化スズと、Si、Ge、Alからなる群から選ばれる少なくとも1種の添加元素とを含有する透明酸化物膜であって、該添加元素は、添加元素とSnの総和に対して15原子%〜63原子%の割合で含まれ、非晶質膜であり、かつ、波長633nmにおける屈折率が1.90以下であるとされている。
【0005】
また、特許文献2には、高分子フィルム基材の片面または両面に、ZnS及びSiOからなる混合物を主成分とした混合薄膜層が少なくとも1層形成してなり、さらに混合薄膜層上に樹脂層を少なくとも1層積層したガスバリア性フィルムが記載されている。この混合薄膜層は、ZnS及びSiOで形成された混合焼結材であるスパッタリングターゲットを用いて高周波を印加したスパッタリングにより成膜される。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2007−290916号公報
【特許文献2】特開2010−208072号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記従来の技術には、以下の課題が残されている。
すなわち、上記特許文献1に記載のターゲットでは、スパッタリング時にノジュールが多く発生して装置の掃除等に手間がかかるため、酸化スズ系ではなく他の組成系のガスバリア性に優れる透明酸化物膜が要望されている。
また、上記特許文献2に記載のガスバリア膜は、高周波を印加したスパッタにより作製されているが、より高速に成膜を行うためにはDCスパッタで成膜できる膜である必要がある。
【0008】
本発明は、前述の課題に鑑みてなされたもので、屈折率が低く良好なガスバリア性を有した酸化亜鉛系の透明酸化物膜及びその製造方法並びに酸化物スパッタリングターゲットを提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者らは、AZO(Al-Zn-O:Aluminium doped Zinc Oxide:アルミニウム添加酸化亜鉛)膜にSiOまたはMgOを含有させると膜が非晶質になってガスバリア性が向上することを見出したことから、透明酸化物膜としてZnO−SiO−MgO−Al系の膜をスパッタリングにより成膜するべく研究を行った。この研究において、スパッタ成膜時の雰囲気または基板の温度を特定の条件に設定することで、透明で低屈折率かつ高ガスバリア性能を有する膜を得られることを突き止めた。
【0010】
したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係る透明酸化物膜は、全金属成分量に対して、Alを3〜13at%、Siを21〜59at%、Mgを10〜48at%含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物であり、波長400〜750nmの可視光域での屈折率平均値が、1.9以下であり、前記可視光域での透過率平均値が90%以上であり、非晶質であることを特徴とする。
すなわち、この透明酸化物膜では、全金属成分量に対して、Alを3〜13at%、Siを21〜59at%、Mgを10〜48at%含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物であり、波長400〜750nmの可視光域での屈折率平均値が、1.9以下であり、前記可視光域での透過率平均値が90%以上であり、非晶質であるので、可視光域で低い屈折率及び高い透過率が得られると共に高いガスバリア性(例えば、水蒸気バリア性)を有している。
【0011】
第2の発明に係る透明酸化物膜は、第1の発明において、水蒸気透過率が0.03g/(m・day)以下であることを特徴とする。
すなわち、この透明酸化物膜では、水蒸気透過率が0.03g/(m・day)以下であるので、水蒸気バリア性が高いことから、電子ペーパーや太陽電池に用いる樹脂フィルム基材上に積層するガスバリア層等に好適である。
【0012】
