【実施例】
【0030】
上記本実施形態に基づいて作製した透明酸化物膜及び酸化物スパッタリングターゲットの実施例について評価した結果を以下に説明する。
【0031】
本発明の実施例の製造は、以下の条件で行った。
まず、表1に示す組成割合になるようにAl
2O
3粉末(4N,D
50=0.2μm)とMgO粉末(3N,D
50=0.4μm)とSiO
2粉末(3N,D
50=5μm)とZnO粉末(4N,D
50=1μm)とを秤量し、得られた粉末とその4倍量(重量比)のジルコニアボール(直径5mmのボール)とを10Lのポリ容器(ポリエチレン製ポット)に入れ、ボールミル装置にて48時間湿式混合し、混合粉末とする。なお、溶媒には、アルコールを用いた。
ここで、例えば、D
50=1μmは、粉末における50%の粒子の粒径が1μm以下であることを表している。
【0032】
次に、得られた混合粉末を乾燥後、1200℃にて5時間、200kgf/cm
2の圧力で真空ホットプレスし、焼結体とした。
このようにホットプレスした焼結体を、ターゲットの指定形状(直径125mm、厚さ10mm)に機械加工し、加工したものを無酸素銅からなるバッキングプレートにボンディングして本実施例1〜13のスパッタリングターゲットを作製した。
【0033】
さらに、これらのスパッタリングターゲットを、マグネトロンスパッタリング装置にセットし、電源:DC、投入電力:500W、到達真空度:1×10
−4Pa、スパッタガス分圧(酸素と不活性ガス(Ar)との雰囲気ガス全体に対する酸素のガス分圧:O
2/(Ar+O
2))が0.05以上0.2以下、スパッタ圧力:0.67Pa、基板加熱を100℃から200℃とした条件で、屈折率及び透過率測定用としてガラス基板(コーニング社#1737 縦:20mm×横:20mm、厚さ:0.7mm)の上に膜厚100nm、また、水蒸気透過率測定用としてPETフィルム(縦:100mm×横:100mm、厚さ:120μm)の上に100nmを有する透明膜の形成を試みた。
【0034】
なお、比較例のスパッタリングターゲット及び透明酸化物膜として、表1に示す条件において、ターゲット組成及び膜組成を本発明の範囲外に設定したもの(比較例1〜6)を上記実施例と同様に作製した。すなわち、比較例の透明酸化物膜として、スパッタリングターゲットの組成を調整し、透明酸化物膜中のAlの組成を3〜13at%の範囲外としたもの(比較例1,2)と、透明酸化物膜中のSiの組成を21〜59at%の範囲外としたもの(比較例3,4)と、透明酸化物膜中のMgの組成を10〜48at%の範囲外としたもの(比較例5,6)と、成膜条件を本発明の範囲外に設定したもの(比較例7)とを上記実施例と同様に作製した。
【0035】
【表1】
【0036】
このように作製した本発明の実施例及び比較例の透明酸化物膜について、膜組成をICP発光分析法で測定したところ、全金属成分に対する各金属成分は表1に示すようになった。膜をEPMAで分析したところ、組織全体に酸素が均一に分布しており、各金属元素が酸化物として膜中に存在していることが確認された。
また、本発明の実施例及び比較例の透明酸化物膜についてX線回折(XRD)の分析を行い、結晶ピークの有無について調べた結果を表1に示す。
【0037】
また、得られた各透明酸化物膜の屈折率は分光エリプソメーター(HORIBA Jobin Yvon社製UVISEL NIR)によって、透過率は分光光度計(日本分光社製 V−550)によって測定した。測定したそれぞれの結果は表1に示す。
さらに、水蒸気透過率(水蒸気バリア性)は、モコン法を用い、mocon社製PERMATRAN-WMODEL 3/33を用いてJIS規格のK7129法に基づいて測定した。測定されたそれぞれの結果は表1に示す。
【0038】
これらの評価の結果、比較例1では、ターゲットの電気抵抗値が高すぎて、DCスパッタできなかった。
比較例2では、ターゲットに複合酸化物(ZnAl
2O
4)組織ができて異常放電が多発し、DCスパッタできなかったので、RFスパッタしたところ、膜に複合酸化物相が析出して水蒸気バリア性が悪かった。
【0039】
比較例3では、Si添加量が少なく、屈折率が高くなっている。また、粗大結晶が析出してアモルファス構造が崩れたため、水蒸気バリア性が悪かった。
比較例4では、ターゲットの電気抵抗値が高すぎて、DCスパッタできなかったため、RFスパッタしたところ、複合酸化物(Zn
2SiO
4)が析出し、水蒸気バリア性が悪かった。
比較例5では、Mg添加量が少ないため、膜の結晶性が高くなり、粗大粒子が析出して水蒸気バリア性が低下している。
比較例6では、ターゲットの電気抵抗値が高すぎて、DCスパッタできなかったため、RFスパッタしたところ、複合酸化物(ZnMgO
2)が析出し、水蒸気バリア性が悪かった。
比較例7では、本発明のスパッタ成膜条件を外れている。本発明のスパッタリングターゲットを用いても、基板加熱・酸素添加を行わなければ、膜に酸素欠損が残存するため、可視光域の屈折率が高く、可視光透過率が低い。
【0040】
これらに対して、本発明の全ての実施例では、XRDで結晶ピークが認められず、水蒸気透過率はいずれも0.03 g/(m
2・day)以下であり、高い水蒸気バリア性を有している。また、いずれの実施例においても、波長400〜750nmの可視光域の屈折率が1.9以下であると共に前記可視光域の透過率が90%以上と高く、低屈折率かつ高透過率を有する膜が得られている。
【0041】
なお、本発明の酸化物スパッタリングターゲットを利用するためには、相対密度:90%以上、面粗さ:Ra値2μm以下、Rz値15μm以下、粒径:3μm以下、電気抵抗:1.0×10
1Ω・cm以下、金属系不純物濃度:0.1原子%以下、抗折強度:120MPa以上であることが好ましい。上記各実施例は、いずれもこれらの条件を満たしたものである。
また、本発明の技術範囲は上記実施形態及び上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。