第3の発明に係る酸化物スパッタリングターゲットは、第1又は第2の発明のいずれかの透明酸化物膜を製造するためのスパッタリングターゲットであって、全金属成分量に対して、Alを3〜8at%、Siを11〜27at%、Mgを5〜18at%含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物焼結体からなることを特徴とする。
すなわち、この酸化物スパッタリングターゲットでは、全金属成分量に対して、Alを3〜8at%、Siを11〜27at%、Mgを5〜18at%含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物焼結体からなるので、導電性が高くDCスパッタにより上記本発明の透明酸化物膜を安定して形成することができる。
【0013】
第4の発明に係る透明酸化物膜の製造方法は、第1又は第2の発明のいずれかの透明酸化物膜を製造する方法であって、第3の発明の酸化物スパッタリングターゲットを用い、酸素を含有させた不活性ガス雰囲気中及び基板を加熱した状態の少なくとも一方の環境下で、直流電流を投入してスパッタすることを特徴とする。
すなわち、この透明酸化物膜の製造方法では、酸素を含有させた不活性ガス雰囲気中及び基板を加熱した状態の少なくとも一方の環境下で、成膜される透明酸化物膜の透明性が向上し、屈折率が低下する。また、DCスパッタで高速成膜した膜であるので、RFスパッタで成膜した膜より緻密で、バリア性に優れている。
【0014】
ここで、本発明の透明酸化物膜及び酸化物スパッタリングターゲット中の金属成分元素の含有割合を上記のごとく限定した理由は、以下のとおりである。
Al:
Alは、DCスパッタ可能にするためにZnOへのドーパントとしてスパッタリングターゲットに添加されたものであり、スパッタ成膜の結果として膜に含有されたものである。Alが上記含有量範囲よりも少ないと、ターゲットの導電性が不足してDCスパッタができなくなる。また、Alが上記含有量範囲よりも多いと、Znと複合酸化物を形成して結晶性が高くなり、ガスバリア性が低下してしまう。
【0015】
Si:
Siは、Mgと共に膜の結晶性を低下させ、水蒸気やガスのパスを減少させることにより、ガスバリア性を向上させる効果を有する。Siが上記含有量範囲よりも少ないと、膜の結晶性が高くなり、ガスバリア性が低下すると共に屈折率が上昇してしまう。また、Siが上記含有量範囲よりも多いと、Znと複合酸化物を形成して結晶性が高くなり、ガスバリア性が低下してしまうと共に、所望の組成の膜をスパッタ成膜するために必要なターゲットのSi量が多くなり、導電性が低くなってDCスパッタができなくなる。
【0016】
Mg:
Mgは、Siと共に膜の結晶性を低下させ、水蒸気やガスのパスを減少させることにより、ガスバリア性を向上させる効果を有する。Mgが上記含有量範囲よりも少ないと、膜の結晶性が高くなり、ガスバリア性が低下してしまう。また、Mgが上記含有量範囲よりも多いと、Al,Znと複合酸化物を形成して結晶性が高くなり、ガスバリア性が低下してしまうと共に、所望の組成の膜をスパッタ成膜するために必要なターゲットのMg量が多くなり、導電性が低くなってDCスパッタができなくなる。
【発明の効果】
【0017】
本発明によれば、以下の効果を奏する。
すなわち、本発明に係る透明酸化物膜によれば、全金属成分量に対して、Al、Si、Mgを上記範囲内で含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物で、可視光域で低い屈折率及び高い透過率を備え、非晶質であるので、高いガスバリア性を有している。
また、本発明に係る酸化物スパッタリングターゲットによれば、全金属成分量に対して、Al、Si、Mgを上記範囲内で含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物焼結体からなるので、導電性が高くDCスパッタにより上記本発明の透明酸化物膜を安定して形成することができる。
さらに、本発明に係る透明酸化物膜の製造方法によれば、上記酸化物スパッタリングターゲットを用いてDCスパッタが可能になり、酸素を含有させた不活性ガス雰囲気中及び基板を加熱した状態の少なくとも一方の環境下で、直流電流を投入してスパッタするので、透明性の高い上記組成の透明酸化物膜を成膜することができる。
したがって、本発明の透明酸化物膜を電子ペーパーや太陽電池などのガスバリア層に採用することで、要求される高透明性、低屈折率及び高ガスバリア性が得られ、高信頼性を有すると共に視認性の高い電子ペーパーや変換効率の良好な太陽電池などを作製可能である。
【図面の簡単な説明】
【0018】
図1】本発明に係る透明酸化物膜及びその製造方法並びにスパッタリングターゲットの一実施形態において、使用するスパッタリングターゲットの製造工程を示すフローチャートである。
【発明を実施するための形態】
【0019】
以下、本発明に係る透明酸化物膜及びその製造方法並びにスパッタリングターゲットの一実施形態を、図1を参照して説明する。
【0020】
本実施形態の透明酸化物膜は、上述した用途のガスバリア層として利用される膜であって、全金属成分量に対して、Alを3〜13at%、Siを21〜59at%、Mgを10〜48at%含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物である。また、この透明酸化物膜は、波長400〜750nmの可視光域での屈折率平均値が、1.9以下であり、前記可視光域での透過率平均値が90%以上であり、非晶質である。透明酸化物膜は、水蒸気透過率が0.03g/(m・day)以下であることが好ましい。
なお、水蒸気透過率は、JIS規格のK7129法にしたがってモコン法により測定されたものである。
【0021】
また、本実施形態の透明酸化物膜を製造するための酸化物スパッタリングターゲットは、全金属成分量に対して、Alを3〜8at%、Siを11〜27at%、Mgを5〜18at%含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物焼結体からなる。
さらに、本実施形態の透明酸化物膜の製造方法は、上記酸化物スパッタリングターゲットを用い、酸素を含有させた不活性ガス雰囲気中及び基板を加熱した状態の少なくとも一方の環境下で、直流電流を投入してスパッタ(DCスパッタ)する。
【0022】
このとき、樹脂フィルム基材を基板として用い、基板の加熱温度は100〜200℃の範囲に設定する。また、酸素と不活性ガスとの雰囲気ガス全体に対する酸素のガス分圧は0.05以上0.2以下に設定する。
【0023】
上記酸化物スパッタリングターゲットを作製する方法は、Al粉末とMgO粉末とSiO粉末とZnO粉末とを秤量し、混合して混合粉末とする工程と、この混合粉末を焼結する工程とを有している。この焼結は、常圧焼結法、HP、HIP法を用いて実現できる。
上記製法の一例について詳述すれば、例えば、図1に示すように、まず純度99.9%以上のAl粉末とMgO粉末とSiO粉末とZnO粉末とを上記含有量範囲となるように秤量し、得られた粉末と、ジルコニアボールとをポリ容器(ポリエチレン製ポット)に入れ、ボールミル装置にて所定時間湿式混合し、混合粉末とする。なお、溶媒には、例えばアルコールを用いる。
【0024】
次に、得られた混合粉末を乾燥後、例えば1200℃にて5時間、200kgf/cmの圧力で真空中でホットプレスし、焼結体とする。なお、ホットプレス温度は、1100〜1250℃の範囲が好ましく、時間は、1〜10時間が好ましく、圧力は、100〜400kgf/cmの範囲が好ましい。
このようにホットプレスした焼結体は、通常放電加工、切削または研削工法を用いて、ターゲットの指定形状に機械加工し、加工後のターゲットをInを半田として、CuまたはSUS(ステンレス)またはその他金属(例えば、Mo)からなるバッキングプレートにボンディングし、スパッタに供する。
【0025】
このスパッタリングターゲットを用いて本実施形態の透明酸化物膜をDCスパッタするには、上記スパッタリングターゲットを、マグネトロンスパッタリング装置にセットし、投入電力密度を0.8〜12W/cm、到達真空度を5×10−4Pa以下、スパッタ圧力を0.3〜20Pa、スパッタガス分圧をO/(Ar+O)が0.05〜0.2の範囲、基板加熱温度を100〜200℃とした条件で、樹脂フィルム基材上に成膜する。
【0026】
このように本実施形態の透明酸化物膜では、全金属成分量に対して、Alを3〜13at%、Siを21〜59at%、Mgを10〜48at%含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物で、可視光域で低い屈折率及び高い透過率を備え、非晶質であるので、高いガスバリア性を有している。
特に、水蒸気透過率が0.03g/(m・day)以下であるので、水蒸気バリア性が高いことから、電子ペーパーや太陽電池に用いる樹脂フィルム基材上に積層するガスバリア層等に好適である。
【0027】
また、この透明酸化物膜を作製するための酸化物スパッタリングターゲットでは、全金属成分量に対して、Alを3〜8at%、Siを11〜27at%、Mgを5〜18at%含有し、残部がZn及び不可避不純物からなる成分組成を有した酸化物焼結体からなるので、導電性が高くDCスパッタにより上記本発明の透明酸化物膜を安定して形成することができる。
【0028】
さらに、上記透明酸化物膜の製造方法では、上記酸化物スパッタリングターゲットを用い、酸素を含有させた不活性ガス雰囲気中及び基板を加熱した状態の少なくとも一方の環境下で、直流電流を投入してスパッタするので、成膜される透明酸化物膜の透明性が向上する。
【0029】
また、基板の加熱温度を、100〜200℃の範囲に設定するので、成膜する樹脂フィルム基材への熱影響を抑えつつ、電子ペーパーや太陽電池で採用されるガスバリア層として十分な透明性と低い屈折率とを有する透明酸化物膜が得られる。
さらに、酸素と不活性ガスとの雰囲気ガス全体に対する酸素のガス分圧を、0.05以上に設定するので、電子ペーパーや太陽電池で採用されるガスバリア層として十分な透明性と低い屈折率とを有する透明酸化物膜が得られる。
【実施例】
【0030】
上記本実施形態に基づいて作製した透明酸化物膜及び酸化物スパッタリングターゲットの実施例について評価した結果を以下に説明する。
【0031】
本発明の実施例の製造は、以下の条件で行った。
まず、表1に示す組成割合になるようにAl粉末(4N,D50=0.2μm)とMgO粉末(3N,D50=0.4μm)とSiO粉末(3N,D50=5μm)とZnO粉末(4N,D50=1μm)とを秤量し、得られた粉末とその4倍量(重量比)のジルコニアボール(直径5mmのボール)とを10Lのポリ容器(ポリエチレン製ポット)に入れ、ボールミル装置にて48時間湿式混合し、混合粉末とする。なお、溶媒には、アルコールを用いた。
ここで、例えば、D50=1μmは、粉末における50%の粒子の粒径が1μm以下であることを表している。
【0032】
次に、得られた混合粉末を乾燥後、1200℃にて5時間、200kgf/cmの圧力で真空ホットプレスし、焼結体とした。
このようにホットプレスした焼結体を、ターゲットの指定形状(直径125mm、厚さ10mm)に機械加工し、加工したものを無酸素銅からなるバッキングプレートにボンディングして本実施例1〜13のスパッタリングターゲットを作製した。
【0033】
さらに、これらのスパッタリングターゲットを、マグネトロンスパッタリング装置にセットし、電源:DC、投入電力:500W、到達真空度:1×10−4Pa、スパッタガス分圧(酸素と不活性ガス(Ar)との雰囲気ガス全体に対する酸素のガス分圧:O/(Ar+O))が0.05以上0.2以下、スパッタ圧力:0.67Pa、基板加熱を100℃から200℃とした条件で、屈折率及び透過率測定用としてガラス基板(コーニング社#1737 縦:20mm×横:20mm、厚さ:0.7mm)の上に膜厚100nm、また、水蒸気透過率測定用としてPETフィルム(縦:100mm×横:100mm、厚さ:120μm)の上に100nmを有する透明膜の形成を試みた。
【0034】
なお、比較例のスパッタリングターゲット及び透明酸化物膜として、表1に示す条件において、ターゲット組成及び膜組成を本発明の範囲外に設定したもの(比較例1〜6)を上記実施例と同様に作製した。すなわち、比較例の透明酸化物膜として、スパッタリングターゲットの組成を調整し、透明酸化物膜中のAlの組成を3〜13at%の範囲外としたもの(比較例1,2)と、透明酸化物膜中のSiの組成を21〜59at%の範囲外としたもの(比較例3,4)と、透明酸化物膜中のMgの組成を10〜48at%の範囲外としたもの(比較例5,6)と、成膜条件を本発明の範囲外に設定したもの(比較例7)とを上記実施例と同様に作製した。
【0035】
【表1】
【0036】
このように作製した本発明の実施例及び比較例の透明酸化物膜について、膜組成をICP発光分析法で測定したところ、全金属成分に対する各金属成分は表1に示すようになった。膜をEPMAで分析したところ、組織全体に酸素が均一に分布しており、各金属元素が酸化物として膜中に存在していることが確認された。
また、本発明の実施例及び比較例の透明酸化物膜についてX線回折(XRD)の分析を行い、結晶ピークの有無について調べた結果を表1に示す。
【0037】
また、得られた各透明酸化物膜の屈折率は分光エリプソメーター(HORIBA Jobin Yvon社製UVISEL NIR)によって、透過率は分光光度計(日本分光社製 V−550)によって測定した。測定したそれぞれの結果は表1に示す。
さらに、水蒸気透過率(水蒸気バリア性)は、モコン法を用い、mocon社製PERMATRAN-WMODEL 3/33を用いてJIS規格のK7129法に基づいて測定した。測定されたそれぞれの結果は表1に示す。
【0038】
これらの評価の結果、比較例1では、ターゲットの電気抵抗値が高すぎて、DCスパッタできなかった。
比較例2では、ターゲットに複合酸化物(ZnAl)組織ができて異常放電が多発し、DCスパッタできなかったので、RFスパッタしたところ、膜に複合酸化物相が析出して水蒸気バリア性が悪かった。
【0039】
比較例3では、Si添加量が少なく、屈折率が高くなっている。また、粗大結晶が析出してアモルファス構造が崩れたため、水蒸気バリア性が悪かった。
比較例4では、ターゲットの電気抵抗値が高すぎて、DCスパッタできなかったため、RFスパッタしたところ、複合酸化物(ZnSiO)が析出し、水蒸気バリア性が悪かった。
比較例5では、Mg添加量が少ないため、膜の結晶性が高くなり、粗大粒子が析出して水蒸気バリア性が低下している。
比較例6では、ターゲットの電気抵抗値が高すぎて、DCスパッタできなかったため、RFスパッタしたところ、複合酸化物(ZnMgO)が析出し、水蒸気バリア性が悪かった。
比較例7では、本発明のスパッタ成膜条件を外れている。本発明のスパッタリングターゲットを用いても、基板加熱・酸素添加を行わなければ、膜に酸素欠損が残存するため、可視光域の屈折率が高く、可視光透過率が低い。
【0040】
これらに対して、本発明の全ての実施例では、XRDで結晶ピークが認められず、水蒸気透過率はいずれも0.03 g/(m・day)以下であり、高い水蒸気バリア性を有している。また、いずれの実施例においても、波長400〜750nmの可視光域の屈折率が1.9以下であると共に前記可視光域の透過率が90%以上と高く、低屈折率かつ高透過率を有する膜が得られている。
【0041】
なお、本発明の酸化物スパッタリングターゲットを利用するためには、相対密度:90%以上、面粗さ:Ra値2μm以下、Rz値15μm以下、粒径:3μm以下、電気抵抗:1.0×10Ω・cm以下、金属系不純物濃度:0.1原子%以下、抗折強度:120MPa以上であることが好ましい。上記各実施例は、いずれもこれらの条件を満たしたものである。
また、本発明の技術範囲は上記実施形態及び上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
図1